Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aliniazee MT. 1.  1995. The economic, environmental, and sociopolitical impact of biological control. Biological Control in the Western United States JR Nechols, LA Andres, JW Beardley, RD Goeden, CG Jackson 47–56 Oakland, CA: Univ. Calif. Div. Agric. Nat. Resour. [Google Scholar]
  2. 2. Am. Eval. Assoc 2014. Find an evaluator Am. Eval. Assoc. Website Washington, DC: Am. Eval. Assoc http://www.eval.org/p/cm/ld/fid=108 [Google Scholar]
  3. Bale JS, van Lenteren JC, Bigler F. 3.  2008. Biological control and sustainable food production. Philos. Trans. R. Soc. B 363:761–76 [Google Scholar]
  4. Barbosa P. 4.  1998. Conservation Biological Control New York: Academic [Google Scholar]
  5. Bianchi FJJA, Booij CJH, Tscharntke T. 5.  2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 273:1715–27 [Google Scholar]
  6. Bokonon-Ganta AH, de Groote H, Neuenschwander P. 6.  2002. Socio-economic impact of biological control of mango mealybug in Benin. Agric. Ecosyst. Environ. 93:367–78 [Google Scholar]
  7. Bommarco R, Miranda F, Bylund H, Björkman C. 7.  2011. Insecticides suppress natural enemies and increase pest damage in cabbage. J. Econ. Entomol. 104:782–91 [Google Scholar]
  8. Brennan EB. 8.  2013. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids. Biol. Control 65:302–11 [Google Scholar]
  9. Brown GC. 9.  1997. Simple models of natural enemy action and economic thresholds. Am. Entomol. 43:117–24Develops and analyzes simple models for incorporating biological control into the economic threshold. [Google Scholar]
  10. Carlson GA. 10.  1988. Economics of biological control of pests. Am. J. Altern. Agric. 3:110–16 [Google Scholar]
  11. Carson RT. 11.  2000. Contingent valuation: a user's guide. Environ. Sci. Technol. 34:1413–18 [Google Scholar]
  12. Casey JE, Lacewell RD, Sterling W. 12.  1975. An example of economically feasible opportunities for reducing pesticide use in commercial agriculture. J. Environ. Qual. 4:60–64 [Google Scholar]
  13. Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG. 13.  et al. 2006. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4:238–43 [Google Scholar]
  14. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC. 14.  et al. 2011. Combining high biodiversity with high yields in tropical agroforests. Proc. Nat. Acad. Sci. USA 108:8311–16 [Google Scholar]
  15. Cock MJW. 15.  2010. General news. Biocontrol News Inf. 31:17N–24N [Google Scholar]
  16. Collier T, van Steenwyk R. 16.  2004. A critical evaluation of augmentative biological control. Biol. Control 31:245–56 [Google Scholar]
  17. Collins KL, Boatman ND, Wilcox A, Holland JM, Chaney K. 17.  2002. Influence of beetle banks on cereal aphid predation in winter wheat. Agric. Ecosyst. Environ. 93:337–50 [Google Scholar]
  18. Colloff M, Lindsay E, Cook D. 18.  2013. Natural pest control in citrus as an ecosystem service: integrating ecology, economics and management at the farm scale. Biol. Control 67:170–77 [Google Scholar]
  19. Conway HE, Steinkraus DC, Ruberson JR, Kring TJ. 19.  2006. Experimental treatment threshold for the cotton aphid (Homoptera: Aphididae) using natural enemies in Arkansas cotton. J. Entomol. Sci. 41:361–73 [Google Scholar]
  20. Coop LB, Berry RE. 20.  1986. Reduction in variegated cutworm, Peridroma saucia (Lepidoptera: Noctuidae), injury to peppermint by larval parasitoids, Mentha piperita. J. Econ. Entomol. 79:1244–48 [Google Scholar]
  21. Costanza R, D'Arge R, de Groot R, Farber S, Grasso M. 21.  et al. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253–60The first compilation of the global value of multiple ecosystem services in multiple biomes. [Google Scholar]
  22. Coulson JR. 22.  1992. Documentation of classical biological control introductions. Crop Prot. 11:195–205 [Google Scholar]
  23. Croft BA. 23.  1990. Arthropod Biological Control Agents and Pesticides New York: Wiley [Google Scholar]
  24. Cullen R, Forbes S, Grout R, Smallman C. 24.  2010. Evaluation of conservation biological control innovation in winegrowing. Proc. N. Z. Agric. Resour. Econ. Soc., Nelson, N.Z., Aug. 26–271–13 Christchurch, N. Z: NZARES [Google Scholar]
  25. Cullen R, Warner KD, Jonsson M, Wratten SD. 25.  2008. Economics and adoption of conservation biological control. Biol. Control 45:272–80Discusses the constraints and opportunities for valuation and adoption of conservation biological control. [Google Scholar]
  26. Dahlsten DL, Norgaard RB, Hansen EP, Zuparko RL. 26.  1998. Biological control of the blue gum psyllid proves economically beneficial. Calif. Agric. 52:35–39 [Google Scholar]
  27. Daily GC. 27.  1997. Nature's Services: Societal Dependence on Natural Ecosystems Washington, DC: Island [Google Scholar]
  28. Daily GC, Polasky S, Goldstein J, Kareiva PM, Mooney HA. 28.  et al. 2009. Ecosystem services in decision making: time to deliver. Front. Ecol. Environ. 7:21–28Describes advances in accounting for natural capital in decisions of individuals, communities, corporations, and governments. [Google Scholar]
  29. DeBach P. 29.  1964. The scope of biological control. Biological Control of Insect Pests and Weeds P DeBach 3–20 New York: Reinhold [Google Scholar]
  30. Ehler LE. 30.  2006. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 62:787–89 [Google Scholar]
  31. Elfner L, Falk-Krzesinski H, Sullivan K, Velkey A, Illman D. 31.  et al. 2011. Team science: heaving walls & melding silos. Am. Sci. 99:s1–8Intractable global problems demand solutions likely only possible through team science that achieves transdisciplinarity. [Google Scholar]
  32. Ellsworth PC, Martinez-Carrillo JL. 32.  2001. IPM for Bemisia tabaci: a case study from North America. Crop Prot. 20:853–69 [Google Scholar]
  33. Ervin RT, Moffitt LJ, Meyerdirk DE. 33.  1983. Comstock mealybug (Homoptera: Pseudococcidae): cost analysis of a biological control program in California. J. Econ. Entomol. 76:605–9 [Google Scholar]
  34. Farrar J, Elliott S. 34.  2013. Signature programs. Western Integrated Pest Management Center 2013 Annual Report Davis, CA: West. IPM Cent http://www.wrpmc.ucdavis.edu/annualreport/2013%20Annual%20Report.pdf [Google Scholar]
  35. Federico P, Hallam TG, McCracken GF, Purucker ST, Grant WE. 35.  et al. 2008. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol. Appl. 18:826–37 [Google Scholar]
  36. Field BC, Field MK. 36.  2006. Environmental Economics: An Introduction Boston, MA: McGraw-Hill Irwin, 4th ed.. [Google Scholar]
  37. Fillman DA, Sterling WL. 37.  1985. Inaction levels for the red imported fire ant, Solenopsis invicta: a predator of the boll weevil, Anthonomus grandis. Agric. Ecosyst. Environ. 13:93–102 [Google Scholar]
  38. Florax RJ, Travisi CM, Nijkamp P. 38.  2005. A meta-analysis of the willingness to pay for reductions in pesticide risk exposure. Eur. Rev. Agric. Econ. 32:441–67 [Google Scholar]
  39. Furlong MJ, Shi ZH, Liu SS, Zalucki MP. 39.  2004. Evaluation of the impact of natural enemies on Plutella xylostella L. (Lepidoptera: Yponomeutidae) populations on commercial Brassica farms. Agric. For. Entomol. 6:311–22 [Google Scholar]
  40. Furlong MJ, Shi ZH, Liu YQ, Guo SJ, Lu YB. 40.  et al. 2004. Experimental analysis of the influence of pest management practice on the efficacy of an endemic arthropod natural enemy complex of the diamondback moth. J. Econ. Entomol. 97:1814–27 [Google Scholar]
  41. Gallardo RK, Wang Q. 41.  2013. Willingness to pay for pesticides' environmental features and social desirability bias: the case of apple and pear growers. J. Agric. Resour. Econ. 38:124–39 [Google Scholar]
  42. Garcia MC, Belmonte A, Pascual F, Garcia T, Simon A. 42.  et al. 2012. Economic evaluation of cucumber and French bean production: comparing integrated and organic crop production management. Acta Hortic. 930:115–20 [Google Scholar]
  43. Gardner J, Hoffmann MP, Pitcher SA, Harper JK. 43.  2011. Integrating insecticides and Trichogramma ostriniae to control European corn borer in sweet corn: economic analysis. Biol. Control 56:9–16 [Google Scholar]
  44. Giles KL, Jones DB, Royer TA, Elliott NC, Kindler SD. 44.  2003. Development of a sampling plan in winter wheat that estimates cereal aphid parasitism levels and predicts population suppression. J. Econ. Entomol. 96:975–82 [Google Scholar]
  45. Greathead DJ, Greathead AH. 45.  1992. Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News Inf. 13:61N–68N [Google Scholar]
  46. Greene CR, Rajotte EG, Norton GW, Kramer RA, McPherson AM. 46.  1985. Revenue and risk analysis of soybean pest management options in Virginia. J. Econ. Entomol. 78:10–18 [Google Scholar]
  47. Griffiths GJK, Holland JM, Bailey A, Thomas MB. 47.  2008. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control 45:200–9 [Google Scholar]
  48. Grogan KA, Goodhue RE. 48.  2012. Spatial externalities of pest control decisions in the California citrus industry. J. Agric. Resour. Econ. 37:157–79 [Google Scholar]
  49. Gurr GM, Wratten SD, Altieri MA. 49.  2004. Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods Ithaca, NY: Cornell Univ. Press [Google Scholar]
  50. Gutierrez AP, Caltagirone LE, Meikle W. 50.  1999. Evaluation of results: economics of biological control. Handbook of Biological Control TS Bellows, TW Fisher 243–52 San Diego, CA: Academic [Google Scholar]
  51. Haab TC, Interis MG, Petrolia DR, Whitehead JC. 51.  2013. From hopeless to curious? Thoughts on Hausman's “dubious to hopeless” critique of contingent valuation. Appl. Econ. Perspect. Policy 35:593–612 [Google Scholar]
  52. Hallett RH, Bahlai Ca, Xue Y, Schaafsma AW. 52.  2014. Incorporating natural enemy units into a dynamic action threshold for the soybean aphid, Aphis glycines (Homoptera: Aphididae). Pest Manag. Sci. 70:879–88 [Google Scholar]
  53. Hamilton AJ, Schellhorn NA, Endersby NM, Ridland PM, Ward SA. 53.  2004. A dynamic binomial sequential sampling plan for Plutella xylostella (Lepidoptera: Plutellidae) on broccoli and cauliflower in Australia. J. Econ. Entomol. 97:127–35 [Google Scholar]
  54. Harper CR, Zilberman D. 54.  1989. Pest externalities from agricultural inputs. Am. J. Agric. Econ. 71:692–702 [Google Scholar]
  55. Hausman J. 55.  2012. Contingent valuation: from dubious to hopeless. J. Econ. Perspect. 26:43–56 [Google Scholar]
  56. Headley JC. 56.  1985. Cost-benefit analysis: defining research needs. Biological Control in Agricultural IPM Systems MA Hoy, DC Herzog 53–63 New York: Academic [Google Scholar]
  57. Headley JC, Hoy MA. 57.  1987. Benefit/cost analysis of an integrated mite management program for almonds. J. Econ. Entomol. 80:555–59Ex ante analysis of conservation and augmentative biological control that includes the costs of research and development. [Google Scholar]
  58. Hill G, Greathead DJ. 58.  2000. Economic evaluations in classical biological control. The Economics of Biological Invasions C Perring, M Williamson, S Dalmazzone 208–33 Cheltenham, UK: Edward Elger [Google Scholar]
  59. Hoddle MS, Van Driesche R. 59.  1996. Evaluation of Encarsia formosa (Hymenoptera: Aphelinidae) to control Bemisia argentifolii (Homoptera: Aleyrodidae) on poinsettia (Euphorbia pulcherrima): a lifetable analysis. Fla. Entomol. 79:1–12 [Google Scholar]
  60. Hoddle MS, Van Driesche R. 60.  1999. Evaluation of inundative releases of Eretmocerus eremicus and Encarsia formosa Beltsville strain in commercial greenhouses for control of Bemisia argentifolii (Hemiptera: Aleyrodidae) on poinsettia stock plants. J. Econ. Entomol. 92:811–24 [Google Scholar]
  61. Hoffmann MP, Wilson LT, Zalom FG, Hilton RJ. 61.  1990. Parasitism of Heliothis zea (Lepidoptera: Noctuidae) eggs: effect on pest management decision rules for processing tomatoes in the Sacramento Valley of California. Environ. Entomol. 19:753–63 [Google Scholar]
  62. Holt RD, Hochberg ME. 62.  1997. When is biological control evolutionarily stable (or is it)?. Ecology 78:1673–83 [Google Scholar]
  63. Huffaker CB, Simmonds FJ, Laing JE. 63.  1976. The theoretical and empirical basis of biological control. Theory and Practice of Biological Control CB Huffaker, P Messenger 41–78 New York: Academic [Google Scholar]
  64. Jepson PC. 64.  2003. Scale dependency in the impact of pesticides on invertebrate natural enemies. Proc. Calif. Conf. Biol. Control, 3rd, Davis, Aug. 15–16, 2002 M Hoddle 100–6 Davis: Univ. Calif. [Google Scholar]
  65. Jepson PC, Guzy M, Blaustein K, Sow M, Sarr M. 65.  et al. 2014. Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification. Philos. Trans. R. Soc. B 369:1639Science-based tool for estimating ecotoxicological risks of farmer pesticide practices useful for understanding grower externalities. [Google Scholar]
  66. Jetter K. 66.  2005. Economic framework for decision making in biological control. Biol. Control 35:348–57 [Google Scholar]
  67. Jetter K, Klonsky K, Pickett CH. 67.  1997. A cost/benefit analysis of the ash whitefly biological control program in California. J. Arboric. 23:65–71 [Google Scholar]
  68. Jetter K, Paine TD. 68.  2004. Consumer preferences and willingness to pay for biological control in the urban landscape. Biol. Control 30:312–22 [Google Scholar]
  69. Johnson MD, Kellermann JL, Stercho AM. 69.  2010. Pest reduction services by birds in shade and sun coffee in Jamaica. Anim. Conserv. 13:140–47 [Google Scholar]
  70. Jonsson M, Wratten SD, Landis DA, Tompkins J-ML, Cullen R. 70.  2010. Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biol. Invasions 12:2933–45 [Google Scholar]
  71. Kogan M. 71.  1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43:243–70 [Google Scholar]
  72. Landis DA, Gardiner MM, van der Werf W, Swinton SM. 72.  2008. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc. Nat. Acad. Sci. USA 105:20552–57 [Google Scholar]
  73. Landis DA, Wratten SD, Gurr GM. 73.  2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45:175–201 [Google Scholar]
  74. Liapis PS, Moffitt LJ. 74.  1983. Economic analysis of cotton integrated pest management strategies. South. J. Agric. Econ. 15:97–102 [Google Scholar]
  75. Liu X, Chen M, Collins HL, Onstad DW, Roush RT. 75.  et al. 2014. Natural enemies delay insect resistance to Bt crops. PLOS ONE 9:e90366 [Google Scholar]
  76. Lohr L, Park T, Higley L. 76.  1999. Farmer risk assessment for voluntary insecticide reduction. Ecol. Econ. 30:121–30 [Google Scholar]
  77. Losey JE, Vaughan M. 77.  2006. The economic value of ecological services provided by insects. BioScience 56:311–23Estimates value of multiple ecosystem services provided by insects. [Google Scholar]
  78. Lv J, Wilson LT, Beuzelin JM, White WH, Reagan TE, Way MO. 78.  2011. Impact of Cotesia flavipes (Hymenoptera: Braconidae) as an augmentative biocontrol agent for the sugarcane borer (Lepidoptera: Crambidae) on rice. Biol. Control 56:159–69 [Google Scholar]
  79. Maas B, Clough Y, Tscharntke T. 79.  2013. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16:1480–87 [Google Scholar]
  80. Macharia I, Löhr B, De Groote H. 80.  2005. Assessing the potential impact of biological control of Plutella xylostella (diamondback moth) in cabbage production in Kenya. Crop Prot. 24:981–89 [Google Scholar]
  81. McFadyen RE. 81.  1998. Biological control of weeds. Annu. Rev. Entomol. 43:369–93 [Google Scholar]
  82. McNeill MR, Goldson SL, Proffitt JR, Phillips CB, Addison PJ. 82.  2002. A description of the commercial rearing and distribution of Microctonus hyperodae (Hymenoptera: Braconidae) for biological control of Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae). Biol. Control 24:167–75 [Google Scholar]
  83. McRoberts N, Thomas C, Fournier A, Coli W, Goodell P. 83.  et al. 2014. A Toolkit for Assessing IPM Outcomes and Impacts Davis: Univ. Calif. Davis Div. Agric. Nat. Resour http://ucanr.edu/sites/McRoberts [Google Scholar]
  84. Mensah R, Vodouhe D, Sanfillippo D, Assogba G, Monday P. 84.  2012. Increasing organic cotton production in Benin West Africa with a supplementary food spray product to manage pests and beneficial insects. Int. J. Pest Manag. 58:53–64 [Google Scholar]
  85. Moreno DS, Luck RF. 85.  1992. Augmentative releases of Aphytis melinus (Hymenoptera, Aphelinidae) to suppress California red scale (Homoptera, Diaspididae) in Southern California lemon orchards. J. Econ. Entomol. 85:1112–19 [Google Scholar]
  86. Musser FR, Nyrop JP, Shelton AM. 86.  2006. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. J. Econ. Entomol. 99:1538–49 [Google Scholar]
  87. Myrick S, Norton G, Selvaraj K, Natarajan K, Muniappan R. 87.  2014. Economic impact of classical biological control of papaya mealybug in India. Crop Prot. 56:82–86 [Google Scholar]
  88. Naranjo SE, Ellsworth PC. 88.  2009. Fifty years of the integrated control concept: moving the model and implementation forward in Arizona. Pest Manag. Sci. 65:1267–86 [Google Scholar]
  89. Naranjo SE, Ellsworth PC. 89.  2009. The contribution of conservation biological control to integrated control of Bemisia tabaci in cotton. Biol. Control 51:458–70 [Google Scholar]
  90. Naranjo SE, Ellsworth PC, Hagler JR. 90.  2004. Conservation of natural enemies in cotton: role of insect growth regulators in management of Bemisia tabaci. Biol. Control 30:52–72 [Google Scholar]
  91. Naylor RL, Ehrlich PR. 91.  1997. Natural pest control services and agriculture. See Ref. 27 151–74
  92. Norgaard RB. 92.  1988. The biological control of cassava mealybug in Africa. Am. J. Agric. Econ. 70:366–71 [Google Scholar]
  93. 93. North Cent. IPM Cent 2014. North Central IPM Center personnel. North Cent. IPM Cent. Website. East Lansing, MI. http://www.ncipmc.org/about/personnel.cfm [Google Scholar]
  94. 94. Northeast IPM Cent 2014. Staff. Northeast IPM Cent. Website. Ithaca, NY. http://www.northeastipm.org/about-us/people/staff/
  95. Norton G, Mullen J. 95.  1994. Economic evaluation of integrated pest management programs: a literature review Va. Coop. Ext., Publ. 448120. Va. Polytech. Inst. State Univ. Blacksburg, VA [Google Scholar]
  96. Oleke JM, Manyong V, Hanna R, Sabelis M. 96.  2013. Ex-ante economic analysis of biological control of coconut mite in Benin. AgBioForum 16:161–69 [Google Scholar]
  97. Onstad DW, Knolhoff LM. 97.  2009. Finding the economics in economic entomology. J. Econ. Entomol. 102:1–7Summarizes and assesses economic evaluations of IPM tactics. [Google Scholar]
  98. Ostlie KR, Pedigo LP. 98.  1987. Incorporating pest survivorship into economic thresholds. Bull. Entomol. Soc. Am. 33:98–102 [Google Scholar]
  99. Östman O, Ekbom B, Bengtsson J. 99.  2003. Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol. Econ. 45:149–58 [Google Scholar]
  100. Pedigo LP, Hutchins SH, Higley LG. 100.  1986. Economic injury levels in theory and practice. Annu. Rev. Entomol. 31:341–68 [Google Scholar]
  101. Peng R, Christian K. 101.  2005. Integrated pest management in mango orchards in the Northern Territory Australia, using the weaver ant, Oecophylla smaragdina, (Hymenoptera: Formicidae) as a key element. Int. J. Pest Manag. 51:149–55 [Google Scholar]
  102. Perkins JH, Garcia R. 102.  1999. Social and economic factors affecting research and implementation of biological control. Handbook of Biological Control TS Bellows, TW Fisher 993–1009 San Diego, CA: Academic [Google Scholar]
  103. Pilkington LJ, Messelink G, van Lenteren JC, Le Mottee K. 103.  2010. “Protected Biological Control”—biological pest management in the greenhouse industry. Biol. Control 52:216–20 [Google Scholar]
  104. Pimentel D, Wilson C, McCullum C, Huang R, Dwen P. 104.  et al. 1997. Economic and environmental benefits of biodiversity. BioScience 47:747–57 [Google Scholar]
  105. Porter J, Costanza R, Sandhu H, Sigsgaard L, Wratten S. 105.  2009. The value of producing food, energy, and ecosystem services within an agro-ecosystem. Ambio 38:186–93 [Google Scholar]
  106. Raspel S, Götte E, Richter E, Klose F, Sell P. 106.  2006. Long-term costs of biological pest control with beneficial organisms in cut flower roses. Nachr. Dtsch. Pflanzenschutzd. 58:174–80 [Google Scholar]
  107. Reichelderfer KH. 107.  1979. Economic feasibility of a biological control technology using a parasitic wasp, Pediobius foveolatus, to manage Mexican bean beetle on soybeans. Agric Econ. Rep. 430. USDA Econ., Stat., Coop. Ser., Washington, DC [Google Scholar]
  108. Rosenheim JA, Parsa S, Forbes AA, Krimmel WA, Law YH. 108.  et al. 2011. Ecoinformatics for integrated pest management: expanding the applied insect ecologist's tool-kit. J. Econ. Entomol. 104:331–42Use of large grower/consultant observational data sets to inform and model IPM development and practice. [Google Scholar]
  109. Sandhu HS, Wratten SD, Cullen R. 109.  2010. The role of supporting ecosystem services in conventional and organic arable farmland. Ecol. Complex. 7:302–10 [Google Scholar]
  110. Schmidt NP, O'Neal ME, Singer JW. 110.  2007. Alfalfa living mulch advances biological control of soybean aphid. Environ. Entomol. 36:416–24 [Google Scholar]
  111. Shakya S, Coll M, Weintraub PG. 111.  2010. Incorporation of intraguild predation into a pest management decision-making tool: the case of thrips and two pollen-feeding predators in strawberry. J. Econ. Entomol. 103:1086–93 [Google Scholar]
  112. Simmonds FJ, Franz JM, Sailer RI. 112.  1976. History of biological control. Theory and Practice of Biological Control CB Huffaker, PS Messenger 17–39 New York: Academic [Google Scholar]
  113. 113. South. IPM Cent 2014. Southern IPM Center staff. Southern IPM Cent. Website Raleigh, NC: South. Region IPM Cent http://www.sripmc.org/SRIPMC_staff.cfm [Google Scholar]
  114. Sparks TC. 114.  2013. Insecticide discovery: an evaluation and analysis. Pestic. Biochem. Physiol. 107:8–17 [Google Scholar]
  115. Steinmann KP, Zhang M, Grant JA, Pickel C, Goodhue RE, Klonsky K. 115.  2010. Quantifying economic and environmental tradeoffs of walnut arthropod pest management. Agric. Syst. 103:294–306 [Google Scholar]
  116. Sterling WL, Dean A, Abd El-Salam NM. 116.  1992. Economic benefits of spider (Araneae) and insect (Hemiptera: Miridae) predators of cotton fleahoppers. J. Econ. Entomol. 85:52–57 [Google Scholar]
  117. Stern VM, Smith RF, van den Bosch R, Hagen KS. 117.  1959. The integrated control concept. Hilgardia 29:81–101Seminal work introducing the progenitor to IPM, and the economic injury level and economic threshold. [Google Scholar]
  118. Stevens TJ, Kilmer RL, Glenn SJ. 118.  2000. An economic comparison of biological and conventional control strategies for whiteflies (Homoptera: Aleyrodidae) in greenhouse poinsettias. J. Econ. Entomol. 93:623–29 [Google Scholar]
  119. Thies C, Tscharntke T. 119.  1999. Landscape structure and biological control in agroecosystems. Science 285:893–95 [Google Scholar]
  120. Thomas MB, Wratten SD, Sotherton NW. 120.  1991. Creation of ‘island’ habitats in farmland to manipulate populations of beneficial arthropods: predator densities and emigration. J. Appl. Ecol. 28:906–17 [Google Scholar]
  121. Tisdell C. 121.  1990. Economic impact of biological control of weeds and insects. Critical Issues in Biological Control M Mackauer, LE Ehler, J Roland 301–16 Andover, UK: Intercept [Google Scholar]
  122. Trumble JT, Alvarado-Rodriguez B. 122.  1993. Development and economic evaluation of an IPM program for fresh market tomato production in Mexico. Agric. Ecosyst. Environ. 43:267–84 [Google Scholar]
  123. Trumble JT, Morse JP. 123.  1993. Economics of integrating the predaceous mite Phytoseilus persimilis (Acari: Phytoseiidae) with pesticides in strawberries. J. Econ. Entomol. 86:879–85 [Google Scholar]
  124. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D. 124.  et al. 2007. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43:294–309 [Google Scholar]
  125. Turner RK, Morse-Jones S, Fisher B. 125.  2010. Ecosystem valuation: a sequential decision support system and quality assessment issues. Ann. N. Y. Acad. Sci. 1185:79–101 [Google Scholar]
  126. 126. Univ. Kans 2014. Choosing evaluators. Community Tool Box. Lawrence: Univ. Kans http://ctb.ku.edu/en/table-of-contents/evaluate/evaluation/choose-evaluators/main [Google Scholar]
  127. 127. USDA 2013. National Road Map for Integrated Pest Management Washington, DC: USDA http://www.nifa.usda.gov/nea/pest/pdfs/ipm_roadmap.pdf [Google Scholar]
  128. 128. USDA 2014. ARMS Farm Financial and Crop Production Practices Washington, DC: USDA http://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices.aspx#.UznfLaizGSp [Google Scholar]
  129. van den Berg J, Hoppner G, Greenland J. 129.  2000. An economic study of the biological control of the spiny blackfly, Aleurocanthus spiniferus (Hemiptera: Aleyrodidae), in a citrus orchard in Swaziland. Biocontrol Sci. Technol. 3157:27–32 [Google Scholar]
  130. van den Bosch R, Telford AD. 130.  1964. Environmental modification and biological control. Biological Control of Insect Pests and Weeds P DeBach 459–88 New York: Reinhold [Google Scholar]
  131. van Lenteren JC. 131.  2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20 [Google Scholar]
  132. van Lenteren JC, Bueno VHP. 132.  2003. Augmentative biological control of arthropods in Latin America. BioControl 48:123–39 [Google Scholar]
  133. Vasquez GM, Orr DB, Baker JR. 133.  2006. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. J. Econ. Entomol. 99:1104–11 [Google Scholar]
  134. Vogele J, Zeddies J. 134.  1990. Economic analysis of classical biological pest control: a case study from Western Samoa. Dtsch. Landwirtsch. Ges. 1:45–51 [Google Scholar]
  135. Walker GP, Herman TJB, Kale AJ, Wallace AR. 135.  2010. An adjustable action threshold using larval parasitism of Helicoverpa armigera (Lepidoptera: Noctuidae) in IPM for processing tomatoes. Biol. Control 52:30–36 [Google Scholar]
  136. Wang Z-Y, He K-L, Zhang F, Lu X, Babendreier D. 136.  2014. Mass rearing and release of Trichogramma for biological control of insect pests of corn in China. Biol. Control 68:136–44 [Google Scholar]
  137. Warner KD, Getz C. 137.  2008. A socio-economic analysis of the North American commercial natural enemy industry and implications for augmentative biological control. Biol. Control 45:1–10 [Google Scholar]
  138. Warner KD, Getz C, Maurano S, Powers K. 138.  2009. An analysis of historical trends in classical biological control of arthropods suggests need for a new centralized database in the USA. Biocontrol Sci. Technol. 19:675–88 [Google Scholar]
  139. Waterfield G, Zilberman D. 139.  2012. Pest management in food systems: an economic perspective. Annu. Rev. Environ. Resour. 37:223–45 [Google Scholar]
  140. Waterhouse D, Dillon B, Vincent D. 140.  1999. Economic benefits to Papua New Guinea and Australia from the biological control of the banana skipper (Erionota thrax). ACIAR Proj. CS2/1988/002-C Canberra, Aust: ACIAR Impact Assess. Ser. No. 12 [Google Scholar]
  141. White JM, Allen PG, Moffitt LJ, Kingsley PP. 141.  1995. Economic analysis of an areawide program for biological control of the alfalfa weevil. Am. J. Altern. Agric. 10:173–79 [Google Scholar]
  142. Wielgoss A, Tscharntke T, Rumede A, Fiala B, Seidel H. 142.  et al. 2014. Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proc. R. Soc. B 281:20132479 doi: 10.1098/rspb.2013.2144 [Google Scholar]
  143. Williams MR. 143.  2014. Cotton insect losses 2013. Presented at Beltwide Cotton Conf. Jan. 6–8, New Orleans, LA [Google Scholar]
  144. Wratten S, Sandhu H, Cullen R, Costanza R. 144.  2013. Ecosystem Services in Agriculture and Urban Landscapes West Sussex, UK: Wiley-Blackwell [Google Scholar]
  145. Zalucki MP, Adamson D, Furlong MJ. 145.  2009. The future of IPM: whither or wither?. Aust. J. Entomol. 48:85–96 [Google Scholar]
  146. Zavaleta LR, Ruesink WG. 146.  1980. Expected benefits from nonchemical methods of alfalfa weevil control. Am. J. Agric. Econ. 62:801–5 [Google Scholar]
  147. Zhang W, Swinton SM. 147.  2009. Incorporating natural enemies in an economic threshold for dynamically optimal pest management. Ecol. Model. 220:1315–24 [Google Scholar]
  148. Zhang W, Swinton SM. 148.  2012. Optimal control of soybean aphid in the presence of natural enemies and the implied value of their ecosystem services. J. Environ. Manag. 96:7–16Bioeconomic optimization model values biological control of soybean aphid at $84 million in five midwestern US states. [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error