Animal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ament S, Corona M, Pollock HS, Robinson GE. 1.  2008. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 105:4226–31 [Google Scholar]
  2. Andersson M. 2.  1994. Sexual Selection Princeton, NJ: Princeton Univ. Press
  3. Andersson M, Simmons LW. 3.  2006. Sexual selection and mate choice. Trends Ecol. Evol. 21:296–302 [Google Scholar]
  4. Angelini DR, Kaufman TC. 4.  2004. Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev. Biol. 271:306–21 [Google Scholar]
  5. Aspiras AC, Smith FW, Angelini DR. 5.  2011. Sex-specific gene interactions in the patterning of insect genitalia. Dev. Biol. 360:369–80 [Google Scholar]
  6. Atallah J, Vurens G, Mavong S, Mutti A, Hoang D, Kopp A. 6.  2014. Sex-specific repression of dachshund is required for Drosophila sex comb development. Dev. Biol. 386:440–47 [Google Scholar]
  7. Atallah J, Watabe H, Kopp A. 7.  2012. Many ways to make a novel structure: a new mode of sex comb development in Drosophilidae. Evol. Dev. 14:476–83 [Google Scholar]
  8. Baker BS, Wolfner MF. 8.  1988. A molecular analysis of doublesex, a bifunctional gene that controls both male and female sexual differentiation in Drosophila melanogaster. Genes Dev. 2:477–89 [Google Scholar]
  9. Bartos L, Bubenik GA, Kuzmova E. 9.  2012. Endocrine relationships between rank-related behavior and antler growth in deer. Front. Biosci. E4:1111–26 [Google Scholar]
  10. Bennet-Clark HC. 10.  1975. The energetics of the jump of the locust Schistocerca gregaria. J. Exp. Biol. 63:53–83 [Google Scholar]
  11. Bennett RL, Brown SJ, Denell RE. 11.  1999. Molecular and genetic analysis of the Tribolium Ultrabithorax ortholog, Ultrathorax. Dev. Genes Evol. 209:608–19 [Google Scholar]
  12. Bonal R, Espelta JM, Vogler AP. 12.  2011. Complex selection on life-history traits and the maintenance of variation in exaggerated rostrum length in acorn weevils. Oecologia 167:1053–61 [Google Scholar]
  13. Bonduriansky R, Rowe L. 13.  2005. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59:138–51 [Google Scholar]
  14. Bradbury JW, Vehrencamp SL. 14.  2011. Principles of Animal Communication Sunderland, MA: Sinauer
  15. Brent CS. 15.  2009. Control of termite caste differentiation. Organization of Insect Societies: From Genome to Sociocomplexity J Gadau, J Fewell 105–27 Cambridge, MA: Harvard Univ. Press [Google Scholar]
  16. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J. 16.  et al. 2005. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like glands. Proc. Natl. Acad. Sci. USA 102:3105–10 [Google Scholar]
  17. Burkhardt D, de la Motte I. 17.  1987. Physiological, behavioural, and morphometric data elucidate the evolutive significance of stalked eyes in Diopsidae (Diptera). Entomol. Gen. 12:221–33 [Google Scholar]
  18. Burkhardt D, de la Motte I. 18.  1988. Big ‘antlers’ are favoured: female choice in stalk-eyed flies (Diptera, Insecta), field collected harems and laboratory experiments. J. Comp. Physiol. A 162:649–52 [Google Scholar]
  19. Burrows M, Morris O. 19.  2003. Jumping and kicking in bush crickets. J. Exp. Biol. 206:1035–49 [Google Scholar]
  20. Burrows M, Sutton GP. 20.  2012. Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking. J. Exp. Biol. 215:3501–12 [Google Scholar]
  21. Burtis KC, Baker BS. 21.  1989. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56:997–1010 [Google Scholar]
  22. Carroll SP, Loye JE, Dingle H, Mathieson M, Famula TR, Zalucki MP. 22.  2005. And the beak shall inherit—evolution in response to invasion. Ecol. Lett. 8:944–51 [Google Scholar]
  23. Charles JP, Iwema T, Epa VC, Takaki K, Rynes J, Jindra M. 23.  2011. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. USA 108:21128–33 [Google Scholar]
  24. Christiansen AE, Keisman EL, Ahmad SM, Baker BS. 24.  2002. Sex comes in from the cold: the integration of sex and pattern. Trends Genet. 18:510–16 [Google Scholar]
  25. Claeys I, Simonet G, Poels J, Van Loy T, Vercammon L. 25.  et al. 2002. Insulin-related peptides and their conserved signal transduction pathway. Peptides 23:807–16 [Google Scholar]
  26. Clemmons D, Robinson ICAF, Christen Y. 26.  2010. IGFs: Local Repair and Survival Factors Throughout Life Span Heidelberg, Ger: Springer-Verlag
  27. Conner J. 27.  1988. Field measurements of natural and sexual selection in the fungus beetle Bolitotherus cornutus. Evolution 42:736–49 [Google Scholar]
  28. Cornette R, Koshikawa S, Hojo M, Matsumoto T, Miura T. 28.  2006. Caste-specific cytochrome P450 in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). Insect Mol. Biol. 15:235–44 [Google Scholar]
  29. Cornette R, Gotoh H, Koshikawa S, Miura T. 29.  2008. Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J. Insect Physiol. 54:922–30 [Google Scholar]
  30. Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y. 30.  et al. 2007. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. USA 104:7128–33 [Google Scholar]
  31. Cotton S, Fowler K, Pomiankowski A. 31.  2004. Condition dependence of sexual ornament size and variation in the stalk-eyed fly Cyrtodiopsis dalmanni (Diptera: Diopsidae). Evolution 58:1038–46 [Google Scholar]
  32. Crickmore MA, Mann RS. 32.  2006. Hox control of organ size by regulation of morphogen production and mobility. Science 313:63–68 [Google Scholar]
  33. Daguerre JB. 33.  1931. Costumbres nupciales del Diloboderus abderus Sturm. Rev. Soc. Entomol. Argent. 3:253–56 [Google Scholar]
  34. Danforth BN, Desjardins CA. 34.  1999. Male dimorphism in Perdita portalis (Hymenoptera, Andrenidae) has arisen from preexisting allometric patterns. Insectes Soc. 46:18–28 [Google Scholar]
  35. Dantzer B, Swanson EM. 35.  2012. Mediation of vertebrate life histories via insulin-like growth factor-1. Biol. Rev. 87:414–29 [Google Scholar]
  36. Darwin C. 36.  1871. The Descent of Man and Selection in Relation to Sex London: John Murray
  37. de Azevedo SV, Hartfelder K. 37.  2008. The insulin signaling pathway in honey bee (Apis mellifera) caste development—differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J. Insect Physiol. 54:1064–71 [Google Scholar]
  38. Deligne J, Quennedy A, Blum MS. 38.  1981. The enemies and defense mechanisms of termites. Social Insects HR Hermann, II:1–76 New York: Academic [Google Scholar]
  39. Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS. 39.  2006. Akt and foxo dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 16:1977–85 [Google Scholar]
  40. Ditchkoff SS, Spicer LJ, Masters RE, Lochmiller RL. 40.  2001. Concentrations of insulin-like growth factor-1 in adult male white-tailed deer (Odocoileus virginianus) associations with serum testosterone, morphometrics and age during and after the breeding season. Comp. Biochem. Physiol. A 129:887–95 [Google Scholar]
  41. Dodson GN. 41.  1997. The resource defense mating system in antlered flies, Phytalmia spp. (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 90:496–504 [Google Scholar]
  42. Eberhard WG. 42.  1978. Fighting behavior of male Golofa porteri beetles (Scarabaeidae: Dynastinae). Psyche 83:292–98 [Google Scholar]
  43. Eberhard WG. 43.  1998. Sexual behavior of Acanthocephala declivis guatemalana (Hemiptera: Coreidae) and the allometric scaling of their modified hind legs. Ann. Entomol. Soc. Am. 91:863–71 [Google Scholar]
  44. Eberhard WG, Garcia JM, Lobo J. 44.  2000. Size-specific defensive structures in a horned weevil confirm a classic battle plan: avoid fights with larger opponents. Proc. R. Soc. B 267:1129–34 [Google Scholar]
  45. Eggleton P. 45.  2011. An introduction to termites: biology, taxonomy and functional morphology. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 1–26 Dordrecht, Neth.: Springer [Google Scholar]
  46. Emlen DJ. 46.  2008. The evolution of animal weapons. Annu. Rev. Ecol. Syst. 39:387–413 [Google Scholar]
  47. Emlen DJ. 47.  2014. Animal Weapons: The Evolution of Battle New York: Holt
  48. Emlen DJ, Allen CE. 48.  2004. Genotype to phenotype: physiological control of trait size and scaling in insects. Integr. Comp. Biol. 43:627–34 [Google Scholar]
  49. Emlen DJ, Marangelo J, Ball B, Cunningham CW. 49.  2005. Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution 59:1060–84 [Google Scholar]
  50. Emlen DJ, Nijhout HF. 50.  1999. Hormonal control of male horn length dimorphism in Onthophagus taurus. J. Insect Physiol. 45:45–53 [Google Scholar]
  51. Emlen DJ, Nijhout HF. 51.  2000. The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. 45:661–708 [Google Scholar]
  52. Emlen DJ, Szafran Q, Corley LS, Dworkin I. 52.  2006. Insulin signaling and limb-patterning: candidate pathways for the origin and evolutionary diversification of beetle ‘horns.’. Heredity 97:179–91 [Google Scholar]
  53. Emlen DJ, Warren I, Johns A, Dworkin I, Lavine LC. 53.  2012. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337:860–64 [Google Scholar]
  54. Enrödi S. 54.  1985. The Dynastinae of the World Boston: Junk
  55. Forsyth A, Alcock J. 55.  1990. Female mimicry and resource defense polygyny by males of a tropical rove beetle Leistotrophus versicolor (Coleoptera: Staphylinidae). Behav. Ecol. Sociobiol. 26:325–30 [Google Scholar]
  56. Frantsevich L. 56.  1998. The coxal articulation of the insect striking leg: a comparative study. J. Morphol. 236:127–38 [Google Scholar]
  57. Fry CL. 57.  2006. Juvenile hormone mediates a trade-off between primary and secondary sexual traits in stalk-eyed flies. Evol. Dev. 8:191–201 [Google Scholar]
  58. Fujisaki K. 58.  1981. Studies on the mating system of the winter cherry bug Acanthocoris sordidus Thunberg (Heteroptera: Coreidae) II. Harem defense polygyny. Res. Popul. Ecol. 23:262–79 [Google Scholar]
  59. Furth D. 59.  1982. The metafemoral spring of flea beetles (Chrysomelidae: Alticinae). Spixiana 7:Suppl.11–27 [Google Scholar]
  60. Ge D, Chesters D, Gómez-Zurita J, Zhang L, Yang X, Vogler AP. 60.  2011. Anti-predator defence drives parallel morphological evolution in flea beetles. Proc. R. Soc. B 278:2133–41 [Google Scholar]
  61. Gempe T, Beye M. 61.  2011. Function and evolution of sex determination mechanisms, genes and pathways in insects. Bioessays 33:52–60 [Google Scholar]
  62. Gibbs GW. 62.  2002. A new species of tusked weta from the Raukumara Range, North Island, New Zealand (Orthoptera: Anostostomatidae: Motuweta). N.Z. J. Zool. 29:293–301 [Google Scholar]
  63. Gittleman SH. 63.  1974. Locomotion and predatory strategy in backswimmers (Hemiptera: Notonectidae). Am. Midl. Nat. 92:496–500 [Google Scholar]
  64. Gotoh H, Cornette R, Koshikawa S, Okada Y, Lavine LC. 64.  et al. 2011. Juvenile hormone regulates extreme mandible growth in male stag beetles. PLOS ONE 6:e21139 [Google Scholar]
  65. Gotoh H, Miyakawa H, Ishikawa A, Ishikawa Y, Sugime Y. 65.  et al. 2014. Developmental link between sex and nutrition; doublesex regulates sex-specific mandible growth via juvenile hormone signaling in stag beetles. PLOS Genet. 10:e1004098 [Google Scholar]
  66. Griffiths D. 66.  1980. The feeding biology of ant lion larvae: prey capture, handling and utilization. J. Anim. Ecol. 49:99–125 [Google Scholar]
  67. Gronenberg W. 67.  1996. Fast actions in animals: springs and click mechanisms. J. Comp. Physiol. A 178:727–34 [Google Scholar]
  68. Hanley RS. 68.  2001. Mandibular allometry and male dimorphism in a group of obligately mycophagous beetles (Insecta: Coleoptera: Staphylinidae: Oxyporinae). Biol. J. Linn. Soc. 72:451–59 [Google Scholar]
  69. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. 69.  1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273:14484–94 [Google Scholar]
  70. Hartfelder K, Emlen DJ. 70.  2011. Endocrine control of insect polyphenism. Insect Endocrinology LI Gilbert 464–522 Boston: Elsevier [Google Scholar]
  71. Hattori A, Sugime Y, Sasa C, Miyakawa H, Ishikawa Y. 71.  et al. 2013. Soldier morphogenesis in the damp-wood termite is regulated by the insulin signaling pathway. J. Exp. Zool. 320B:295–306 [Google Scholar]
  72. Heinze J, Hölldobler B, Yamauchi K. 72.  1998. Male competition in Cardiocondyla ants. Behav. Ecol. Sociobiol. 42:239–46 [Google Scholar]
  73. Hölldobler B, Wilson EO. 73.  1990. The Ants Cambridge, MA: Harvard Univ. Press
  74. Holm E. 74.  1993. On the genera of African Cetoniinae. II. Eudicella White, and the related genera with horned males (Coleoptera: Scarabaeidae). J. Afr. Zool. 107:65–81 [Google Scholar]
  75. Hongo Y. 75.  2007. Evolution of male dimorphic allometry in a population of the Japanese horned beetle Trypoxylus dichotomus septentrionalis. Behav. Ecol. Sociobiol. 62:245–53 [Google Scholar]
  76. Hosoya T, Araya K. 76.  2005. Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from 16S mtrRNA gene sequences, with reference to the evolution of sexual dimorphism of mandibles. Zool. Sci. 22:1305–18 [Google Scholar]
  77. Howden HF. 77.  1985. A revision of the Australian beetle genera Bolboleaus Howden and Cooper, Blackbolbus Howden and Cooper, and Bolborhachium Boucomont (Scarabaeidae: Geotrupinae). Aust. J. Zool. 111:1–179 [Google Scholar]
  78. Hu DL, Chan B, Bush JWM. 78.  2003. The hydrodynamics of water strider locomotion. Nature 424:663–66 [Google Scholar]
  79. Hunt J, Simmons LW. 79.  2001. Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proc. R. Soc. B 268:2409–14 [Google Scholar]
  80. Ito Y, Harigai A, Nakata M, Hosoya T, Araya K. 80.  et al. 2013. The role of doublesex in the evolution of exaggerated horns in the Japanese rhinoceros beetle. EMBO Rep. 14:561–67 [Google Scholar]
  81. Iwasa Y, Pomiankowski A. 81.  1999. Good parent and good genes models of handicap evolution. J. Theor. Biol. 200:97–109 [Google Scholar]
  82. Jindra M, Palli SR, Riddiford LM. 82.  2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58:181–204 [Google Scholar]
  83. Jockusch EL, Nulsen C, Newfield SJ, Nagy LM. 83.  2000. Leg development in flies versus grasshoppers: Differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127:1617–26 [Google Scholar]
  84. Johnson LK. 84.  1982. Sexual selection in a brentid weevil Brentus anchorago. Evolution 36:251–62 [Google Scholar]
  85. Johnstone R. 85.  1995. Sexual selection, honest advertisement, and the handicap principle: reviewing the evidence. Biol. Rev. 70:1–65 [Google Scholar]
  86. Katsuki M, Yokoi T, Funakoshi K, Oota N. 86.  2014. Enlarged hind legs and sexual behavior with male-male interactions in Sagra femorata. Entomol. Sci. In press
  87. Keisman EL, Christiansen AE, Baker BS. 87.  2001. The sex determination gene doublesex regulates the A/P organizer to direct sex-specific patterns of growth in the Drosophila genital imaginal disc. Dev. Cell 1:215–25 [Google Scholar]
  88. Kelly CD. 88.  2006. Fighting for harems: assessment strategies during male-male contests in the sexually dimorphic Wellington tree weta. Anim. Behav. 72:727–36 [Google Scholar]
  89. Khila A, Abouheif E, Rowe L. 89.  2009. Evolution of a novel appendage ground plan in water striders is driven by changes in the Hox gene Ultrabithorax. PLOS Genet. 5:e1000583 [Google Scholar]
  90. Kijimoto T, Moczek AP, Andrews J. 90.  2012. Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc. Natl. Acad. Sci. USA 109:20526–31 [Google Scholar]
  91. Kirkpatrick M. 91.  1982. Sexual selection and the evolution of female choice. Evolution 36:1–12 [Google Scholar]
  92. Knell RJ, Fruhauf N, Norris KA. 92.  1999. Conditional expression of a sexually selected trait in the stalk-eyed fly Diasemopsis aethiopica. Ecol. Entomol. 24:323–28 [Google Scholar]
  93. Kojima T. 93.  2004. The mechanism of Drosophila leg development along the proximodistal axis. Dev. Growth Differ. 46:115–19 [Google Scholar]
  94. Koning JW, Jamieson IG. 94.  2001. Variation in size of male weaponry in a harem-defence polygynous insect, the mountain stone weta Hemideina maori (Orthoptera: Anostostomatidae). N.Z. J. Zool. 28:109–17 [Google Scholar]
  95. Konopova B, Jindra M. 95.  2007. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. USA 104:10488–93 [Google Scholar]
  96. Kopp A. 96.  2011. Drosophila sex combs as a model of evolutionary innovations. Evol. Dev. 13:504–22 [Google Scholar]
  97. Kopp A. 97.  2012. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet. 28:175–84 [Google Scholar]
  98. Koshikawa S, Matsumoto T, Miura T. 98.  2002. Morphometric changes during soldier differentiation of the damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Soc. 49:245–50 [Google Scholar]
  99. Koyama T, Mendes CC, Mirth CK. 99.  2013. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front. Physiol. 4:263 [Google Scholar]
  100. Kral K, Vernik M, Devetak D. 100.  2000. The visually controlled prey-capture behaviour of the European mantispid Mantispa styriaca. J. Exp. Biol. 203:2117–23 [Google Scholar]
  101. Kukuk PF. 101.  1996. Male dimorphism in Lasioglossum (Chilalictus) hemichalceum: the role of larval nutrition. J. Kans. Entomol. Soc. 69:147–57 [Google Scholar]
  102. Lambert EP, Motta PJ, Lowry D. 102.  2011. Modulation in the feeding prey capture of the ant-lion, Myrmeleon crudelis. J. Exp. Zool. 313A:1–8 [Google Scholar]
  103. Lavine LC, Hahn LL, Garczynski SF, Warren IA, Dworkin IM, Emlen DJ. 103.  2013. Cloning and characterization of an insulin receptor gene from the horned scarab beetle Onthophagus nigriventris (Coleoptera: Scarabaeidae). Arch. Insect Biochem. Physiol. 82:43–57 [Google Scholar]
  104. Le Lannic J, Nénon J-P. 104.  1999. Functional morphology of the ovipositor in Megarhyssa atrata (Hymenoptera, Ichneumonidae) and its penetration into wood. Zoomorphology 119:73–79 [Google Scholar]
  105. Lekkerkerk RW, Krikken J. 105.  1986. Taxonomic review of the Afrotropical genus Dicronorhina Hope with notes on its relatives (Coleoptera: Cetoniidae). Zool. Verh. 233:1–46 [Google Scholar]
  106. Lelis AT, Everaerts C. 106.  1993. Effects of juvenile hormone analogues upon soldier differentiation in the termite Reticulitermes santonensis (Rhinotermitidae, Heterotermitinae). J. Morphol. 217:239–61 [Google Scholar]
  107. Li M, Mead EA, Zhu J. 107.  2011. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. USA 108:638–43 [Google Scholar]
  108. Libbrecht R, Corona M, Wende F, Azevedo DO, Serrão JE, Keller L. 108.  2013. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc. Natl. Acad. Sci. USA 110:11050–55 [Google Scholar]
  109. Loehlin DW, Oliveira DC, Edwards R, Giebel JD, Clark ME. 109.  et al. 2010. Non-coding changes cause sex-specific wing size differences between closely related species of Nasonia. PLOS Genet. 6:e1000821 [Google Scholar]
  110. Longair RW. 110.  2004. Tusked males, male dimorphism and nesting behavior in a subsocial Afrotropical wasp, Synagris cornuta, and weapons and dimorphism in the genus (Hymenoptera: Vespidae: Eumeninae). J. Kans. Entomol. Soc. 77:528–57 [Google Scholar]
  111. Low BS, Wcislo WT. 111.  1992. Male foretibial plates and mating in Crabro cribrellifer (Packard) (Hymenoptera: Sphecidae), with a survey of expanded male forelegs in Apoidea. Ann. Entomol. Soc. Am. 85:219–23 [Google Scholar]
  112. Loxton RG, Nicholls I. 112.  1979. The functional morphology of the praying mantis forelimb (Dictyoptera: Mantodea). Zool. J. Linn. Soc. 66:185–203 [Google Scholar]
  113. Lu HL, Pietrantonio PV. 113.  2011. Insect insulin receptors: insights from sequence and caste expression analyses of two cloned hymenopteran insulin receptor cDNAs from the fire ant. Insect Mol. Biol. 20:637–49 [Google Scholar]
  114. Luo SD, Shi GW, Baker BS. 114.  2011. Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development 138:2761–71 [Google Scholar]
  115. Mahfooz NS, Li H, Popadić A. 115.  2004. Differential expression patterns of the hox gene are associated with differential growth of insect hind legs. Proc. Natl. Acad. Sci. USA 101:4877–82 [Google Scholar]
  116. Maldonado H, Levin L, Barros-Pita JC. 116.  1967. Hit distance and the predatory strike of the praying mantis. Z. Vergl. Physiol. 56:237–57 [Google Scholar]
  117. Mathieu JM. 117.  1969. Mating behavior of five species of Lucanidae (Coleoptera: Insecta). Can. Entomol. 101:1054–62 [Google Scholar]
  118. Matson CK, Zarkower D. 118.  2012. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat. Rev. Genet. 13:163–74 [Google Scholar]
  119. Maynard Smith J, Harper D. 119.  2003. Animal Signals Oxford, UK: Oxford Univ. Press
  120. Minakawa N, Futami K, Sonye G, Akweywa P, Kaneko S. 120.  2007. Predatory capacity of a shorefly, Ochthera chalybescens, on malaria vectors. Malar. J. 6:104 [Google Scholar]
  121. Mirth CK, Shingleton AW. 121.  2012. Integrating body and organ size in Drosophila: recent advances and outstanding problems. Front. Endocrinol. 3:49 doi: 10.3389/fendo.2012.00049 [Google Scholar]
  122. Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH. 122.  et al. 2014. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc. Natl. Acad. Sci. USA 111:197018–23 doi: 10.1073/pnas.1313058111 [Google Scholar]
  123. Miura T. 123.  2001. Morphogenesis and gene expression in the soldier-caste differentiation of termites. Insectes Soc. 48:216–23 [Google Scholar]
  124. Miura T, Matsumoto T. 124.  2000. Soldier morphogenesis in a nasute termite: discovery of a disc-like structure forming a soldier nasus. Proc. R. Soc. B 267:1185–89 [Google Scholar]
  125. Miura T, Scharf ME. 125.  2011. Molecular basis underlying caste differentiation in termites. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 211–253 Dordrecht, Neth.: Springer [Google Scholar]
  126. Miyatake T. 126.  1993. Male-male aggressive behavior is changed by body size difference in the leaf-footed plant bug, Leptoglossus australis, Fabricius (Heteroptera: Coreidae). J. Ethol. 11:63–65 [Google Scholar]
  127. Miyatake T. 127.  1997. Functional morphology of the hind legs as weapons for male contests in Leptoglossus australis (Heteroptera: Coreidae). J. Insect Behav. 10:727–35 [Google Scholar]
  128. Moczek AP, Nijhout HF. 128.  2002. Developmental mechanisms of threshold evolution in a polyphenic beetle. Evol. Dev. 4:252–64 [Google Scholar]
  129. Moore AJ, Wilson P. 129.  1992. The evolution of sexually dimorphic earwig forceps: social interactions among adults of the toothed earwig, Vostox apicedentatus. Behav. Ecol. 4:40–48 [Google Scholar]
  130. Moulds MS. 130.  1978. Field observations on the behavior of a north Queensland species of Phytalmia (Diptera: Tephritidae). J. Aust. Entomol. Soc. 16:347–52 [Google Scholar]
  131. Mutti NS, Dolezal AG, Wolschin F, Mutti JS, Gill KS, Amdam GV. 131.  2011. IIS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. 214:3977–84 [Google Scholar]
  132. Nijhout HF. 132.  1994. Insect Hormones Princeton, NJ: Princeton Univ. Press
  133. Nijhout HF. 133.  1999. Control mechanisms of polyphenic development in insects. Bioscience 49:181–92 [Google Scholar]
  134. Nijhout HF, Riddiford LM, Mirth CK, Shingleton AW, Suzuki Y, Callier V. 134.  2014. The developmental control of size in insects. Wiley Interdiscip. Rev. Dev. Biol. 3:113–34 doi: 10.1002/wdev.124 [Google Scholar]
  135. Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y. 135.  et al. 2000. Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–81 [Google Scholar]
  136. Okada Y, Gotoh H, Miura T, Miyatake T, Okada K. 136.  2012. Juvenile hormone mediates developmental integration between exaggerated traits and supportive traits in the horned flour beetle Gnatocerus cornutus. Evol. Dev. 14:363–71 [Google Scholar]
  137. Okada K, Miyanoshita A, Miyatake T. 137.  2006. Intra-sexual dimorphism in male mandibles and male aggressive behavior in the broad-horned flour beetle Gnatocerus cornutus (Coleoptera: Tenebrionidae). J. Insect Behav. 19:457–67 [Google Scholar]
  138. Okada K, Miyatake T. 138.  2009. Genetic correlations between weapons, body shape and fighting behaviour in the horned beetle Gnatocerus cornutus. Anim. Behav. 77:1057–65 [Google Scholar]
  139. Okada Y, Miyazaki S, Miyakawa H, Ishikawa A, Tsuji K, Miura T. 139.  2010. Ovarian development and insulin-signaling pathways during reproductive differentiation in the queenless ponerine ant Diacamma sp. J. Insect Physiol. 56:288–95 [Google Scholar]
  140. Okajima S, Yamaguchi S. 140.  1988. The Stag Beetles Osaka, Jpn.: Hoikusya
  141. Okot-Kotber BM. 141.  1983. Ecdysteroid levels associated with epidermal events during worker and soldier differentiation in Macrotermes michaelseni (Isoptera: Macrotermitinae). Gen. Comp. Endocrinol. 52:409–17 [Google Scholar]
  142. Otronen M. 142.  1988. Intra-sexual and intersexual interactions at breeding burrows in the horned beetle Coprophanaeus ensifer. Anim. Behav. 36:741–48 [Google Scholar]
  143. Painting CJ, Holwell GI. 143.  2013. Exaggerated trait allometry, compensation and trade-offs in the New Zealand giraffe weevil (Lasiorhynchus barbicornis). PLOS ONE 8:e82467 [Google Scholar]
  144. Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS. 144.  et al. 1997. The origin and evolution of animal appendages. Proc. Natl. Acad. Sci. USA 94:5162–66 [Google Scholar]
  145. Panhuis TM, Wilkinson GS. 145.  1999. Exaggerated male eye span influences contest outcome in stalk-eyed flies (Diopsidae). Behav. Ecol. Sociobiol. 46:221–27 [Google Scholar]
  146. Pauw A, Stofberg J, Waterman RJ. 146.  2008. Flies and flowers in Darwin's race. Evolution 63:268–79 [Google Scholar]
  147. Prestwich GD. 147.  1984. Defense mechanisms of termites. Annu. Rev. Entomol. 29:201–32 [Google Scholar]
  148. Rasmussen JL. 148.  1994. The influence of horn and body size on the reproductive behavior of the horned rainbow scarab beetle Phanaeus difformis (Coleoptera: Scarabaeidae). J. Insect Behav. 7:67–82 [Google Scholar]
  149. Ratcliffe BC. 149.  2003. The Dynastine Scarab Beetles of Costa Rica and Panama (Coleoptera: Scarabaeidae: Dynastinae). Bull. Univ. Neb. State Mus. 16: Lincoln: Univ. Neb. State Mus. [Google Scholar]
  150. Refki PN, Armisén D, Crumière AJJ, Viala S, Khila A. 150.  2014. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait. Dev. Biol. 392:441–53 [Google Scholar]
  151. Restrepo S, Zartman JJ, Basler K. 151.  2014. Coordination of patterning and growth by the morphogen DPP. Curr. Biol. 24:R245–55 [Google Scholar]
  152. Riddiford LM. 152.  2008. Juvenile hormone action: a 2007 perspective. J. Insect Physiol. 54:895–901 [Google Scholar]
  153. Robinett CC, Vaughan AG, Knapp JM, Baker BS. 153.  2010. Sex and the single cell. II. There is a time and place for sex. PLOS Biol. 8:e1000365 [Google Scholar]
  154. Rowe L, Houle D. 154.  1996. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. B 263:1415–21 [Google Scholar]
  155. Ruvinsky I, Meyuhas O. 155.  2006. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 31:342–48 [Google Scholar]
  156. Scheffrahn R, Krecek J, Su N-Y, Roisin Y, Chase JA, Mangold JR. 156.  1998. Extreme mandible alteration and cephalic phragmosis in a drywood termite soldier (Isoptera: Kalotermitidae: Cryptotermes) from Jamaica. Fla. Entomol. 81:238–40 [Google Scholar]
  157. Searcy WA, Nowicki S. 157.  2005. The Evolution of Animal Communication: Reliability and Deception in Signaling Systems Princeton, NJ: Princeton Univ. Press
  158. Seid MA, Scheffrahn RH, Niven JE. 158.  2008. The rapid mandible strike of a termite soldier. Curr. Biol. 18:R1049–50 [Google Scholar]
  159. Shelby JA, Madewell R, Moczek AP. 159.  2007. Juvenile hormone mediates sexual dimorphism in horned beetles. J. Exp. Zool. 308B:417–27 [Google Scholar]
  160. Shingleton AW, Estep CM, Driscoll MV, Dworkin I. 160.  2009. Many ways to be small: Different environmental regulators of size generate distinct scaling relationships in Drosophila melanogaster. Proc. Biol. Sci. 276:2625–33 [Google Scholar]
  161. Shingleton AW, Frankino WA. 161.  2013. New perspectives on the evolution of exaggerated traits. Bioessays 35:100–7 [Google Scholar]
  162. Shirangi TR, Dufour HD, Williams TM, Carroll SB. 162.  2009. Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLOS Biol. 7:8e1000168 [Google Scholar]
  163. Simmons LW, Tomkins JL. 163.  1996. Sexual selection and the allometry of earwig forceps. Evol. Ecol. 10:97–104 [Google Scholar]
  164. Stern DL, Emlen DJ. 164.  1999. The developmental basis for allometry in insects. Development 126:1091–101 [Google Scholar]
  165. Stern DL, Foster WA. 165.  1996. The evolution of soldiers in aphids. Biol. Rev. 71:27–79 [Google Scholar]
  166. Sublett C. 166.  2011. Observations on the mating behavior of a South American species of the genus Corydalus (Megaloptera: Corydalidae). Entomol. News 122:372–75 [Google Scholar]
  167. Suttie JM, Corson ID, Gluckman PD, Fennessy PF. 167.  1991. Insulin-like growth factor 1, growth and body composition in red deer stags. Anim. Prod. 53:237–42 [Google Scholar]
  168. Tanaka K, Barmina O, Sanders LE, Arbeitman MN, Kopp A. 168.  2011. Evolution of sex-specific traits through changes in HOX-dependent doublesex expression. PLOS Biol. 9:e1001131 [Google Scholar]
  169. Tanaka Y, Hisada M. 169.  1980. The hydraulic mechanism of the predatory strike in dragonfly larvae. J. Exp. Biol. 88:1–19 [Google Scholar]
  170. Tang HY, Smith-Caldas MSB, Driscoll MV, Salhadar S, Shingleton AW. 170.  2011. FOXO regulates organ-specific phenotypic plasticity in Drosophila. PLOS Genet. 7:e1002373 [Google Scholar]
  171. Tarver MR, Zhou X, Scharf ME. 171.  2010. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol. Biol. 11:28 [Google Scholar]
  172. Toga K, Yoda S, Maekawa K. 172.  2011. The TUNEL assay suggests mandibular regression by programmed cell death during presoldier differentiation in the nasute termite Nasutitermes takasagoensis. Naturwissenschaften 98:801–6 [Google Scholar]
  173. Toju H, Sota T. 173.  2006. Adaptive divergence of scaling relationships mediates the arms race between a weevil and its host plant. Biol. Lett. 2:539–42 [Google Scholar]
  174. Tomkins JL, Simmons LW. 174.  1998. Female choice and manipulations of forceps size and symmetry in the earwig Forficula auricularia L. Anim. Behav. 56:347–56 [Google Scholar]
  175. Truman JW, Hiruma K, Allee JP, Macwhinnie SGB, Champlin DT, Riddiford LM. 175.  2006. Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 312:1385–88 [Google Scholar]
  176. Tseng M, Rowe L. 176.  1999. Sexual dimorphism and allometry in the giant water strider Gigantometra gigas. Can. J. Zool. 77:923–29 [Google Scholar]
  177. Tu MP, Yin CM, Tatar M. 177.  2005. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrinol. 142:347–56 [Google Scholar]
  178. Ventura T, Manor R, Aflalo ED, Weil S, Raviv S. 178.  et al. 2009. Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology 150:1278–86 [Google Scholar]
  179. Ventura T, Rosen O, Sagi A. 179.  2011. From the discovery of the crustacean androgenic gland to the insulin-like hormone in six decades. Gen. Comp. Endocrinol. 173:381–88 [Google Scholar]
  180. Villani MG, Allee LL, Díaz A, Robbins PS. 180.  1999. Adaptive strategies of edaphic arthropods. Annu. Rev. Entomol. 44:233–56 [Google Scholar]
  181. Warren IA, Gotoh H, Dworkin IM, Emlen DJ, Lavine LC. 181.  2013. A general mechanism for conditional expression of exaggerated sexually-selected traits. Bioessays 35:889–99 [Google Scholar]
  182. Wartlick O, Mumcu P, Julicher F, Gonzalez-Galtan M. 182.  2011. Understanding morphogenetic growth control—lessons from flies. Nat. Rev. Mol. Cell Biol. 2:9594–604 doi: 10.1038/nrm3169 [Google Scholar]
  183. Wasik BR, Moczek AP. 183.  2011. Decapentaplegic (dpp) regulates the growth of a morphological novelty, beetle horns. Dev. Genes Evol. 221:17–27 [Google Scholar]
  184. Wasserthal LT. 184.  1997. The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Bot. Acta 110:343–59 [Google Scholar]
  185. Wcislo WT, Eberhard WG. 185.  1989. Club fights in the weevil Macromerus bicinctus (Coleoptera: Curculionidae). J. Kans. Entomol. Soc. 62:421–29 [Google Scholar]
  186. West-Eberhard MJ. 186.  1983. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58:155–83 [Google Scholar]
  187. Wheeler DE, Buck N, Evans JD. 187.  2006. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol. Biol. 15:597–602 [Google Scholar]
  188. Wilkinson GS, Dodson GN. 188.  1997. Function and evolution of antlers and eye stalks in flies. Mating Systems in Insects and Arachnids JC Choe, BJ Crespi 310–28 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  189. Wilkinson GS, Kahler H, Baker RH. 189.  1998. Evolution of female mating preferences in stalk-eyed flies. Behav. Ecol. 9:525–33 [Google Scholar]
  190. Wilkinson GS, Reillo PR. 190.  1994. Female choice response to artificial selection on an exaggerated male trait in a stalk-eyed fly. Proc. R. Soc. B 255:1–6 [Google Scholar]
  191. Williams TM, Carroll SB. 191.  2009. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat. Rev. Genet. 10:797–804 [Google Scholar]
  192. Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB. 192.  2008. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134:610–23 [Google Scholar]
  193. Wilson EO. 193.  1971. The Insect Societies Cambridge, MA: Belknap
  194. Wu Q, Brown MR. 194.  2006. Signaling and function of insulin-like peptides in insects. Annu. Rev. Entomol. 51:1–24 [Google Scholar]
  195. Zecca M, Struhl G. 195.  2010. A feed-forward circuit linking Wingless, Fat-Dachsous signaling, and the Warts-Hippo pathway to Drosophila wing growth. PLOS Biol. 8:6e1000386 doi: 10.1371/journal.pbio.1000386 [Google Scholar]
  196. Zeh DW, Zeh JA, Tavakilian G. 196.  1992. Sexual selection and sexual dimorphism in the harlequin beetle Acrocinus longimanus. Biotropica 24:86–96 [Google Scholar]
  197. Zhao B, Li L, Lei Q, Guan K-L. 197.  2010. The Hippo–YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 24:862–874 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error