Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.

[Erratum, Closure]

An erratum has been published for this article:
Trail Pheromones: An Integrative View of Their Role in Social Insect Colony Organization

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acosta FJ, López F, Serrano JM. 1.  1993. Branching angles of ant trunk trails as an optimization cue. J. Theor. Biol. 160:3297–310 [Google Scholar]
  2. Akre KL, Johnsen S. 2.  2014. Psychophysics and the evolution of behavior. Trends Ecol. Evol. 29:5291–300 [Google Scholar]
  3. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 3.  2007. Molecular Biology of the Cell New York: Garland Sci, 5th ed.. [Google Scholar]
  4. Aron S, Beckers R, Deneubourg J, Pasteels JM. 4.  1993. Memory and chemical communication in the orientation of two mass-recruiting ant species. Insectes Sociaux 40:4369–80 [Google Scholar]
  5. Avarguès-Weber A, Giurfa M. 5.  2013. Conceptual learning by miniature brains. Proc. R. Soc. B 280:177220131907 [Google Scholar]
  6. Beckers R, Deneubourg J, Goss S. 6.  1992. Trail laying behaviour during food recruitment in the ant Lasius niger (L.). Insectes Sociaux 39:59–71 [Google Scholar]
  7. Beckers R, Deneubourg JL, Goss S. 7.  1992. Trails and U-turns in the selection of a path by the ant Lasius niger. J. Theor. Biol. 159:4397–415 [Google Scholar]
  8. Beckers R, Deneubourg JL, Goss S. 8.  1993. Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. J. Insect Behav. 6:6751–59Stronger recruitment to higher-quality food sources results in a colony-level decision for the better feeder. [Google Scholar]
  9. Beckers R, Deneubourg JL, Goss S, Pasteels JM. 9.  1990. Collective decision making through food recruitment. Insectes Sociaux 37:3258–67 [Google Scholar]
  10. Bonnet C. 10.  1779. Observation XLIII. Sur un procédé des Fourmis. Oeuvres d'Histoire Naturelle et de Philosophie 1:535–36 Neuchâtel, Switz.: Samuel Fauché [Google Scholar]
  11. Bordereau C, Pasteels JM. 11.  2011. Pheromones and chemical ecology of dispersal and foraging in termites. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 279–320 Dordrecht, Neth: Springer [Google Scholar]
  12. Breed MD, Fewell JH, Moore AJ, Williams KR. 12.  1987. Graded recruitment in a ponerine ant. Behav. Ecol. Sociobiol. 20:6407–11 [Google Scholar]
  13. Breed MD, Stocker EM, Baumgartner LK, Vargas SA. 13.  2002. Time-place learning and the ecology of recruitment in a stingless bee, Trigona amalthea (Hymenoptera, Apidae). Apidologie 33:3251–58 [Google Scholar]
  14. Cammaerts M-C, Cammaerts R. 14.  1980. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behav. Proccess 5:3251–70 [Google Scholar]
  15. Cammaerts M-C, Evershed RP, Morgan ED. 15.  1981. Comparative study of the Dufour gland secretions of workers of four species of Myrmica ants. J. Insect Physiol. 27:159–65 [Google Scholar]
  16. Cammaerts-Tricot MC. 16.  1974. Recrutement d'ouvrieres, chez Myrmica rubra, par les pheromones de l'appareil a venin. Behaviour 50:111–22 [Google Scholar]
  17. Cammaerts M-C. 17.  2013. Trail following learning by young Myrmica rubra workers (Hymenoptera, Formicidae). ISRN Entomol 2013:1–6 [Google Scholar]
  18. Carthy JD. 18.  1951. The orientation of two allied species of British ant, II. Odour trail laying and following in Acanthomyops (lasius) fuliginosus. Behaviour 3:4304–18 [Google Scholar]
  19. Cassill D. 19.  2003. Rules of supply and demand regulate recruitment to food in an ant society. Behav. Ecol. Sociobiol. 54:5441–50 [Google Scholar]
  20. Cochran WW, Mouritsen H, Wikelski M. 20.  2004. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:5669405–8 [Google Scholar]
  21. Collett TS, Collett M. 21.  2002. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3:7542–52 [Google Scholar]
  22. Cronin AL. 22.  2012. Consensus decision making in the ant Myrmecina nipponica: House-hunters combine pheromone trails with quorum responses. Anim. Behav. 84:01243–51 [Google Scholar]
  23. Czaczkes TJ, Grüter C, Jones SM, Ratnieks FLW. 23.  2011. Synergy between social and private information increases foraging efficiency in ants. Biol. Lett. 7:4521–24One example of how trail pheromones can complement other information sources, here route memory. [Google Scholar]
  24. Czaczkes TJ, Grüter C, Jones SM, Ratnieks FLW. 24.  2012. Uncovering the complexity of ant foraging trails. Commun. Integr. Biol. 5:178–80 [Google Scholar]
  25. Czaczkes TJ, Grüter C, Ratnieks FLW. 25.  2012. Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger. J. Exp. Biol. 216:188–97 [Google Scholar]
  26. Czaczkes TJ, Grüter C, Ratnieks FLW. 26.  2013. Negative feedback in ants: Crowding results in less trail pheromone deposition. J. R. Soc. Interface 10:8120121009 [Google Scholar]
  27. Czaczkes TJ, Ratnieks FLW. 27.  2012. Pheromone trails in the Brazilian ant Pheidole oxyops: extreme properties and dual recruitment action. Behav. Ecol. Sociobiol. 66:1149–56 [Google Scholar]
  28. Czaczkes TJ, Schlosser L, Heinze J, Witte V. 28.  2014. Ants use directionless odour cues to recall odour-associated locations. Behav. Ecol. Sociobiol. 68:6981–88 [Google Scholar]
  29. Czaczkes TJ, Vollet-Neto A, Ratnieks FLW. 29.  2013. Prey escorting behavior and possible convergent evolution of foraging recruitment mechanisms in an invasive ant. Behav. Ecol. 24:51177–84 [Google Scholar]
  30. de Biseau JC, Deneubourg JL, Pasteels JM. 30.  1991. Collective flexibility during mass recruitment in the ant Myrmica sabuleti (Hymenoptera: Formicidae). Psyche 98:4323–36 [Google Scholar]
  31. Deneubourg J-L, Aron S, Goss S, Pasteels JM. 31.  1990. The self-organizing exploratory pattern of the Argentine ant. J. Insect Behav. 3:2159–68The classical Deneubourg choice function linking pheromone strength to path choice. [Google Scholar]
  32. Detrain C, Deneubourg JL. 32.  2009. Social cues and adaptive foraging strategies in ants. See Ref. 82 29–52
  33. Devigne C, Detrain C. 33.  2002. Collective exploration and area marking in the ant Lasius niger. Insectes Sociaux 49:357–62 [Google Scholar]
  34. Devigne C, Detrain C. 34.  2006. How does food distance influence foraging in the ant Lasius niger: the importance of home-range marking. Insectes Sociaux 53:146–55 [Google Scholar]
  35. Devigne C, Renon A, Detrain C. 35.  2004. Out of sight but not out of mind: modulation of recruitment according to home range marking in ants. Anim. Behav. 67:61023–29 [Google Scholar]
  36. Dorigo M, Stützle T. 36.  2004. Ant Colony Optimization Cambridge, MA: MIT Press [Google Scholar]
  37. Dussutour A, Beekman M, Nicolis SC, Meyer B. 37.  2009. Noise improves collective decision-making by ants in dynamic environments. Proc. R. Soc. B 276:16774353–61 [Google Scholar]
  38. Dussutour A, Nicolis SC, Shephard G, Beekman M, Sumpter DJT. 38.  2009. The role of multiple pheromones in food recruitment by ants. J. Exp. Biol. 212:152337–48 [Google Scholar]
  39. Evison SEF, Petchey OL, Beckerman AP, Ratnieks FLW. 39.  2008. Combined use of pheromone trails and visual landmarks by the common garden ant Lasius niger. Behav. Ecol. Sociobiol. 63:261–67 [Google Scholar]
  40. Evison SEF, Webster K, Hughes W. 40.  2012. Better the nest site you know: decision-making during nest migrations by the Pharaoh's ant. Behav. Ecol. Sociobiol. 66:5711–20 [Google Scholar]
  41. Farji-Brener AG, Amador-Vargas S, Chinchilla F, Escobar S, Cabrera S. 41.  et al. 2010. Information transfer in head-on encounters between leaf-cutting ant workers: food, trail condition or orientation cues?. Anim. Behav. 79:2343–49 [Google Scholar]
  42. Farji-Brener AG, Sierra C. 42.  1998. The role of trunk trails in the scouting activity of the leaf-cutting ant Atta cephalotes. Ecoscience 5:2271–74 [Google Scholar]
  43. Flanagan TP, Pinter-Wollman NM, Moses ME, Gordon DM. 43.  2013. Fast and flexible: Argentine ants recruit from nearby trails. PLOS ONE 8:8e70888 [Google Scholar]
  44. Forster A, Czaczkes TJ, Warner E, Woodall T, Martin E, Ratnieks FLW. 44.  2014. Effect of trail bifurcation asymmetry and pheromone presence or absence on trail choice by Lasius niger ants. Ethology 120:8768–71 [Google Scholar]
  45. Fourcassié V, Beugnon G. 45.  1988. How do red wood ants orient when foraging in a three dimensional system? I. Laboratory experiments. Insectes Sociaux 35:192–105 [Google Scholar]
  46. Fourcassié V, Deneubourg JL. 46.  1994. The dynamics of collective exploration and trail-formation in Monomorium pharaonis: experiments and model. Physiol. Entomol. 19:4291–300 [Google Scholar]
  47. Franks NR, Hooper JW, Dornhaus A, Aukett PJ, Hayward AL, Berghoff SM. 47.  2007. Reconnaissance and latent learning in ants. Proc. R. Soc. B 274:16171505–9 [Google Scholar]
  48. Gerbier G, Garnier S, Rieu C, Theraulaz G, Fourcassié V. 48.  2008. Are ants sensitive to the geometry of tunnel bifurcation?. Anim. Cogn. 11:4637–42 [Google Scholar]
  49. Gordon DM, Mehdiabadi NJ. 49.  1999. Encounter rate and task allocation in harvester ants. Behav. Ecol. Sociobiol. 45:370–77 [Google Scholar]
  50. Goss S, Aron S, Deneubourg JL, Pasteels JM. 50.  1989. Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76:579–81 [Google Scholar]
  51. Graham P, Cheng K. 51.  2009. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19:20R935–37 [Google Scholar]
  52. Granovskiy B, Latty T, Duncan M, Sumpter DJT, Beekman M. 52.  2012. How dancing honey bees keep track of changes: the role of inspector bees. Behav. Ecol. 23:3588–96 [Google Scholar]
  53. Grasso DA, Sledge MF, Moli FL, Mori A, Turillazzi S. 53.  2005. Nest-area marking with faeces: a chemical signature that allows colony-level recognition in seed harvesting ants (Hymenoptera, Formicidae). Insectes Sociaux 52:136–44 [Google Scholar]
  54. Greene MJ, Gordon DM. 54.  2007. How patrollers set foraging direction in harvester ants. Am. Nat. 170:6943–48 [Google Scholar]
  55. Grüter C, Czaczkes TJ, Ratnieks FLW. 55.  2011. Decision making in ant foragers (Lasius niger) facing conflicting private and social information. Behav. Ecol. Sociobiol. 64:141–48When trail pheromone and route memories conflict, route memory is prioritized. [Google Scholar]
  56. Grüter C, Leadbeater E. 56.  2014. Insights from insects about adaptive social information use. Trends Ecol. Evol. 29:3177–84 [Google Scholar]
  57. Grüter C, Segers FHID, Ratnieks FLW. 57.  2013. Social learning strategies in honeybee foragers: Do the costs of using private information affect the use of social information?. Anim. Behav. 85:61443–49 [Google Scholar]
  58. Hall P, Traniello JFA. 58.  1985. Behavioral bioassays of termite trail pheromones. J. Chem. Ecol. 11:111503–13 [Google Scholar]
  59. Hangartner W. 59.  1967. Spezifität und inaktivierung des Spurpheromons von Lasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld. J. Comp. Physiol. A 57:2103–36 [Google Scholar]
  60. Hangartner W. 60.  1969. Orientierung von Lasius fuliginosus Latr. An einer Gabelung der Geruchsspur. Insectes Sociaux 16:155–60The classical, and still perhaps best, demonstration of a linear relationship between pheromone strength and trail choice. [Google Scholar]
  61. Harrison JF, Fewell JH, Stiller TM, Breed MD. 61.  1989. Effects of experience on use of orientation cues in the giant tropical ant. Anim. Behav. 37:Part 5869–71 [Google Scholar]
  62. Hölldobler B. 62.  1971. Recruitment behavior in Camponotus socius (Hym. Formicidae). J. Comp. Physiol. A 75:2123–42 [Google Scholar]
  63. Hölldobler B. 63.  1976. Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav. Ecol. Sociobiol. 1:13–44 [Google Scholar]
  64. Hölldobler B. 64.  1976. Tournaments and slavery in a desert ant. Science 192:4242912–14 [Google Scholar]
  65. Hölldobler B. 65.  1981. Foraging and spatiotemporal territories in the honey ant Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 9:301–14 [Google Scholar]
  66. Hölldobler B. 66.  1981. Trail communication in the dacetine ant Orectognathus versicolor (Hymenoptera: Formicidae). Psyche 88:3–4245–57 [Google Scholar]
  67. Hölldobler B. 67.  1999. Multimodal signals in ant communication. J. Comp. Physiol. A 184:2129–41 [Google Scholar]
  68. Hölldobler B, Braun U, Gronenberg W, Kirchner W, Peeters C. 68.  1994. Trail communication in the ant Megaponera foetens (Fabr.) (Formicidae, Ponerinae). J. Insect Physiol. 40:7585–93 [Google Scholar]
  69. Hölldobler B, Janssen E, Bestmann HJ, Kern F, Leal IR. 69.  et al. 1996. Communication in the migratory termite-hunting ant Pachycondyla (=Termitopone) marginata (Formicidae, Ponerinae). J. Comp. Physiol. A 178:147–53 [Google Scholar]
  70. Hölldobler B, Möglich M. 70.  1980. The foraging system of Pheidole militicida (Hymenoptera: Formicidae). Insectes Sociaux 27:3237–64 [Google Scholar]
  71. Hölldobler B, Oldham NJ, Morgan ED, König WA. 71.  1995. Recruitment pheromones in the ants Aphaenogaster albisetosus and A. cockerelli (Hymenoptera: Formicidae). J. Insect Physiol. 41:9739–44 [Google Scholar]
  72. Hölldobler B, Stanton RC, Markl H. 72.  1978. Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera): I. Chemical signals. Behav. Ecol. Sociobiol. 4:2163–81 [Google Scholar]
  73. Hölldobler B, Wilson EO. 73.  1978. The multiple recruitment systems of the African weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 3:119–60 [Google Scholar]
  74. Hölldobler B, Wilson EO. 74.  1990. The Ants Cambridge, MA: Belknap [Google Scholar]
  75. Howard JJ. 75.  2001. Costs of trail construction and maintenance in the leaf-cutting ant Atta columbica. Behav. Ecol. Sociobiol. 49:5348–56 [Google Scholar]
  76. Hrncir M. 76.  2009. Mobilizing the foraging force: mechanical signals in stingless bee recruitment. See Ref. 82 199–221
  77. Jackson DE, Holcombe M, Ratnieks FLW. 77.  2004. Trail geometry gives polarity to ant foraging networks. Nature 432:7019907–9 [Google Scholar]
  78. Jackson DE, Martin SJ, Holcombe M, Ratnieks FLW. 78.  2006. Longevity and detection of persistent foraging trails in Pharaoh's ants, Monomorium pharaonis (L.). Anim. Behav. 71:2351–59 [Google Scholar]
  79. Jackson DE, Ratnieks FLW. 79.  2006. Communication in ants. Curr. Biol. 16:15R570–74 [Google Scholar]
  80. Jaffe K, Issa S, Sainz-Borgo C. 80.  2012. Chemical recruitment for foraging in ants (Formicidae) and termites (Isoptera): a revealing comparison. Psyche 2012:694910 [Google Scholar]
  81. Jarau S. 81.  2009. Chemical communication during food exploitation in stingless bees. See Ref. 82 223–50
  82. Jarau S, Hrncir M. 82.  2009. Food Exploitation by Social Insects: Ecological, Behavioral, and Theoretical Approaches Boca Raton, FL: CRC [Google Scholar]
  83. Jeanne RL. 83.  1981. Chemical communication during swarm emigration in the social wasp Polybia sericea (Olivier). Anim. Behav. 29:1102–13 [Google Scholar]
  84. Latty T, Beekman M. 84.  2013. Keeping track of changes: the performance of ant colonies in dynamic environments. Anim. Behav. 85:3637–43 [Google Scholar]
  85. Leadbeater E, Chittka L. 85.  2007. Social learning in insects—from miniature brains to consensus building. Curr. Biol. 17:16R703–13 [Google Scholar]
  86. Lenoir A, Depickère S, Devers S, Christidès J-P, Detrain C. 86.  2009. Hydrocarbons in the ant Lasius niger: from the cuticle to the nest and home range marking. J. Chem. Ecol. 35:8913–21 [Google Scholar]
  87. Levin SA. 87.  1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:5431–36 [Google Scholar]
  88. Lindauer M, Kerr WE. 88.  1958. Die gegenseitige Verständigung bei den Stachellosen Bienen. J. Comp. Physiol. A 41:4405–34 [Google Scholar]
  89. Lloyd S. 89.  2001. Measures of complexity: a nonexhaustive list. IEEE Control Systems Magazine, August, pp. 7–8 [Google Scholar]
  90. Mailleux A-C. 90.  2006. Starvation drives a threshold triggering communication. J. Exp. Biol. 209:4224–29 [Google Scholar]
  91. Mailleux A-C, Buffin A, Detrain C, Deneubourg J-L. 91.  2011. Recruitment in starved nests: the role of direct and indirect interactions between scouts and nestmates in the ant Lasius niger. Insectes Sociaux 58:559–67 [Google Scholar]
  92. Mallon EB, Franks NR. 92.  2000. Ants estimate area using Buffon's needle. Proc. R. Soc. Lond. B 267:1445765–70 [Google Scholar]
  93. Maschwitz U, Schönegge P. 93.  1977. Recruitment gland of Leptogenys chinensis. Naturwissenschaften 64:11589–90 [Google Scholar]
  94. Morgan D. 94.  2009. Trail pheromones of ants. Physiol. Entomol. 34:11–17 [Google Scholar]
  95. Ng TPT, Saltin SH, Davies MS, Johannesson K, Stafford R, Williams GA. 95.  2013. Snails and their trails: the multiple functions of trail-following in gastropods. Biol. Rev. 88:3683–700 [Google Scholar]
  96. Nieh JC, Contrera FAL, Yoon RR, Barreto LS, Imperatriz-Fonseca VL. 96.  2004. Polarized short odor-trail recruitment communication by a stingless bee, Trigona spinipes. Behav. Ecol. Sociobiol. 56:5435–48 [Google Scholar]
  97. Perna A, Granovskiy B, Garnier S, Nicolis SC, Labédan M. 97.  et al. 2012. Individual rules for trail pattern formation in Argentine ants (Linepithema humile). PLOS Comput. Biol. 8:7e1002592 [Google Scholar]
  98. Plowes NJR, Johnson RA, Hölldobler B. 98.  2013. Foraging behavior in the ant genus Messor. Myrmecol. News 18:33–49 [Google Scholar]
  99. Ratnieks FLW. 99.  2008. Biomimicry: further insights from ant colonies?. Bio-Inspired Computing and Communication P Liò, E Yoneki, J Crowcroft, DC Verma 58–66 Berlin: Springer [Google Scholar]
  100. Reichle C, Aguilar I, Ayasse M, Jarau S. 100.  2011. Stingless bees (Scaptotrigona pectoralis) learn foreign trail pheromones and use them to find food. J. Comp. Physiol. A 197:3243–49 [Google Scholar]
  101. Reichle C, Aguilar I, Ayasse M, Twele R, Francke W, Jarau S. 101.  2013. Learnt information in species-specific “trail pheromone” communication in stingless bees. Anim. Behav. 85:1225–32Demonstrates that the reaction of stingless bees to trail pheromones might sometimes be learned, not innate. [Google Scholar]
  102. Reid CR, Sumpter DJT, Beekman M. 102.  2011. Optimisation in a natural system: Argentine ants solve the Towers of Hanoi. J. Exp. Biol. 214:150–58 [Google Scholar]
  103. Rendell L, Boyd R, Cownden D, Enquist M, Eriksson K. 103.  et al. 2010. Why copy others? Insights from the Social Learning Strategies Tournament. Science 328:5975208–13 [Google Scholar]
  104. Robinson E, Ratnieks F, Holcombe M. 104.  2008. An agent-based model to investigate the roles of attractive and repellent pheromones in ant decision making during foraging. J. Theor. Biol. 255:250–58 [Google Scholar]
  105. Robinson EJH, Jackson DE, Holcombe M, Ratnieks FLW. 105.  2005. Insect communication: ‘no entry’ signal in ant foraging. Nature 438:7067442 [Google Scholar]
  106. Rosengren R, Fortelius W. 106.  1986. Ortstreue in foraging ants of the Formica rufa group—hierarchy of orienting cues and long-term memory. Insectes Sociaux 33:3306–37 [Google Scholar]
  107. Runcie CD. 107.  1987. Behavioral evidence for multicomponent trail pheromone in the termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J. Chem. Ecol. 13:91967–78 [Google Scholar]
  108. Stroeymeyt N, Giurfa M, Franks NR. 108.  2010. Improving decision speed, accuracy and group cohesion through early information gathering in house-hunting ants. PLOS ONE 5:9e13059 [Google Scholar]
  109. Sumpter DJT, Beekman M. 109.  2003. From nonlinearity to optimality: pheromone trail foraging by ants. Anim. Behav. 66:2273–80 [Google Scholar]
  110. Theraulaz G, Bonabeau E, Deneubourg J-L. 110.  1998. The origin of nest complexity in social insects. Complexity 3:615–25 [Google Scholar]
  111. Traniello JFA. 111.  1980. Colony specificity in the trail pheromone of an ant. Naturwissenschaften 67:7361–62 [Google Scholar]
  112. Traniello JFA. 112.  1982. Recruitment and orientation components in a termite trail pheromone. Naturwissenschaften 69:7343–45 [Google Scholar]
  113. Traniello JFA. 113.  1983. Social organization and foraging success in Lasius neoniger (Hymenoptera: Formicidae): behavioral and ecological aspects of recruitment communication. Oecologia 59:94–100 [Google Scholar]
  114. Traniello JFA, Robson SK. 114.  1995. Trail and territorial communication in social insects. Chem. Ecol. Insects 2:241–86 [Google Scholar]
  115. Verhaeghe J. 115.  1982. Food recruitment in Tetramorium impurum (Hymenoptera: Formicidae). Insectes Sociaux 29:167–85 [Google Scholar]
  116. Vilela EF, Jaffé K, Howse PE. 116.  1987. Orientation in leaf-cutting ants (Formicidae: Attini). Anim. Behav. 35:51443–53 [Google Scholar]
  117. Vittori K, Talbot G, Gautrais J, Fourcassié V, Araújo AFR, Theraulaz G. 117.  2006. Path efficiency of ant foraging trails in an artificial network. J. Theor. Biol. 239:507–15 [Google Scholar]
  118. von Frisch K. 118.  1967. The Dance Language and Orientation of Bees Cambridge, MA: Harvard Univ. Press [Google Scholar]
  119. von Thienen W, Metzler D, Choe D-H, Witte V. 119.  2014. Pheromone communication in ants: a detailed analysis of concentration-dependent decisions in three species. Behav. Ecol. Sociobiol. 68:1611–27 [Google Scholar]
  120. Wetterer JK, Shafir S, Morrison L, Lips K, Gilbert G. 120.  et al. 1992. On- and off-trail orientation in the leaf-cutting ant, Atta cephalotes (L.) (Hymenoptera: Formicidae). J. Kans. Entomol. Soc. 65:196–98 [Google Scholar]
  121. Wilson EO. 121.  1962. Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) 1. The organization of mass-foraging. Anim. Behav. 10:1–2134–47 [Google Scholar]
  122. Witte V, Attygalle AB, Meinwald J. 122.  2007. Complex chemical communication in the crazy ant Paratrechina longicornis Latreille (Hymenoptera: Formicidae). Chemoecology 17:157–62Three different trail pheromones with three very different functional roles. [Google Scholar]
  123. Wray MK, Klein BA, Seeley TD. 123.  2012. Honey bees use social information in waggle dances more fully when foraging errors are more costly. Behav. Ecol. 23:1125–31 [Google Scholar]
  124. Grüter C, Schürch R, Czaczkes TJ, Taylor K, Durance T. 123.  2012. Negative feedback enables fast and flexible collective decision-making in ants. PLOS ONE 7:9e44501 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error