1932

Abstract

Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect defenses that involve egg parasitoids. Furthermore, we discuss the ability of plants to take insect eggs as warning signals; the eggs indicate future larval feeding damage and trigger plant changes that either directly impair larval performance or attract enemies of the larvae. We address the questions of how egg-associated cues elicit plant defenses, how the information that eggs have been laid is transmitted within a plant, and which molecular and chemical plant responses are induced by egg deposition. Finally, we highlight evolutionary aspects of the interactions between plants and insect eggs and ask how the herbivorous insect copes with egg-induced plant defenses and may avoid them by counteradaptations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010814-020620
2015-01-07
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/ento/60/1/annurev-ento-010814-020620.html?itemId=/content/journals/10.1146/annurev-ento-010814-020620&mimeType=html&fmt=ahah

Literature Cited

  1. Adiyodi KG, Adiyodi RG. 1.  1975. Morphology and cytology of the accessory sex glands in invertebrates. Int. Rev. Cytol. 43:353–98 [Google Scholar]
  2. Adler FR, Karban R. 2.  1994. Defended fortresses or moving targets? Another model of inducible defenses inspired by military metaphors. Am. Nat. 144:813–32 [Google Scholar]
  3. Ali JG, Agrawal AA. 3.  2012. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17:293–302 [Google Scholar]
  4. Aluja M, Díaz-Fleischer F, Arredondo J. 4.  2004. Nonhost status of commercial Persea americana ‘Hass’ to Anastrepha ludens, Anastrepha obliqua, Anastrepha serpentina, and Anastrepha striata (Diptera: Tephritidae) in Mexico. J. Econ. Entomol. 97:293–309 [Google Scholar]
  5. Balbyshev NF, Lorenzen JH. 5.  1997. Hypersensitivity and egg drop: a novel mechanism of host plant resistance to Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 90:652–57 [Google Scholar]
  6. Beyaert I, Koepke D, Stiller J, Hammerbacher A, Yoneya K. 6.  et al. 2012. Can insect egg deposition ‘warn’ a plant of future feeding damage by herbivorous larvae?. Proc. R. Soc. B 279:101–8Provides first clues that insect egg deposition primes plant defense against larval herbivory. [Google Scholar]
  7. Blaakmeer A, Hagenbeek D, van Beek TA, de Groot Æ, Schoonhoven LM, van Loon JJA. 7.  1994. Plant response to eggs vs. host marking pheromone as factors inhibiting oviposition by Pieris brassicae. J. Chem. Ecol. 20:1657–65 [Google Scholar]
  8. Blaakmeer A, Stork A, van Veldhuizen A, van Beek TA, de Groot Æ. 8.  et al. 1994. Isolation, identification, and synthesis of miriamides, new hostmarkers from eggs of Pieris brassicae. J. Nat. Prod. 57:90–99 [Google Scholar]
  9. Blenn B, Bandoly M, Küffner A, Otte T, Geiselhardt S. 9.  et al. 2012. Insect egg deposition induces indirect defense and epicuticular wax changes in Arabidopsis thaliana. J. Chem. Ecol. 38:882–92Describes egg-induced changes in chemistry of leaf surface waxes that retain egg parasitoids. [Google Scholar]
  10. Blum MS, Hilker M. 10.  2002. Chemical protection of insect eggs. See Ref. 52 61–90
  11. Bruce TJ, Midega CA, Birkett MA, Pickett JA, Khan ZR. 11.  2010. Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biol. Lett. 6:314–17Provides first evidence of attraction of larval parasitoids to oviposition-induced plant volatiles. [Google Scholar]
  12. Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P. 12.  2010. Insect eggs suppress plant defence against chewing herbivores. Plant J. 62:876–85 [Google Scholar]
  13. Bruessow F, Reymond P. 13.  2007. Oviposition-induced changes in Arabidopsis genome expression: anticipating your enemy?. Plant Signal. Behav. 2:165–67 [Google Scholar]
  14. Buechel K, Malskies S, Mayer M, Fenning TM, Gershenzon J. 14.  et al. 2011. How plants give early herbivore alert: Volatile terpenoids attract parasitoids to egg-infested elms. Basic Appl. Ecol. 12:403–12 [Google Scholar]
  15. Buechel K, McDowell E, Nelson W, Descour A, Gershenzon J. 15.  et al. 2012. An elm EST database for identifying leaf beetle egg-induced defense genes. BMC Genomics 13:242 [Google Scholar]
  16. Castelo MK, van Nouhuys S, Corley JC. 16.  2010. Olfactory attraction of the larval parasitoid, Hyposoter horticola, to plants infested with eggs of the host butterfly, Melitaea cinxia. J. Insect Sci. 10:1–16 [Google Scholar]
  17. Chiappini E, Salerno G, Berzolla A, Iacovone A, Cristina Reguzzi M, Conti E. 17.  2012. Role of volatile semiochemicals in host location by the egg parasitoid Anagrus breviphragma. Entomol. Exp. Appl. 144:311–16 [Google Scholar]
  18. Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF. 18.  et al. 2013. Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc. Natl. Acad. Sci. USA 110:15728–33 [Google Scholar]
  19. Colazza S, Fucarino A, Peri E, Salerno G, Conti E, Bin F. 19.  2004. Insect oviposition induces volatile emission in herbaceous plants that attracts the egg parasitoid Trissolcus basalis. J. Exp. Biol. 207:47–53 [Google Scholar]
  20. Colazza S, McElfresh JS, Millar JG. 20.  2004. Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. J. Chem. Ecol. 30:945–64 [Google Scholar]
  21. Conti E, Salerno G, Leombruni B, Frati F, Bin F. 21.  2010. Short-range allelochemicals from a plant-herbivore association: a singular case of oviposition-induced synomone for an egg parasitoid. J. Exp. Biol. 213:3911–19 [Google Scholar]
  22. Conti E, Zadra C, Salerno G, Leombruni B, Volpe D. 22.  et al. 2008. Changes in the volatile profile of Brassica oleracea due to feeding and oviposition by Murgantia histrionica (Heteroptera: Pentatomidae). Eur. J. Entomol. 105:839–47 [Google Scholar]
  23. Cooper WR, Goggin FL. 23.  2005. Effects of jasmonate-induced defenses in tomato on the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 115:107–15 [Google Scholar]
  24. Craig TP, Itami JK. 24.  2008. Evolution of preference and performance relationships. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects KJ Tilmon 20–28 Berkeley: Univ. Calif. Press [Google Scholar]
  25. Deas JB, Hunter MS. 25.  2012. Mothers modify eggs into shields to protect offspring from parasitism. Proc. R. Soc. B 279:847–53 [Google Scholar]
  26. Deshpande SA, Kainoh Y. 26.  2012. Herbivore egg deposition induces tea leaves to arrest the egg-larval parasitoid Ascogaster reticulata. Entomol. Exp. Appl. 144:172–80 [Google Scholar]
  27. Desurmont GA, Weston PA. 27.  2011. Aggregative oviposition of a phytophagous beetle overcomes egg-crushing plant defences. Ecol. Entomol. 36:335–43 [Google Scholar]
  28. Desurmont GA, Weston PA, Agrawal AA. 28.  2014. Reduction of oviposition time and enhanced larval feeding: two potential benefits of aggregative oviposition for the viburnum leaf beetle. Ecol. Entomol. 39:125–32 [Google Scholar]
  29. Dicke M, Agrawal AA, Bruin J. 29.  2003. Plants talk, but are they deaf?. Trends Plant Sci. 8:403–5 [Google Scholar]
  30. Dicke M, Baldwin IT. 30.  2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help.’. Trends Plant Sci. 15:167–75 [Google Scholar]
  31. Dicke M, Sabelis MW. 31.  1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–65 [Google Scholar]
  32. Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S. 32.  et al. 2000. Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc. Natl. Acad. Sci. USA 97:6218–23 [Google Scholar]
  33. Doss RP, Proebsting WM, Potter SW, Clement SL. 33.  1995. Response of Np mutant of pea (Pisum sativum L.) to pea weevil (Bruchus pisorum L.) oviposition and extracts. J. Chem. Ecol. 21:97–106 [Google Scholar]
  34. Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T. 34.  1988. Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proc. Natl. Acad. Sci. USA 85:5992–96 [Google Scholar]
  35. Eisner T, Rossini C, Gonzáles A, Iyengar VK, Siegler MVS, Smedley SR. 35.  2002. Paternal investment in insect egg defence. See Ref. 52 91–116
  36. Fatouros NE, Broekgaarden C, Bukovinszkine'Kiss G, van Loon JJ, Mumm R. 36.  et al. 2008. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proc. Natl. Acad. Sci. USA 105:10033–38Provides first evidence of male-derived elicitor of egg-induced plant defense. [Google Scholar]
  37. Fatouros NE, Bukovinszkine'Kiss G, Kalkers LA, Soler Gamborena R, Dicke M, Hilker M. 37.  2005. Oviposition-induced plant cues: Do they arrest Trichogramma wasps during host location?. Entomol. Exp. Appl. 115:207–15 [Google Scholar]
  38. Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M. 38.  2008. Foraging behavior of egg parasitoids exploiting chemical information. Behav. Ecol. 19:677–89 [Google Scholar]
  39. Fatouros NE, Huigens ME. 39.  2012. Phoresy in the field: natural occurrence of Trichogramma egg parasitoids on butterflies and moths. Biocontrol 57:493–502 [Google Scholar]
  40. Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA. 40.  et al. 2012. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLOS ONE 7:e43607 [Google Scholar]
  41. Fatouros NE, Pashalidou FG, Aponte Cordero WV, van Loon JJ, Mumm R. 41.  et al. 2009. Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. J. Chem. Ecol. 35:1373–81 [Google Scholar]
  42. Fatouros NE, Pineda A, Huigens ME, Broekgaarden C, Shimwela MM. 42.  et al. 2014. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer. Proc. R. Soc. B 281:20141254 [Google Scholar]
  43. Flor HH. 43.  1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96 [Google Scholar]
  44. Geiselhardt S, Yoneya K, Blenn B, Drechsler N, Gershenzon J. 44.  et al. 2013. Egg laying of Cabbage White Butterfly (Pieris brassicae) on Arabidopsis thaliana affects subsequent performance of the larvae. PLOS ONE 8:e59661 [Google Scholar]
  45. Gillott C. 45.  2002. Insect accessory reproductive glands: key players in production and protection of eggs. See Ref. 52 37–59
  46. Gouhier-Darimont C, Schmiesing A, Bonnet C, Lassueur S, Reymond P. 46.  2013. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. J. Exp. Bot. 64:665–74Suggests that a receptor-like kinase acts as a plant receptor of an egg-associated elicitor of plant responses. [Google Scholar]
  47. Gripenberg S, Mayhew PJ, Parnell M, Roslin T. 47.  2010. A meta-analysis of preference-performance relationships in phytophagous insects. Ecol. Lett. 13:383–93 [Google Scholar]
  48. Gross P. 48.  1993. Insect behavioral and morphological defenses against parasitoids. Annu. Rev. Entomol. 38:251–73 [Google Scholar]
  49. Heil M, Ton J. 49.  2008. Long-distance signalling in plant defence. Trends Plant Sci. 13:264–72 [Google Scholar]
  50. Hilker M. 50.  1992. Protective devices of early developmental stages in Pyrrhalta viburni (Coleoptera, Chrysomelidae). Oecologia 92:71–75 [Google Scholar]
  51. Hilker M, Kobs C, Varama M, Schrank K. 51.  2002. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J. Exp. Biol. 205:455–61 [Google Scholar]
  52. Hilker M, Meiners T. 52.  2002. Chemoecology of Insect Eggs and Egg Deposition Oxford: Blackwell [Google Scholar]
  53. Hilker M, Meiners T. 53.  2006. Early herbivore alert: Insect eggs induce plant defense. J. Chem. Ecol. 32:1379–97 [Google Scholar]
  54. Hilker M, Meiners T. 54.  2010. How do plants “notice” attack by herbivorous arthropods?. Biol. Rev. 85:267–80 [Google Scholar]
  55. Hilker M, Meiners T. 55.  2011. Plants and insect eggs: How do they affect each other?. Phytochemistry 72:1612–23 [Google Scholar]
  56. Hilker M, Rohfritsch O, Meiners T. 56.  2002. The plant's response towards insect egg deposition. See Ref. 52 205–33
  57. Hilker M, Stein C, Schroeder R, Varama M, Mumm R. 57.  2005. Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. J. Exp. Biol. 208:1849–54 [Google Scholar]
  58. Holopainen JK, Blande JD. 58.  2013. Where do herbivore-induced plant volatiles go?. Front. Plant Sci. 4:185 [Google Scholar]
  59. Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T. 59.  2007. Obligate symbiont involved in pest status of host insect. Proc. R. Soc. B 274:1979–84Shows that successful hatching from eggs may depend on parental gut symbiotic bacteria. [Google Scholar]
  60. Huigens ME, Fatouros NE. 60.  2013. A hitch-hiker's guide to parasitism: the chemical ecology of phoretic insect parasitoids. Chemical Ecology of Insect Parasitoids E Wajnberg, S Colazza 86–111 Chichester, UK: Wiley [Google Scholar]
  61. Jacobs CGC, Rezende GL, Lamers GEM, van der Zee M. 61.  2013. The extraembryonic serosa protects the insect egg against desiccation. Proc. R. Soc. B 280:20131082 doi:10.1098/rspb.2013.1082 [Google Scholar]
  62. Jaenike J. 62.  1990. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 21:243–73 [Google Scholar]
  63. James DJ, Gilbert J, Andrea M. 63.  2010. Parental care trade offs and life history relationships in insects. Am. Nat. 176:212–26 [Google Scholar]
  64. Karban R. 64.  2008. Plant behaviour and communication. Ecol. Lett. 11:727–39 [Google Scholar]
  65. Karban R, Agrawal AA. 65.  2002. Herbivore offense. Annu. Rev. Ecol. Syst. 33:641–64 [Google Scholar]
  66. Karban R, Yang LH, Edwards KF. 66.  2014. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17:44–52 [Google Scholar]
  67. Kellner R. 67.  2002. The role of microorganisms for eggs and progeny. See Ref. 52 149–67
  68. Kim J, Tooker JF, Luthe DS, De Moraes CM, Felton GW. 68.  2012. Insect eggs can enhance wound response in plants: a study system of tomato Solanum lycopersicum L. and Helicoverpa zea Boddie. PLOS ONE 7:e37420 [Google Scholar]
  69. Knolhoff LM, Heckel DG. 69.  2013. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu. Rev. Entomol. 59:263–78 [Google Scholar]
  70. Koepke D, Beyaert I, Gershenzon J, Hilker M, Schmidt A. 70.  2010. Species-specific responses of pine sesquiterpene synthases to sawfly oviposition. Phytochemistry 71:909–17 [Google Scholar]
  71. Koepke D, Schroeder R, Fischer HM, Gershenzon J, Hilker M, Schmidt A. 71.  2008. Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine?. Planta 228:427–38 [Google Scholar]
  72. Lam E, Kato N, Lawton M. 72.  2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–53 [Google Scholar]
  73. Leopold RA, Degrugillier ME. 73.  1973. Sperm penetration of housefly eggs: evidence for involvement of a female accessory secretion. Science 181:555–57 [Google Scholar]
  74. Little D, Gouhier-Darimont C, Bruessow F, Reymond P. 74.  2007. Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol. 143:784–800First large-scale transcriptome analysis of plants responding to eggs. [Google Scholar]
  75. Lou YG, Hua XY, Turlings TCJ, Cheng JA, Chen XX, Ye GY. 75.  2006. Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field. J. Chem. Ecol. 32:2375–87 [Google Scholar]
  76. Lou YG, Ma B, Cheng JA. 76.  2005. Attraction of the parasitoid Anagrus nilaparvatae to rice volatiles induced by the rice brown planthopper Nilaparvata lugens. J. Chem. Ecol. 31:2357–72 [Google Scholar]
  77. Lucas-Barbosa D, van Loon JJA, Gols R, van Beek TA, Dicke M. 77.  2013. Reproductive escape: Annual plant responds to butterfly eggs by accelerating seed production. Funct. Ecol. 27:245–54Shows that feeding-damaged plants with prior egg deposition produce seeds faster than egg-free plants. [Google Scholar]
  78. Marchini D, Marri L, Rosetto M, Manetti AGO, Dallai R. 78.  1997. Presence of antibacterial peptides on the laid egg chorion of the medfly Ceratitis capitata. Biochem. Biophys. Res. Commun. 240:657–63 [Google Scholar]
  79. Mayhew PJ. 79.  2001. Herbivore host choice and optimal bad motherhood. Trends Ecol. Evol. 16:165–67 [Google Scholar]
  80. Mazanec Z. 80.  1985. Resistance of Eucalyptus marginata to Perthida glyphopa (Lepidoptera: Incurvariidae). J. Aust. Entomol. Soc. 24:209–21 [Google Scholar]
  81. Meiners T, Hacker NK, Anderson P, Hilker M. 81.  2005. Response of the elm leaf beetle to host plants induced by oviposition and feeding: The infestation rate matters. Entomol. Exp. Appl. 115:171–77 [Google Scholar]
  82. Meiners T, Hilker M. 82.  1997. Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93 [Google Scholar]
  83. Meiners T, Hilker M. 83.  2000. Induction of plant synomones by oviposition of a phytophagous insect. J. Chem. Ecol. 26:221–32Provides first evidence of oviposition-induced plant volatiles that attract egg parasitoids. [Google Scholar]
  84. Meiners T, Westerhaus C, Hilker M. 84.  2000. Specificity of chemical cues used by a specialist egg parasitoid during host location. Entomol. Exp. Appl. 95:151–59 [Google Scholar]
  85. Mumm R, Schrank K, Wegener R, Schulz S, Hilker M. 85.  2003. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J. Chem. Ecol. 29:1235–52 [Google Scholar]
  86. Mumm R, Tiemann T, Schulz S, Hilker M. 86.  2004. Analysis of volatiles from black pine (Pinus nigra): significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry 65:3221–30 [Google Scholar]
  87. Mumm R, Tiemann T, Varama M, Hilker M. 87.  2005. Choosy egg parasitoids: specificity of oviposition-induced pine volatiles exploited by an egg parasitoid of pine sawflies. Entomol. Exp. Appl. 115:217–25 [Google Scholar]
  88. Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E. 88.  2008. The hypersensitive response: The centenary is upon us but how much do we know?. J. Exp. Bot. 59:501–20 [Google Scholar]
  89. Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G. 89.  et al. 2002. Caterpillar saliva beats plant defences—a new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416:599–600 [Google Scholar]
  90. Pashalidou FG, Gols R, Berkhout BW, Weldegergis BT, van Loon JJA. 90.  et al. 2014. To be in time: Egg deposition enhances plant-mediated detection of young caterpillars by parasitoids. Oecologia In press [Google Scholar]
  91. Pashalidou FG, Huigens ME, Dicke M, Fatouros NE. 91.  2010. The use of oviposition-induced plant cues by Trichogramma egg parasitoids. Ecol. Entomol. 35:748–53 [Google Scholar]
  92. Pashalidou FG, Lucas-Barbosa D, van Loon JJA, Dicke M, Fatouros NE. 92.  2013. Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology 94:702–13 [Google Scholar]
  93. Pasteels JM, Daloze D, Rowell-Rahier M. 93.  1986. Chemical defence in chrysomelid eggs and neonate larvae. Physiol. Entomol. 11:29–37 [Google Scholar]
  94. Peñaflor MFGV, Erb M, Robert CAM, Miranda LA, Werneburg AG. 94.  et al. 2011. Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta 234:207–15 [Google Scholar]
  95. Pérez J, Rojas JC, Montoya P, Liedo P, Castillo A. 95.  2013. Anastrepha egg deposition induces volatiles in fruits that attract the parasitoid Fopius arisanus. Bull. Entomol. Res. 103:318–25 [Google Scholar]
  96. Petzold-Maxwell J, Wong S, Arellano C, Gould F. 96.  2011. Host plant direct defence against eggs of its specialist herbivore, Heliothis subflexa. Ecol. Entomol. 36:700–8 [Google Scholar]
  97. Pinto-Zevallos DM, Hellen H, Hakola H, van Nouhuys S, Holopainen JK. 97.  2013. Induced defenses of Veronica spicata: variability in herbivore-induced volatile organic compounds. Phytochem. Lett. 6:653–56 [Google Scholar]
  98. Ponzio C, Gols R, Weldegergis BT, Dicke M. 98.  2014. Caterpillar-induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non-host insect herbivore. Plant Cell Environ. 37:1924–35 [Google Scholar]
  99. Reymond P. 99.  2013. Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238:247–58 [Google Scholar]
  100. Romeis J, Babendreier D, Wäckers FL, Shanower TG. 100.  2005. Habitat and plant specificity of Trichogramma egg parasitoids—underlying mechanisms and implications. Basic Appl. Ecol. 6:215–36 [Google Scholar]
  101. Rosetto M, Marchini D, de Filippis T, Ciolfi S, Frati F. 101.  et al. 2003. The ceratotoxin gene family in the medfly Ceratitis capitata and the natal fruit fly Ceratitis rosa (Diptera: Tephritidae). Heredity 90:382–89 [Google Scholar]
  102. Salerno G, De Santis F, Iacovone A, Bin F, Conti E. 102.  2013. Short-range cues mediate parasitoid searching behavior on maize: the role of oviposition-induced plant synomones. Biol. Control 64:247–54 [Google Scholar]
  103. Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A. 103.  et al. 2011. A herbivore that manipulates plant defence. Ecol. Lett. 14:229–36 [Google Scholar]
  104. Schröder R, Cristescu SM, Harren FJ, Hilker M. 104.  2007. Reduction of ethylene emission from Scots pine elicited by insect egg secretion. J. Exp. Bot. 58:1835–42 [Google Scholar]
  105. Schröder R, Forstreuter M, Hilker M. 105.  2005. A plant notices insect egg deposition and changes its rate of photosynthesis. Plant Physiol. 138:470–77 [Google Scholar]
  106. Schröder R, Hilker M. 106.  2008. The relevance of background odor in resource location by insects: a behavioral approach. BioScience 58:308–16 [Google Scholar]
  107. Schwartzberg EG, Tumlinson JH, Jones H. 107.  2014. Aphid honeydew alters plant defence responses. Funct. Ecol. 28:386–94 [Google Scholar]
  108. Seino Y, Suzuki Y. 108.  1997. Biotransformation of benzyl benzoate from benzoic acid in rice watery ovipositional lesion tissues induced by Sogatella furcifera (HORVATH) (Homoptera, Delphacidae). Appl. Entomol. Zool. 32:530–32 [Google Scholar]
  109. Seino Y, Suzuki Y, Sogawa K. 109.  1996. An ovicidal substance produced by rice plants in response to oviposition by the whitebacked planthopper, Sogatella furcifera (Horvath) (Homoptera: Delphacidae). Appl. Entomol. Zool. 31:467–73Describes production of ovicidal compound by a plant in response to eggs. [Google Scholar]
  110. Shapiro AM, DeVay JE. 110.  1987. Hypersensitivity reaction of Brassica nigra L. (Cruciferae) kills eggs of Pieris butterflies (Lepidoptera, Pieridae). Oecologia 71:631–32 [Google Scholar]
  111. Shorthouse JD, Rohfritsch O. 111.  1992. Biology of Insect-Induced Galls New York: Oxford Univ. Press [Google Scholar]
  112. Smallegange RC, van Loon JJA, Blatt SE, Harvey JA, Agerbirk N, Dicke M. 112.  2007. Flower vs. leaf feeding by Pieris brassicae: Glucosinolate-rich flower tissues are preferred and sustain higher growth rate. J. Chem. Ecol. 33:1831–44 [Google Scholar]
  113. Stamp NE. 113.  1980. Egg deposition patterns in butterflies: Why do some species cluster their eggs rather than deposit them singly?. Am. Nat. 115:367–80 [Google Scholar]
  114. Stout MJ, Bostock RM. 114.  1999. Specificity of induced responses to arthropods and pathogenes. Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology and Agriculture AA Agrawal, S Tuzun, E Bent 183–209 St. Paul, MN: APS [Google Scholar]
  115. Suzuki Y, Sogawa K, Seino Y. 115.  1996. Ovicidal reaction of rice plants against the whitebacked planthopper, Sogatella furcifera HORVATH (Homoptera: Delphacidae). Appl. Entomol. Zool. 31:111–18 [Google Scholar]
  116. Tallamy DW. 116.  2001. Evolution of exclusive paternal care in arthropods. Annu. Rev. Entomol. 46:139–65 [Google Scholar]
  117. Tamiru A, Bruce TJ, Midega CA, Woodcock CM, Birkett MA. 117.  et al. 2012. Oviposition induced volatile emissions from African smallholder farmers' maize varieties. J. Chem. Ecol. 38:231–34 [Google Scholar]
  118. Tamiru A, Bruce TJ, Woodcock CM, Caulfield JC, Midega CA. 118.  et al. 2011. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol. Lett. 14:1075–83 [Google Scholar]
  119. Thompson JN. 119.  1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 47:3–14 [Google Scholar]
  120. Tong X, Qi J, Zhu X, Mao B, Zeng L. 120.  et al. 2012. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J. 71:763–75 [Google Scholar]
  121. Tooker JF, De Moraes CM. 121.  2007. Jasmonate, salicylate, and benzoate in insect eggs. J. Chem. Ecol. 33:331–43 [Google Scholar]
  122. Turlings TCJ, Tumlinson JH, Lewis WJ. 122.  1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–53 [Google Scholar]
  123. Vinson SB. 123.  2010. Nutritional ecology of insect egg parasitoids. Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma, ed. FL Consli, JRP Parra, R Zucchi 25–55 Dordrecht, Neth: Springer [Google Scholar]
  124. Voigt D, Gorb S. 124.  2010. Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc. R. Soc. B 277:895–903 [Google Scholar]
  125. Wegener R, Schulz S, Meiners T, Hadwich K, Hilker M. 125.  2001. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. J. Chem. Ecol. 27:499–515 [Google Scholar]
  126. Wong JWY, Meunier J, Kölliker M. 126.  2013. The evolution of parental care in insects: the roles of ecology, life history and the social environment. Ecol. Entomol. 38:123–37 [Google Scholar]
  127. Yang JO, Nakayama N, Shiraki K, Kawasaki Y, Zang Z, Kim CS. 127.  2013. Elucidation of elicitors in Sogatella furcifera (Horvath) causing the Japonica rice plant (Oryza sativa L.) varieties to induce production of the ovicidal substance against the egg of S furcifera. Presented at Jt. Meet. Asian Pac. Soc. Chem. Ecol. Int. Soc. Chem. Ecol., Melbourne, Aust. [Google Scholar]
  128. Yang JO, Nakayama N, Toda K, Tebayashi S, Kim CS. 128.  2013. Elicitor(s) in Sogatella furcifera (Horvath) causing the Japanese rice plant (Oryza sativa L.) to induce the ovicidal substance, benzyl benzoate. Biosci. Biotechnol. Biochem. 77:1258–61 [Google Scholar]
  129. Yang JO, Nakayama N, Toda K, Tebayashi S, Kim CS. 129.  2014. Structural determination of elicitors in Sogatella furcifera (Horvath) that induce Japonica rice plant varieties (Oryza sativa L.) to produce an ovicidal substance against S. furcifera eggs. Biosci. Biotechnol. Biochem. 78:937–42 [Google Scholar]
/content/journals/10.1146/annurev-ento-010814-020620
Loading
/content/journals/10.1146/annurev-ento-010814-020620
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error