With 6,000 species, Neuroptera (lacewings, antlions, dustywings, and allies) is a relatively small order; however, most larval neuropterans are predacious, often in agricultural systems, lending added importance to this group. Advances in neuropteran phylogeny, most recently through genomic studies, stabilized the nomenclature of this ancestral order of Holometabola, facilitating basic and applied research on these important and interesting insects. The first pheromones for green lacewings (Chrysopidae) have been identified; this, and other research on antlions (Myrmeleontidae), suggests that male-produced long-range pheromones are the norm for the order. Characterizations of the myriad neuropteran exocrine gland systems, including prothoracic, metathoracic, abdominal, dermal, and anal glands, are revealing unforeseen trophic relationships with biological control implications. For examples, males of and other lacewing genera evidently must sequester specific chemical precursors from prey or plants to produce their attractant pheromones, and larval antlion venoms are potentially important genetic leads for insecticidal peptides.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams PA. 1.  1982. Plesiochrysa, a new subgenus of Chrysopa (Neuroptera) (studies in New World Chrysopidae, part I). Neuroptera Int. 2:27–32 [Google Scholar]
  2. Alasady MAA, Omar DB, Ibrahim RB, Ibrahim YB. 2.  2011. The survey of green lacewings and occurrence of Apertochrysa sp. (Neuroptera: Chrysopidae) on various plants in Malaysia. J. Entomol. Sci. 8:240–49 [Google Scholar]
  3. Albuquerque GS, Tauber CA, Tauber MJ. 3.  2012. Green lacewing (Neuroptera: Chrysopidae): predatory lifestyle. Insect Bioecology and Nutrition for Integrated Pest Management AR Panizzi, JRP Parra 593–631 Boca Raton, FL: CRC PressProvides a comprehensive review of green lacewing biology and physiology. [Google Scholar]
  4. Aldrich JR, Chauhan K, Zhang Q-H. 4.  2016. Pharmacophagy in green lacewings (Neuroptera: Chrysopidae: Chrysopa spp.)?. Peer J. 4:e1564 doi: 10.7717/peerj.1564 [Google Scholar]
  5. Aldrich JR, Le TC, Zhang Q-H, Torres J, Winterton SL. 5.  et al. 2009. Prothoracic gland semiochemicals of green lacewings (Neuroptera: Chrysopidae). J. Chem. Ecol. 35:1181–87 [Google Scholar]
  6. Aldrich JR, Oliver JE, Taghizadeh T, Ferreira JTB, Liewehr D. 6.  1999. Pheromones and colonization: reassessment of the milkweed bug migration model (Heteroptera: Lygaeidae: Lygaeinae). Chemoecology 9:63–71 [Google Scholar]
  7. Aspöck U, Haring E, Aspöck H. 7.  2012. The phylogeny of the Neuropterida: long lasting and current controversies and challenges (Insecta: Endopterygota). Arthropod Syst. Phylogeny 70:119–29 [Google Scholar]
  8. Badano D, Pantaleoni RA. 8.  2014. The larvae of European Myrmeleontidae (Neuroptera). Zootaxa 3762:1–71 [Google Scholar]
  9. Baeckström P, Bergström G, Björkling F, Hui-Zhu H, Högberg H-E. 9.  et al. 1989. Structures, absolute configurations, and syntheses of volatile signals from three sympatric ant-lion species, Euroleon nostras, Grocus bore, and Myrmeleon formicarius (Neuroptera: Myrmeleontidae). J. Chem. Ecol. 15:61–80 [Google Scholar]
  10. Baker TC, Obrycki JJ, Zhu JW. 10.  2003. Attractants of beneficial insects. US Patent No. 6562332
  11. Barnard PC, Brooks SJ. 11.  1984. The African lacewing genus Ceratochrysa (Neuroptera: Chrysopidae): a predator of the cassava mealy bug, Phenacoccus manuhoti (Hemiptera: Pseudococcidae). Syst. Entomol. 9:359–71 [Google Scholar]
  12. Batra SWT. 12.  1972. Notes on the behavior and ecology of the mantispid, Climaciella brunnea occidentalis. J. Kans. Entomol. Soc. 45:334–40 [Google Scholar]
  13. Bergström G, Wassgren A-B, Högberg H-E, Hedenström E, Hefetz A. 13.  et al. 1992. Species-specific, two-component, volatile signals in two sympatric ant-lion species: Synclysis baetica and Acanthaclisis occitanica (Neuroptera, Myrmeleontidae). J. Chem. Ecol. 18:1177–88 [Google Scholar]
  14. Bergström LGW. 14.  2008. Chemical communication by behaviour-guiding olfactory signals. Chem. Comm. 34:3959–79 [Google Scholar]
  15. Blum MS. 15.  1974. Deciphering the communicative Rosetta Stone. Bull. Entomol. Soc. Am. 20:30–35 [Google Scholar]
  16. Blum MS, Wallace JB, Fales HM. 16.  1973. Skatole and tridecene: identification and possible role in a chrysopid secretion. Insect Biochem. 3:353–57 [Google Scholar]
  17. Boo KS, Chung IB, Han KS, Pickett JA, Wadhams LJ. 17.  1998. Response of the lacewing Chrysopa cognata to pheromones of its aphid prey. J. Chem. Ecol. 24:631–43 [Google Scholar]
  18. Boo KS, Kang SS, Park JH, Pickett JA, Wadhams LJ. 18.  2003. Field trapping of Chrysopa cognata (Neuroptera: Chrysopidae) with aphid sex pheromone components in Korea. J. Asian-Pac. Entomol. 6:29–36 [Google Scholar]
  19. Branco M, Franco J, Dunkelblum E, Assael F, Protasov A. 19.  et al. 2006. A common mode of attraction of larvae and adults of insect predators to the sex pheromone of their prey (Hemiptera: Matsucoccidae). Bull. Entomol. Res. 96:179–85 [Google Scholar]
  20. Brooks SJ. 20.  1997. An overview of the current status of Chrysopidae (Neuroptera) systematics. Dtsch. Entomol. Z. 44:267–75 [Google Scholar]
  21. Brooks SJ, Barnard PC. 21.  1990. The green lacewings of the world: a generic review (Neuroptera: Chrysopidae). Bull. Br. Mus. Nat. Hist. (Entomol. Ser.) 59:117–286Revised the genera of Chrysopidae, forming the basis of modern systematics. [Google Scholar]
  22. Brushwein JR. 22.  1987. Bionomics of Lomamyia hamata (Neuroptera: Berothidae). Ann. Entomol. Soc. Am. 80:671–79 [Google Scholar]
  23. Canard M. 23.  2001. Natural food and feeding habits of lacewings. See Ref. 84 116–29
  24. Canard M. 24.  2005. Seasonal adaptations of green lacewings (Neuroptera: Chrysopidae). Eur. J. Entomol. 102:317–24 [Google Scholar]
  25. Canard M, Séméria Y, New TR. 25.  1984. Biology of Chrysopidae Dordrecht, Neth: SpringerAn early classic book on all aspects of green lacewing biology. [Google Scholar]
  26. Chauhan KR, Levi V, Zhang Q-H, Aldrich JR. 26.  2007. Female goldeneyed lacewings (Neuroptera: Chrysopidae: Chrysopa oculata) approach but seldom enter traps baited with the male-produced compound, iridodial. J. Econ. Entomol. 100:1751–55 [Google Scholar]
  27. Chauhan KR, Weber DC. 27.  2008. Lady beetle (Coleoptera: Coccinellidae) tracks deter oviposition by the goldeneyed lacewing, Chrysopa oculata. Biocontrol Sci. Technol. 18:727–31 [Google Scholar]
  28. Chauhan KR, Zhang Q-H, Aldrich JR. 28.  2004. Iridodials: enantiospecific synthesis and stereochemical assignment of the pheromone for the goldeneyed lacewing, Chrysopa oculata. Tetrahedron Lett. 45:3339–40 [Google Scholar]
  29. Cho JR, Lee MH, Park CG, Kim JH, Hooper T. 29.  et al. 2014. Behavioral response of the lacewing Chrysopa cognata to both Aphis gossypii-induced plant volatiles and Chrysopa cognata-derived volatiles. Korean J. Appl. Entomol. 53:7–13 [Google Scholar]
  30. Choi MY, Mochizuki A, Henry CS. 30.  2015. The green lacewing, Chrysoperla nipponensis in nature and in an insectary population in Korea: song types and mitochondrial COI haplotypes. J. Asia-Pac. Entomol. 18:151–55 [Google Scholar]
  31. Conner WE, Corcoran AJ. 31.  2012. Sound strategies: the 65-million-year-old battle between bats and insects. Annu. Rev. Entomol. 57:21–39 [Google Scholar]
  32. Dettner K. 32.  2014. Toxins, defensive compounds and drugs from insects. Insect Molecular Biology and Ecology KH Hoffmann 39–93 Boca Raton, FL: CRC PressGives an up-to-date review of lacewing and antlion semiochemistry, including coverage of venoms and symbionts. [Google Scholar]
  33. Dickens JC, Oliver JE, Hollister B, Davis JC, Klun JA. 33.  2002. Breaking a paradigm: male-produced aggregation pheromone for the Colorado potato beetle. J. Exp. Biol. 205:1925–33 [Google Scholar]
  34. Duelli P. 34.  2004. Der glenofinger, eine spektakuläre prothorakale Drüse bei einer afrotropischen Florfliege (Neuroptera, Chrysopidae). Denesia 13:173–74 [Google Scholar]
  35. Dunn AK, Stabb EV. 35.  2005. Culture-independent characterization of the microbiota of the ant lion Myrmeleon mobilis (Neuroptera: Myrmeleontidae). Appl. Environ. Microbiol. 71:8784–94 [Google Scholar]
  36. Eisner T, Adams PA. 36.  1975. Startle behavior in an ascalaphid (Neuroptera). Psyche 82:304–5 [Google Scholar]
  37. Eisner T, Attygalle AB, Conner WE, Eisner M, MacLeod E, Meinwald J. 37.  1996. Chemical egg defense in a green lacewing (Ceraeochrysa smithi). PNAS 93:3280–83 [Google Scholar]
  38. Eisner T, Hicks K, Eisner M, Robson DS. 38.  1978. “Wolf-in-sheep's-clothing” strategy of a predaceous insect larva. Science 199:790–94 [Google Scholar]
  39. El-Sayed AM. 39.  2014. The Pherobase: Database of Pheromones and Semiochemicals http://www.pherobase.com [Google Scholar]
  40. Elofsson R, Löfqvist J. 40.  1974. The Eltringham organ and a new thoracic gland: ultrastructure and presumed pheromone function (Insecta, Myrmeleontidae). Zool. Scr. 3:31–40 [Google Scholar]
  41. Faulkner DK. 41.  1990. Current knowledge of the biology of the moth-lacewing Oliarces clara Banks (Insecta: Neuroptera: Ithonidae). Advances in Neuropterology: Proceedings of the Third International Symposium on Neuropterology MW Mansell, H Aspöck 197–203 Pretoria, S. Afr.: Dep. Agric. Dev. [Google Scholar]
  42. Flint HM, Salter SS, Walters S. 42.  1979. Caryophyllene: an attractant for the green lacewing Chrysopa carnea. Environ. Entomol. 8:1123–25 [Google Scholar]
  43. Fraenkel GS. 43.  1959. The raison d'être of secondary plant substances. Science 129:1466–70 [Google Scholar]
  44. Gibson CM, Hunter MS. 44.  2005. Reconsideration of the role of yeasts associated with Chrysoperla green lacewings. Biol. Control 32:57–64 [Google Scholar]
  45. Gomes-Filho A. 45.  2000. Aggregation behavior in the Neotropical owlfly Cordulecerus alopecinus (Neuroptera: Ascalaphidae). J. N. Y. Entomol. Soc. 108:304–13 [Google Scholar]
  46. Güsten R. 46.  1996. A review of epidermal glands in the order Neuroptera (Insecta) Presented at Proc. Fifth Int. Symp. Neuropterol., 1994, Cairo, Egypt Provides a detailed review of neuropteran exocrine gland morphology, chemistry, and phylogenic implications. [Google Scholar]
  47. Güsten R. 47.  1998. The morphology of the metathoracic gland system in the Myrmeleontidae (Neuroptera): a preliminary overview. Acta Zool. Fenn. 209:121–27 [Google Scholar]
  48. Güsten R, Dettner K. 48.  1991. The prothoracic gland of the Chrysopidae (Neuropteroidea: Planipennia). Proceedings of the Fourth European Congress of Entomology and the XIII Internationale Symposium für die Entomofaunistik Mitteleuropas L Zombori, L Peregovits 60–65 Budapest, Hung.: Hung. Nat. Hist. Mus. [Google Scholar]
  49. Hagen KS, Greany P, Sawall EF Jr, Tassan RL. 49.  1976. Tryptophan in artificial honeydews as a source of an attractant for adult Chrysopa carnea. Environ. Entomol. 5:458–68 [Google Scholar]
  50. Hardie J. 50.  1985. Starvation-induced oviparae in the black bean aphid, Aphis fabae. Entomol. Exp. Appl. 38:287–89 [Google Scholar]
  51. Hegde M, Oliveira JN, da Costa JG, Bleicher E, Santana AEG. 51.  et al. 2011. Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii. J. Chem. Ecol. 37:741–50 [Google Scholar]
  52. Henry C, Brooks S, Thierry D, Duelli P, Johnson J. 52.  2001. The common green lacewing (Chrysoperla carnea s. lat.) and the sibling species problem. See Ref. 84 29–42
  53. Henry CS. 53.  1972. Eggs and rapagula of Ululodes and Ascaloptynx (Neuroptera: Ascalaphidae): a comparative study. Psyche 79:1–22 [Google Scholar]
  54. Henry CS. 54.  1982. Reproductive and calling behavior in two closely related sympatric lacewing species, Chrysopa oculata and Chrysopa chi (Neuroptera: Chrysopidae). Proc. Entomol. Soc. Wash. 84:191–203 [Google Scholar]
  55. Henry CS, Brooks SJ, Duelli P, Johnson JB, Wells MM, Mochizuki A. 55.  2013. Obligatory duetting behaviour in the Chrysoperla carnea–group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol. Rev. 88:787–808 [Google Scholar]
  56. Hilgraf R, Zimmermann N, Lehmann L, Tröger A, Francke W. 56.  2012. Stereoselective synthesis of trans-fused iridoid lactones and their identification in the parasitoid wasp Alloxysta victrix, Part II: Iridomyrmecins. Beilstein J. Org. Chem. 8:1256–64 [Google Scholar]
  57. Hironaka M, Nomakuchi S, Iwakuma S, Filippi L. 57.  2005. Trophic egg production in a subsocial shield bug, Parastrachia japonensis Scott (Heteroptera: Parastrachiidae), and its functional value. Ethology 111:1089–102 [Google Scholar]
  58. Hooper AM, Donato B, Woodcock CM, Park JH, Paul RL. 58.  et al. 2002. Characterization of (1R,4S,4aR,7S,7aR)-dihydronepetalactol as a semiochemical for lacewings, including Chrysopa spp. and Peyerimhoffina gracilis. J. Chem. Ecol. 28:849–64Fully characterizes compounds eliciting pharmacophagous feeding in lacewings. [Google Scholar]
  59. Hwang JC, Bickley WE. 59.  1961. The reproductive system of Chrysopa oculata (Neuroptera: Chrysopidae). Ann. Entomol. Soc. Am. 54:422–29 [Google Scholar]
  60. Hyeon SB, Isoe S, Sakan T. 60.  1968. The structure of neomatatabiol, the potent attractant for Chrysopa from Actinidia polygama. Tetrahedron Lett. 51:5325–26 [Google Scholar]
  61. Jaastad G, Hatleli L, Knudsen GK, Tóth M. 61.  2010. Volatiles initiate egg laying in common green lacewings. Int. Org. Biol. Integr. Control-West Palaearct. Reg. Sect. Bull. 54:77–82 [Google Scholar]
  62. Jacobson M. 62.  1972. Insect Sex Pheromones New York: Academic [Google Scholar]
  63. Joachim C, Weisser W. 63.  2013. Real-time monitoring of (E)-β-farnesene emission in colonies of the pea aphid, Acyrthosiphon pisum, under lacewing and ladybird predation. J. Chem. Ecol. 39:1254–62 [Google Scholar]
  64. Joachim C, Weisser WW. 64.  2015. Does the aphid alarm pheromone (E)-β-farnesene act as a kairomone under field conditions?. J. Chem. Ecol. 41:267–75 [Google Scholar]
  65. Johnson JB, Hagen KS. 65.  1981. A neuropterous larva uses an allomone to attack termites. Nature 289:506–7 [Google Scholar]
  66. Johnson V, Morrison WP. 66.  1979. Mating behavior of three species of Coniopterygidae (Neuroptera). Psyche 86:395–98 [Google Scholar]
  67. Jones VP, Steffan SA, Wiman NG, Horton DR, Miliczky E. 67.  et al. 2011. Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. Biol. Control 56:98–105 [Google Scholar]
  68. Khan ZR, James DG, Midega CAO, Pickett JA. 68.  2008. Chemical ecology and conservation biological control. Biol. Control 45:210–24 [Google Scholar]
  69. Koczor S, Knudsen GK, Hatleli L, Szentkirályi F, Tóth M. 69.  2014. Manipulation of oviposition and overwintering site choice of common green lacewings with synthetic lure (Neuroptera: Chrysopidae). J. Appl. Entomol. 139:201–6 [Google Scholar]
  70. Koczor S, Szentkirályi F, Birkett MA, Pickett JA, Voigt E, Tóth M. 70.  2010. Attraction of Chrysoperla carnea complex and Chrysopa spp. lacewings (Neuroptera: Chrysopidae) to aphid sex pheromone components and a synthetic blend of floral compounds in Hungary. Pest Manag. Sci. 66:1374–79 [Google Scholar]
  71. Koczor S, Szentkirályi F, Pickett JA, Birkett MA, Tóth M. 71.  2015. Aphid sex pheromone compounds interfere with attraction of common green lacewings (Neuroptera: Chrysopidae) to floral bait. J. Chem. Ecol. 41:550–56 [Google Scholar]
  72. Komatsu T. 72.  2014. Larvae of the Japanese termitophilous predator Isoscelipteron okamotonis (Neuroptera, Berothidae) use their mandibles and silk web to prey on termites. Insect Soc. 61:203–5 [Google Scholar]
  73. Krivokhatsky V. 73.  1998. Additions to the knowledge of the genus Epacanthaclisis Okamoto, 1910 (Neuroptera: Myrmeleontidae). J. Neuropterol. 1:37–54 [Google Scholar]
  74. Kunert M, Søe A, Bartram S, Discher S, Tolzin-Banasch K. 74.  et al. 2008. De novo biosynthesis versus sequestration: a network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochem. Mol. Biol. 38:895–904 [Google Scholar]
  75. Kunkel BA, Cottrell TE. 75.  2007. Oviposition response of green lacewings (Neuroptera: Chrysopidae) to aphids (Hemiptera: Aphididae) and potential attractants on pecan. Environ. Entomol. 36:577–83 [Google Scholar]
  76. LaMunyon CW, Adams PA. 76.  1987. Use and effect of an anal defensive secretion in larval Chrysopidae (Neuroptera). Ann. Entomol. Soc. Am. 80:804–8 [Google Scholar]
  77. Lee JC. 77.  2010. Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Environ. Entomol. 39:653–60 [Google Scholar]
  78. Li Z-Q, Zhang S, Ma Y, Luo J-Y, Wang C-Y. 78.  et al. 2013. First transcriptome and digital gene expression analysis in Neuroptera with an emphasis on chemoreception genes in Chrysopa pallens (Rambur). PLOS ONE 8:e67151 [Google Scholar]
  79. Löfqvist J, Bergström G. 79.  1980. Nerol-derived volatile signals as a biochemical basis for reproductive isolation between sympatric populations of three species of ant-lions (Neuroptera: Myrmeleontidae). Insect Biochem. 10:1–10 [Google Scholar]
  80. Lohman DJ, Liao Q, Pierce NE. 80.  2006. Convergence of chemical mimicry in a guild of aphid predators. Ecol. Entomol. 31:41–51 [Google Scholar]
  81. Maia-Silva C, Hrncir M, Koedam D, Machado RJP, Imperatriz-Fonseca VL. 81.  2013. Out with the garbage: the parasitic strategy of the mantisfly Plega hagenella mass-infesting colonies of the eusocial bee Melipona subnitida in northeastern Brazil. Naturwissenschaften 100:101–5 [Google Scholar]
  82. Martins CC, Amorim DS. 82.  2015. First record of pleasing lacewings (Neuroptera: Dilaridae) in São Paulo state, Brazil. Check List 11:1538 [Google Scholar]
  83. Mason R, Fales H, Eisner M, Eisner T. 83.  1991. Wax of a whitefly and its utilization by a chrysopid larva. Naturwissenschaften 78:28–30 [Google Scholar]
  84. McEwen PK, New TR, Whittington AE. 84.  2001. Lacewings in the Crop Environment Cambridge, UK: Cambridge Univ. PressA detailed compilation covering lacewing systematics, ecology, agricultural case studies, and principles. [Google Scholar]
  85. Mendel Z, Assael F, Dunkelblum E. 85.  2004. Kairomonal attraction of predatory bugs (Heteroptera: Anthocoridae) and brown lacewings (Neuroptera: Hemerobiidae) to sex pheromones of Matsucoccus species (Hemiptera: Matsucoccidae). Biol. Control 30:134–40 [Google Scholar]
  86. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 86.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67 [Google Scholar]
  87. Nakahira K, Arakawa R. 87.  2006. Defensive functions of the trash-package of a green lacewing, Mallada desjardinsi (Neuroptera: Chrysopidae), against a ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Appl. Entomol. Zool. 41:111–15 [Google Scholar]
  88. Nakatani T, Nishimura E, Noda N. 88.  2006. Two isoindoline alkaloids from the crude drug, the ant lion (the larvae of Myrmeleontidae species). J. Nat. Med. 60:261–63 [Google Scholar]
  89. Nelson DR, Freeman TP, Buckner JS, Hoelmer KA, Jackson CG, Hagler JR. 89.  2003. Characterization of the cuticular surface wax pores and the waxy particles of the dustywing, Semidalis flinti (Neuroptera: Coniopterygidae). Comp. Biochem. Physiol. B 136:343–56 [Google Scholar]
  90. Nishiwaki H, Ito K, Otsuki K, Yamamoto H, Komai K, Matsuda K. 90.  2004. Purification and functional characterization of insecticidal sphingomyelinase C produced by Bacillus cereus. Eur. J. Biochem. 271:601–6 [Google Scholar]
  91. Nishiwaki H, Ito K, Shimomura M, Nakashima K, Matsuda K. 91.  2007. Insecticidal bacteria isolated from predatory larvae of the antlion species Myrmeleon bore (Neuroptera: Myrmeleontidae). J. Invertebr. Pathol. 96:80–88 [Google Scholar]
  92. Ohl M. 92.  2011. Aboard a spider—a complex developmental strategy fossilized in amber. Naturwissenschaften 98:453–56 [Google Scholar]
  93. Opler PL. 93.  1981. Polymorphic mimicry of polistine wasps by a Neotropical neuropteran. Biotropica 13:165–76 [Google Scholar]
  94. Oswald JD. 94.  1993. Revision and cladistic analysis of the world genera of the family Hemerobiidae (Insecta: Neuroptera). J. N. Y. Entomol. Soc. 101:143–299 [Google Scholar]
  95. Oswald JD. 95.  2015. Lacewing digital library module. Lacewing Digital Library. http://lacewing.tamu.edu A free, online, searchable database providing access to many difficult-to-find neuropteran references. [Google Scholar]
  96. Pai KF, Chen CJ, Yang JT, Chen CC. 96.  2004. Ankylopteryx exquisite attracted to methyl eugenol. Plant Prot. Bull. 46:93–97 [Google Scholar]
  97. Penny ND, Tauber CA, DeLeon T. 97.  2000. A new species of Chrysopa from western North America with a key to North American species (Neuroptera: Chrysopidae). Ann. Entomol. Soc. Am. 93:776–84 [Google Scholar]
  98. Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J. 98.  et al. 2014. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol. Biol. 14:1–16 [Google Scholar]
  99. Pickett JA, Allemann RK, Birkett MA. 99.  2013. The semiochemistry of aphids. Nat. Prod. Rep. 30:1277–83 [Google Scholar]
  100. Prado SS, Zucchi TD. 100.  2012. Host-symbiont interactions for potentially managing heteropteran pests. Psyche 2012:269473 [Google Scholar]
  101. Principi MM. 101.  1949. Morfologia, anatomia e funzionamento degli apparati genitali nel gen. Chrysopa Leach (Chrysopa septempunctata Wesm. E C. formosa Brauer). Boll. Ist. Entomol. Univ. Bologna 17:316–62 [Google Scholar]
  102. Principi MM. 102.  1954. Singolari strutture glandolari nel torace e nell'addome dei maschi di alcune specie di neurotteri crisopidi. Atti Accad. Naz. Lincei Rc., Cl. Sci. 16:678–85 [Google Scholar]
  103. Prota N, Mumm R, Bouwmeester HJ, Jongsma MA. 103.  2014. Comparison of the chemical composition of three species of smartweed (genus Persicaria) with a focus on drimane sesquiterpenoids. Phytochemistry 108:129–36 [Google Scholar]
  104. Pszczolkowski MA, Johnson DT. 104.  2010. Isopropanol attracts the green lacewing, Chrysopa quadripunctata (Neuroptera: Chrysopidae). Biocontrol Sci. Technol. 21:47–50 [Google Scholar]
  105. Redborg KE. 105.  1983. A mantispid larva can preserve its spider egg prey: evidence for an aggressive allomone. Oecologia 58:230–31 [Google Scholar]
  106. Redborg KE. 106.  1998. Biology of the Mantispidae. Annu. Rev. Entomol. 43:175–94 [Google Scholar]
  107. Ribeiro J, Assumpção TC, Francischetti IMB. 107.  2012. An insight into the sialomes of bloodsucking Heteroptera. Psyche 2012:470436 [Google Scholar]
  108. Rodriguez-Saona C, Blaauw DR, Isaacs R. 108.  2012. Manipulation of natural enemies in agroecosystems: habitat and semiochemicals for sustainable insect pest control. Integrated Pest Management and Pest Control—Current and Future Tactics ML Larramendy, S Soloneski 89–126 Rijeka, Croat.: InTech [Google Scholar]
  109. Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L. 109.  2011. Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol. Control 59:294–303 [Google Scholar]
  110. Ruberson JR, Tauber CA, Tauber MJ. 110.  1995. Developmental effects of host and temperature on Telenomus spp. (Hymenoptera: Scelionidae) parasitizing chrysopid eggs. Biol. Control 5:245–50 [Google Scholar]
  111. Růžička Z. 111.  1994. Oviposition deterring pheromone in Chrysopa oculata (Neuroptera: Chrysopidae). Eur. J. Entomol. 91:361–70 [Google Scholar]
  112. Růžička Z. 112.  1997. Protective role of the egg stalk in Chrysopidae (Neuroptera). Eur. J. Entomol. 94:111–14 [Google Scholar]
  113. Růžička Z. 113.  2010. Detection of oviposition-deterring larval tracks in Chrysopa oculata and Chrysopa perla (Neuroptera: Chrysopidae). Eur. J. Entomol. 107:65–72 [Google Scholar]
  114. Sajap AS, Maeto K, Fukuyama K, Ahmad F, Wahab Y. 114.  1997. Chrysopidae attraction to floral fragrance chemicals and its vertical distribution in a Malaysian lowland tropical forest. Malays. Appl. Biol. 26:75–80 [Google Scholar]
  115. Sakan T, Isoe S, Hyeon SB. 115.  1970. The chemistry of attractants for Chrysopidae from Actinidia polygama Miq. Control of Insect Behavior by Natural Products DL Wood, RM Silverstein, M Nakajima 237–47 New York: Academic [Google Scholar]
  116. Sedlacek JD, Friley KL, Hillman SL. 116.  2009. Populations of lady beetles and lacewings in sweet corn using 2-phenylethanol based Benallure® beneficial insect lures. J. Ky. Acad. Sci. 70:127–32 [Google Scholar]
  117. Spiegler PE. 117.  1962. The origin and nature of the adhesive substance in larvae of the genus Chrysopa (Neuroptera: Chrysopidae). Ann. Entomol. Soc. Am. 55:69–77 [Google Scholar]
  118. Stange LA. 118.  1970. Revision of the ant-lion tribe Brachynemurini of North America (Neuroptera: Myrmeleontidae). Calif. Univ. Publ. Entomol. 55:1–192 [Google Scholar]
  119. Stange LA. 119.  2004. A systematic catalog, bibliography, and classification of the world antlions (Insecta: Neuroptera: Myrmeleontidae). Mem. Am. Entomol. Inst. 74:1–565 [Google Scholar]
  120. Suda DY, Cunningham RT. 120.  1970. Chrysopa basalis captured in plastic traps containing methyl eugenol. J. Econ. Entomol. 63:1076 [Google Scholar]
  121. Symmes EJ. 121.  2012. Improving management of mealy plum aphids (Hyalopterus pruni) and leaf-curl plum aphids (Brachycaudus helichrysi) in dried plum orchards using sex pheromones PhD thesis, Univ. Calif., Davis [Google Scholar]
  122. Szentkirályi F, McEwen P, New T, Whittington A. 122.  2001. Ecology and habitat relationships. See Ref. 84 82–115
  123. Sziráki G. 123.  2007. Studies on Brucheiserinae, with description of the second genus of the subfamily. Acta Zool. Acad. Sci. Hung. (Suppl. 1) 53:231–54 [Google Scholar]
  124. Tan KH, Nishida R. 124.  2012. Methyl eugenol: its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 12:56 [Google Scholar]
  125. Tauber CA, De León T, Penny ND, Tauber MJ. 125.  2000. The genus Ceraeochrysa (Neuroptera: Chrysopidae) of America north of Mexico: larvae, adults, and comparative biology. Ann. Entomol. Soc. Am. 93:1195–221 [Google Scholar]
  126. Tauber CA, Tauber MJ, Albuquerque GS. 126.  2009. Neuroptera: (lacewings, antlions). Encyclopedia of Insects VH Resh, RT Cardé 695–707 New York: Academic [Google Scholar]
  127. Tauber CA, Tauber MJ, Albuquerque GS. 127.  2014. Debris-carrying in larval Chrysopidae: unraveling its evolutionary history. Ann. Entomol. Soc. Am. 107:295–314 [Google Scholar]
  128. Tauber CA, Winterton SL. 128.  2014. Third instar of the myrmecophilous Italochrysa insignis (Walker) from Australia (Neuroptera: Chrysopidae: Belonopterygini). Zootaxa 3811:95–106 [Google Scholar]
  129. Tóth M, Bozsik A, Szentkirályi F, Letardi A, Tabilio MR. 129.  et al. 2006. Phenylacetaldehyde: a chemical attractant for common green lacewings (Chrysoperla carnea s.l., Neuroptera: Chrysopidae). Eur. J. Entomol. 103:267–71 [Google Scholar]
  130. Tóth M, Szentkiráslyi F, Vuts JD, Letardi A, Tabilio MR. 130.  et al. 2009. Optimization of a phenylacetaldehyde-based attractant for common green lacewings (Chrysoperla carnea s.l.). J. Chem. Ecol. 35:449–58 [Google Scholar]
  131. Uddin J, Holliday N, MacKay P. 131.  2005. Rearing lacewings, Chrysoperla carnea and Chrysopa oculata (Neuroptera: Chrysopidae), on prepupae of alfalfa leafcutting bee, Megachile rotundata (Hymenoptera: Megachilidae). Proc. Entomol. Soc. Manit. 61:11–19 [Google Scholar]
  132. van Emden HF, Hagen KS. 132.  1976. Olfactory reactions of green lacewing, Chrysopa carnea, to tryptophan and certain breakdown products. Environ. Entomol. 5:469–73 [Google Scholar]
  133. Walker MH, Picker MD, Leon B. 133.  1994. Eversible abdominal vesicles and some observations of the male reproductive system of the spoon wing lacewing Palmipenna (Neuroptera: Nemopteridae). J. Morphol. 219:47–58 [Google Scholar]
  134. Wattebled S, Bitsch J, Rousset A. 134.  1978. Ultrastructure of pheromone-producing eversible vesicles in males of Chrysopa perla L. (Insecta, Neuroptera). Cell Tissue Res. 194:481–96 [Google Scholar]
  135. Winterton S, Freitas S. 135.  2006. Molecular phylogeny of the green lacewings (Neuroptera: Chrysopidae). Aust. J. Entomol. 45:235–43 [Google Scholar]
  136. Winterton SL, Hardy NB, Wiegmann BM. 136.  2010. On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data. Syst. Entomol. 35:349–78 [Google Scholar]
  137. Winterton SL, Makarkin VN. 137.  2010. Phylogeny of moth lacewings and giant lacewings (Neuroptera: Ithonidae, Polystoechotidae) using DNA sequence data, morphology, and fossils. Ann. Entomol. Soc. Am. 103:511–22 [Google Scholar]
  138. Yasseri AM, Bergstrom G, Franke W, Wassgren A-B. 138.  1996. Laboratory studies on the role of volatile compounds in mating of the antlion Euroleon nostras (Geoffroy in Fourcroy, 1785): behavioural and chemical aspects (Insecta: Neuroptera: Myrmeleontidae) Presented at Proc. Fifth Int. Symp. Neuropterol., 1994, Cairo, Egypt [Google Scholar]
  139. Yasseri AM, Parzefall J. 139.  1996. Life cycle and reproductive behaviour of the antlion Euroleon nostras (Geoffroy in Fourcroy, 1785) in northern Germany (Insecta: Neuroptera: Myrmeleontidae) Presented at Proc. Fifth Int. Symp. Neuropterol., 1994, Cairo, Egypt [Google Scholar]
  140. Yasseri AM, Parzefall J, Francke W. 140.  1997. New aspects of chemical communication in antlions Myrmeleontidae. Mitt. Dtsch. Ges. Allge. Angew. Entomol. 11:899–904 [Google Scholar]
  141. Yasseri AM, Parzefall J, Rietdorf M, Francke W. 141.  1998. New studies on the role of volatile compounds in antlions (Neuroptera, Myrmeleontidae). Acta Zool. Fenn. 209:277–84 [Google Scholar]
  142. Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y. 142.  et al. 2001. Protein function: chaperonin turned insect toxin. Nature 411:44Gives an intriguing molecular insight into antlion venom and the role of symbiotic bacteria. [Google Scholar]
  143. Yoshida N, Sugama H, Gotoh S, Matsuda K, Nishimura K, Komai K. 143.  1999. Detection of ALMB-toxin in the larval body of Myrmeleon bore by anti-N-terminus peptide antibodies. Biosci. Biotech. Biochem. 63:232–34 [Google Scholar]
  144. Yoshihara K, Sakai T, Sakan T. 144.  1978. Dehydroiridodial, the pungent principle of Actinidia polygama Miq. Chem. Lett. 7:433–34 [Google Scholar]
  145. Zhang Q-H, Chauhan KR, Erbe EF, Vellore AR, Aldrich JR. 145.  2004. Semiochemistry of the goldeneyed lacewing Chrysopa oculata (Neuroptera: Chrysopidae): attraction of males to a male-produced pheromone. J. Chem. Ecol. 30:1849–70Identification of the first green lacewing pheromone, with scanning electron micrographs of the male-specific glands responsible. [Google Scholar]
  146. Zhang Q-H, Schneidmiller RG, Hoover D, Young K, Welshons D. 146.  et al. 2006. Male-produced pheromone of the green lacewing, Chrysopa nigricornis (Neuroptera: Chrysopidae). J. Chem. Ecol. 32:2163–76 [Google Scholar]
  147. Zhang Q-H, Sheng M, Chen G, Aldrich JR, Chauhan KR. 147.  2006. Iridodial: a powerful attractant for the green lacewing, Chrysopa septempunctata (Neuroptera: Chrysopidae). Naturwissenschaften 93:461–65 [Google Scholar]
  148. Zhang Q-H, Zhou G, Hoover DR, Michaelson NJ, Bryant P. 148.  et al. 2015. Serendipitous, cross familial discovery of the first long-range chemical attractants for antlions (Neuroptera: Myrmeleontidae): (1R,2S,5R,8R)-iridodial and Z,E-nepetalactol. Front. Ecol. Evol. 2:80 [Google Scholar]
  149. Zhu JW, Cosse AA, Obrycki JJ, Boo KS, Baker TC. 149.  1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–77 [Google Scholar]
  150. Zhu JW, Obrycki JJ, Ochieng SA, Baker TC, Pickett JA, Smiley D. 150.  2005. Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften 92:277–81 [Google Scholar]
  151. Zhu JW, Unelius RC, Park KC, Ochieng SA, Obrycki JJ, Baker TC. 151.  2000. Identification of (Z)-4-tridecene from defensive secretion of green lacewing, Chrysoperla carnea. J. Chem. Ecol. 26:2421–34 [Google Scholar]
  152. Zimmermann D, Klepal W, Aspöck U. 152.  2009. The first holistic SEM study of Coniopterygidae (Neuroptera)—structural evidence and phylogenetic implications. Eur. J. Entomol. 106:651–62 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error