1932

Abstract

Insect declines are being reported worldwide for flying, ground, and aquatic lineages. Most reports come from western and northern Europe, where the insect fauna is well-studied and there are considerable demographic data for many taxonomically disparate lineages. Additional cases of faunal losses have been noted from Asia, North America, the Arctic, the Neotropics, and elsewhere. While this review addresses both species loss and population declines, its emphasis is on the latter. Declines of abundant species can be especially worrisome, given that they anchor trophic interactions and shoulder many of the essential ecosystem services of their respective communities. A review of the factors believed to be responsible for observed collapses and those perceived to be especially threatening to insects form the core of this treatment. In addition to widely recognized threats to insect biodiversity, e.g., habitat destruction, agricultural intensification (including pesticide use), climate change, and invasive species, this assessment highlights a few less commonly considered factors such as atmospheric nitrification from the burning of fossil fuels and the effects of droughts and changing precipitation patterns. Because the geographic extent and magnitude of insect declines are largely unknown, there is an urgent need for monitoring efforts, especially across ecological gradients, which will help to identify important causal factors in declines. This review also considers the status of vertebrate insectivores, reporting bias, challenges inherent in collecting and interpreting insect demographic data, and cases of increasing insect abundance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-025151
2020-01-07
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-025151.html?itemId=/content/journals/10.1146/annurev-ento-011019-025151&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Archer CR, Pirk CWW, Carvalheiro LG, Nicolson SW 2014. Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos 123:401–7
    [Google Scholar]
  2. 2. 
    Asher J, Fox F, Jeffcoate S, Harding P, Jeffcoate G et al. 2001. The Millennium Atlas of Butterflies in Britain and Ireland Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  3. 3. 
    Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M et al. 2004. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–21
    [Google Scholar]
  4. 4. 
    Attwood SJ, Maron M, House APN, Zammit C 2008. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management?. Glob. Ecol. Biogeogr. 17:585–99
    [Google Scholar]
  5. 5. 
    Bahlai CA, Colunga-Garcia M, Gage SH, Landis DA 2014. The role of exotic ladybeetles in the decline of native ladybeetle populations: evidence from long-term monitoring. Biol. Invas. 17:1005–24
    [Google Scholar]
  6. 6. 
    Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL et al. 2013. Historical changes in northeastern United States bee pollinators related to shared ecological traits. PNAS 110:4656–60
    [Google Scholar]
  7. 7. 
    Bartomeus I, Stavert JR, Ward D, Aguado O 2018. Historical collections as a tool for assessing the global pollination crisis. Phil. Trans. R. Soc. B 374:2017038
    [Google Scholar]
  8. 8. 
    Baude M, Kunin WE, Boatman ND, Conyers S, Davies N et al. 2016. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530:85–88
    [Google Scholar]
  9. 9. 
    Benton TG, Bryant DM, Cole L, Crick HQ 2002. Linking agricultural practice to insect and bird populations: a historical study over three decades. J. App. Ecol. 39:673–87
    [Google Scholar]
  10. 10. 
    Bianchi FJJA, Booij CJH, Tscharntke T 2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 273:1715–27
    [Google Scholar]
  11. 11. 
    Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M et al. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–54
    [Google Scholar]
  12. 12. 
    Boggs C. 2016. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17:69–73
    [Google Scholar]
  13. 13. 
    Boyle JH, Dalgleish HJ, Puzey JR 2019. Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops. PNAS 116:3006–11
    [Google Scholar]
  14. 14. 
    Brooks DR, Bater JE, Clark SJ, Monteith DT, Andrews C et al. 2012. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Biol. 49:1009–19
    [Google Scholar]
  15. 15. 
    Brower LP, Taylor OR, Williams EH, Slayback DA, Zubieta RR, Ramírez MI 2012. Decline of monarch butterflies overwintering in Mexico: Is the migratory phenomenon at risk?. Insect Conserv. Divers. 5:95–100
    [Google Scholar]
  16. 16. 
    Brown PMJ, Frost R, Doberski J, Sparks T, Harrington R, Roy HE 2011. Decline in native ladybirds in response to the arrival of Harmonia axyridis: early evidence from England. Ecol. Entomol. 36:231–40
    [Google Scholar]
  17. 17. 
    Buckwell A, Armstrong‐Brown S. 2004. Changes in farming and future prospects: technology and policy. Ibis 146:14–21
    [Google Scholar]
  18. 18. 
    Burghardt KT, Tallamy DW, Philips C, Shropshire KJ 2010. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1:1–22
    [Google Scholar]
  19. 19. 
    Burkle LA, Markin JC, Knight TM 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–15
    [Google Scholar]
  20. 20. 
    Cameron SA, Lim HC, Lozier JD, Duennes MA, Thorp R 2016. Test of the invasive pathogen hypothesis of bumble bee decline in North America. PNAS 113:4386–91
    [Google Scholar]
  21. 21. 
    Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N et al. 2011. Patterns of widespread decline in North American bumble bees. PNAS 108:662–67
    [Google Scholar]
  22. 22. 
    Carpaneto GM, Mazziotta A, Valerio L 2007. Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae). Divers. Distrib. 3:903–19
    [Google Scholar]
  23. 23. 
    Ceballos G, Ehrlich PR, Dirzo R 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114:E6089–96
    [Google Scholar]
  24. 24. 
    Chamberlain DE, Fuller RJ. 2000. Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use. Agric. Ecosyst. Environ. 78:1–17
    [Google Scholar]
  25. 25. 
    Chapman TB, Veblen TT, Schoennagel T 2012. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology 93:2175–85
    [Google Scholar]
  26. 26. 
    Cole LJ, Brocklehurst S, Robertson D, Harrison W, McCracken DI 2017. Exploring the interactions between resource availability and the utilization of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agricult. Ecosyst. Environ. 246:157–67
    [Google Scholar]
  27. 27. 
    Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–61
    [Google Scholar]
  28. 28. 
    Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP 2006. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132:279–91
    [Google Scholar]
  29. 29. 
    Conrad KF, Woiwod IP, Parsons M, Fox R, Warren MS 2004. Long-term population trends in widespread British moths. J. Insect Conserv. 8:119–36
    [Google Scholar]
  30. 30. 
    Coviella CE,, Trumble JT 1999. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conserv. Biol 13:700–12
    [Google Scholar]
  31. 31. 
    Decker LE, Roode JC, Hunter MD 2018. Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecol. Lett. 21:1353–63
    [Google Scholar]
  32. 32. 
    Dennis EB, Brereton TM, Morgan BJT, Fox R, Shortall CR et al. 2019. Trends and indicators for quantifying moth abundance and occupancy in Scotland. J. Insect Conserv. 23:369–80
    [Google Scholar]
  33. 33. 
    Desender K, Turin H. 1989. Loss of habitats and changes in the composition of the ground and tiger beetle fauna in four West European countries since 1950 (Coleoptera: Carabidae, Cicindelidae). Biol. Conserv. 48:277–94
    [Google Scholar]
  34. 34. 
    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B 2014. Defaunation in the Anthropocene. Science 345:401–6
    [Google Scholar]
  35. 35. 
    Donald PF, Green RE, Heath MF 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proc. R. Soc. Lond. B 268:25–29
    [Google Scholar]
  36. 36. 
    Dudley N, Attwood SJ, Goulson D, Jarvis D, Bharucha ZP, Pretty J 2017. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems?. Biol. Conserv. 209:449–53
    [Google Scholar]
  37. 37. 
    Ewald JA, Wheatley CJ, Aebischer NJ, Moreby SJ, Duffield SJ et al. 2015. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years. Glob. Change Biol. 21:3931–50
    [Google Scholar]
  38. 38. 
    FAO 2019. The State of the World's Biodiversity for Food and Agriculture Rome: FAO Commiss. Genet. Res. Food and Agric. Assess http://www.fao.org/3/CA3129EN/CA3129EN.pdf
    [Google Scholar]
  39. 39. 
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G et al. 2005. Global consequences of land use. Science 309:570–74
    [Google Scholar]
  40. 40. 
    Forister ML, Cousens B, Harrison JG, Anderson K, Thorne JH et al. 2016. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol. Lett. 12:20160475
    [Google Scholar]
  41. 41. 
    Forister ML, Fordyce JA, Nice CC, Thorne JH, Waetjen DP, Shapiro AM 2018. Impacts of a millennium drought on butterfly faunal dynamics. Clim. Change Respons. 5:3
    [Google Scholar]
  42. 42. 
    Forister ML, Jahner JP, Casner KL, Wilson JS, Shapiro AM 2010. The race is not to the swift: Long-term data reveal pervasive declines in California's low-elevation butterfly fauna. Ecology 92:2222–35
    [Google Scholar]
  43. 43. 
    Forister ML, Novotny V, Panorska AK, Baje L, Basset Y et al. 2015. The global distribution of diet breadth in insect herbivores. PNAS 112:442–47
    [Google Scholar]
  44. 44. 
    Forister ML, Pelton EM, Black SH 2019. Declines in insect abundance and diversity: We know enough to act now. Conserv. Sci. Pract. 1:e80
    [Google Scholar]
  45. 45. 
    Fox R. 2013. The decline of moths in Great Britain: a review of possible causes. Insect Conserv. Divers. 6:5–19
    [Google Scholar]
  46. 46. 
    Fox R, Brereton TM, Asher J, August TA, Botham MS et al. 2015. The State of the UK's Butterflies 2015 Wareham, UK: Butterfly Conserv./Cent. Ecol. Hydrol.
    [Google Scholar]
  47. 47. 
    Fox R, Brereton TM, Asher J, Botham MS, Middlebrook I et al. 2011. The State of the UK's Butterflies 2011 Wareham, UK: Butterfly Conserv./Cent. Ecol. Hydrol.
    [Google Scholar]
  48. 48. 
    Fox R, Oliver TH, Harrower C, Parsons MS, Thomas CD, Roy DB 2014. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. Appl. Ecol. 51:949–57
    [Google Scholar]
  49. 49. 
    Fox R, Parsons MS, Chapman JW, Woiwod IP, Warren MS, Brooks DR 2013. The State of Britain's Larger Moths 2013 Wareham, UK: Butterfly Conserv./Rothamsted Res.
    [Google Scholar]
  50. 50. 
    Frankie GW, Rizzardi M, Vinson SB, Griswold TL 2009. Decline in bee diversity and abundance from 1972–2004 on a flowering leguminous tree, Andira inermis in Costa Rica at the interface of disturbed dry forest and the urban environment. J. Kans. Entomol. Soc. 82:1–20
    [Google Scholar]
  51. 51. 
    Franzén M, Johannesson M. 2007. Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J. Insect Conserv. 11:367–90
    [Google Scholar]
  52. 52. 
    Garcia-Robledo C, Kuprewicz EC, Staines CL, Erwin TL, Kress WJ 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. PNAS 113:680–85
    [Google Scholar]
  53. 53. 
    Gardiner MM, O'Neal ME, Landis DA 2011. Intraguild predation and native lady beetle decline. PLOS ONE 6:e23576
    [Google Scholar]
  54. 54. 
    Gaston KJ, Fuller RA. 2007. Biodiversity and extinction: losing the common and the widespread. Prog. Phys. Geogr. Earth Environ. 31:213–25
    [Google Scholar]
  55. 55. 
    Gaston KJ, Fuller RA. 2008. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 23:14–19
    [Google Scholar]
  56. 56. 
    Ghilain A, Bélisle M. 2008. Breeding success of tree swallows along a gradient of agricultural intensification. Ecol. Appl. 18:1140–54
    [Google Scholar]
  57. 57. 
    Gilburn AS, Bunnefeld N, Wilson JM, Botham MS, Brereton TM et al. 2015. Are neonicotinoid insecticides driving declines of widespread butterflies?. PeerJ 3:e1402
    [Google Scholar]
  58. 58. 
    Gillespie MAK, Alfredsson M, Barrio IC, Bowden JJ, Convey P et al. 2019. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio https://doi.org/10.1007/s13280-019-01162-5
    [Crossref] [Google Scholar]
  59. 59. 
    Godfray HCJ, Blacquiere T, Field LM, Hails RS, Petrokofsky G et al. 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. Roy. Soc. B 281:20140558
    [Google Scholar]
  60. 60. 
    Goulson D, Lye GC, Darvill B 2008. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53:191–208
    [Google Scholar]
  61. 61. 
    Goulson D, Nicholls E, Botías C, Rotheray EL 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957
    [Google Scholar]
  62. 62. 
    Grab H, Branstetter MG, Amon N, Urban-Mead KR, Park MG et al. 2019. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363:282–84
    [Google Scholar]
  63. 63. 
    Grubisic M, van Grunsven RHA, Kyba1 CCM, Manfrin A, Hölker F 2018. Insect declines and agroecosystems: Does light pollution matter?. J. Appl. Biol. 173:180–89
    [Google Scholar]
  64. 64. 
    Habel JC, Samways MJ, Schmitt 2019. Mitigating the precipitous decline of terrestrial European insects: requirements for a new strategy. Biodivers. Conserv. 28:1343–60
    [Google Scholar]
  65. 65. 
    Habel JC, Segerer A, Ulrich W, Torchyk O, Weisser WW, Schmitt T 2016. Butterfly community shifts over two centuries. Conserv. Biol. 30:754–62
    [Google Scholar]
  66. 66. 
    Hahn M, Bruhl CA. 2016. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interact 10:21–28
    [Google Scholar]
  67. 67. 
    Hallmann CA, Foppen RP, van Turnhout CA, de Kroon H, Jongejans E 2014. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–43
    [Google Scholar]
  68. 68. 
    Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12:10e0185809
    [Google Scholar]
  69. 69. 
    Hanula JL, Horn S, O'Brien JJ 2015. Have changing forests conditions contributed to pollinator decline in the southeastern United States?. For. Ecol. Manag. 348:142–52
    [Google Scholar]
  70. 70. 
    Harmon JP, Stephens E, Losey J 2007. The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J. Insect Conserv. 11:85–94
    [Google Scholar]
  71. 71. 
    Harmon-Threatt A.2020 Intersections of nesting and threats to wild bee communities. Annu. Rev. Entomol. 65:39–56
    [Google Scholar]
  72. 72. 
    Harris JE, Rodenhouse NL, Holmes RT 2019. Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biol. Conserv. In press
    [Google Scholar]
  73. 73. 
    Haysom K, Dekker J, Russ J, van der Meij T, van Strien A 2014. European bat population trends Tech. Rep., Eur. Env. Agency Copenhagen:
    [Google Scholar]
  74. 74. 
    Helmer EH, Gerson EA, Baggett LS, Bird BJ, Ruzycki TS, Voggesser SM 2019. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLOS ONE 14:e0213155
    [Google Scholar]
  75. 75. 
    Helmuth B, Russell BD, Connell SD, Dong Y, Harley CDG et al. 2014. Beyond long-term averages: making biological sense of a rapidly changing world. Clim. Change Responses 1:6
    [Google Scholar]
  76. 76. 
    Herrera CM. 2019. Complex long-term dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades. Ecol. Monogr. 89:1e01338
    [Google Scholar]
  77. 77. 
    Hofmann MM, Fleischmann A, Renner SS 2018. Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to mate warming, not other parameters. Oecologia 187:701–6
    [Google Scholar]
  78. 78. 
    Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I 2011. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc. R. Soc. B 278:3444–51
    [Google Scholar]
  79. 79. 
    Høye TT, Post E, Schmidt NM, Trøjelsgaard K, Forchhammer MC 2013. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3:759–63
    [Google Scholar]
  80. 80. 
    Humphreys AM, Govaerts R, Ficinski S, Nic Lughadha E, Vorontsova MS 2019. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3:1043–47
    [Google Scholar]
  81. 81. 
    Hunter MD. 2001. Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Agric. For. Entomol. 3:153–59
    [Google Scholar]
  82. 82. 
    Hunter MD, Kozlov MV, Itämies J, Pulliainen E, Bäck et al. 2014. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths. Glob. Change Biol. 20:1723–37
    [Google Scholar]
  83. 83. 
    Inamine H, Ellner SP, Springer JP, Agrawal AA 2016. Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos 125:1081–91
    [Google Scholar]
  84. 84. 
    IPBES 2018. The Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia Bonn, Ger.: Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.
    [Google Scholar]
  85. 85. 
    IPCC (Intergov. Panel Clim. Change) 2014. Climate Change 2014: Mitigation of Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  86. 86. 
    Janzen DH. 1974. The deflowering of Central America. Nat. Hist. 83:48–53
    [Google Scholar]
  87. 87. 
    Janzen DH, Hallwachs W. 2019. Where might be many tropical insects?. Biol. Conserv. 233:102–8
    [Google Scholar]
  88. 88. 
    Jarvis B. 2018. The insect apocalypse is here. New York Times Magazine, Dec. 2:41
    [Google Scholar]
  89. 89. 
    Jones G, Jacobs D, Kunz T, Willig M, Racey P 2009. Carpe noctem: the importance of bats as bioindicators. Endanger. Species Res. 8:93–115
    [Google Scholar]
  90. 90. 
    Karban R, Huntzinger M. 2019. Decline of meadow spittlebugs, a previously abundant insect, along the California coast. Ecology 99:2614–16
    [Google Scholar]
  91. 91. 
    Kempton RA. 1979. The structure of species abundance and measurement of diversity. Biometrics 35:307–21
    [Google Scholar]
  92. 92. 
    Kerr JT, Pindar A, Galpern P, Packer L, Potts SG et al. 2015. Cross-continental convergence of climate change impacts on bumblebees. Science 349:177–80
    [Google Scholar]
  93. 93. 
    Kleijn D, Kohler F, Baldi A, Batáry P, Concepcion ED et al. 2009. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B 276:903–9
    [Google Scholar]
  94. 94. 
    Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA et al. 2007. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274:303–13
    [Google Scholar]
  95. 95. 
    Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M et al. 2005. Pollen limitation of plant reproduction: pattern and process. ARES 36:467–49
    [Google Scholar]
  96. 96. 
    Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C 2017. Artificial light at night as a new threat to pollination. Nature 548:206–9
    [Google Scholar]
  97. 97. 
    Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA et al. 2016. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 380:321–34
    [Google Scholar]
  98. 98. 
    Kolbert E. 2014. The Sixth Extinction: An Unnatural History New York: Henry Holt
    [Google Scholar]
  99. 99. 
    Komonen A, Halme P, Kotiaho JS 2019. Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethink. Ecol. 4:17–19
    [Google Scholar]
  100. 100. 
    Kosior A, Celary W, Olejniczak P, Fijał J, Król W et al. 2007. The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of western and central Europe. Oryx 41:79–88
    [Google Scholar]
  101. 101. 
    Kremen C. 2018. The value of pollinator species diversity. Science 359:741–42
    [Google Scholar]
  102. 102. 
    Kremen C, Merenlender AM. 2018. Landscapes that work for biodiversity and people. Science 362:eaau6020
    [Google Scholar]
  103. 103. 
    Kremen C, Miles A. 2012. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17:40
    [Google Scholar]
  104. 104. 
    Kremen C, Williams NM, Thorp RW 2002. Crop pollination from native bees at risk from agricultural intensification. PNAS 99:16812–16
    [Google Scholar]
  105. 105. 
    Krupke CH, Holland JD, Long EY, Eitzer BD 2017. Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit. J. Appl. Ecol. 54:1449–58
    [Google Scholar]
  106. 106. 
    Lämsa J, Kuusela E, Tuomi J, Juntunen S, Watts PC 2018. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proc. R. Soc. B 285:20180506
    [Google Scholar]
  107. 107. 
    Lawler JJ, Aukema JE, Grant JB, Halper BS, Kareiva P et al. 2006. Conservation science: a 20-year report card. Front. Ecol. Environ. 4:473–80
    [Google Scholar]
  108. 108. 
    Leather SR. 2018. “Ecological Armageddon”: more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172:1–3
    [Google Scholar]
  109. 109. 
    Lister B, Garcia A. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. PNAS 115:44E10397–406
    [Google Scholar]
  110. 110. 
    Loboda S, Savage J, Buddle CM, Schmidt NM, Høye TT 2018. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41:265–77
    [Google Scholar]
  111. 111. 
    Lockwood JA. 2005. Locust: The Devastating Rise and Mysterious Disappearance of the Insect that Shaped the American Frontier New York: Basic Books
    [Google Scholar]
  112. 112. 
    Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. BioScience 56:311–23
    [Google Scholar]
  113. 113. 
    Ma G, Rudolf VHW, Ma C-S 2014. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Change Biol. 21:1794–808
    [Google Scholar]
  114. 114. 
    Maes D, Van Dyck H 2001. Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario?. Biol. Conserv. 99:263–76
    [Google Scholar]
  115. 115. 
    Malcolm SB. 2018. Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annu. Rev. Entomol. 63:277–302
    [Google Scholar]
  116. 116. 
    Mathiasson ME, Rehan SM. 2019. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens. Insect Conserv. Biodivers. 12:278–88
    [Google Scholar]
  117. 117. 
    Mattila N, Kaitala V, Komonen A, Kotiaho JS, Päivinen J 2006. Ecological determinants of distribution decline and risk of extinction in moths. Conserv. Biol. 20:1161–68
    [Google Scholar]
  118. 118. 
    Maxwell SL, Fuller RA, Brooks TM, Watson JEM 2016. The ravages of guns, nets and bulldozers. Nature 536:143–45
    [Google Scholar]
  119. 119. 
    McCracken GF. 1986. Why are we losing our Mexican free-tailed bats?. Bats 3:1–4
    [Google Scholar]
  120. 120. 
    McCracken GF. 2003. Estimates of population sizes in summer colonies of estimates of population sizes in summer colonies of Brazilian Free-Tailed Bats (Tadarida brasiliensis).. Monitoring Trends in Bat Populations United States and Territories: Problems and Prospects TJ O'Shea, MA Bogan 21–30 Washington, DC: US Dep. Inter.
    [Google Scholar]
  121. 121. 
    McFadyen REC. 1998. Biological control of weeds. Annu. Rev. Entomol. 43:369–93
    [Google Scholar]
  122. 122. 
    Meeus I, Brown MJF, De Graaf DC, Smagghe G 2011. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25:662–71
    [Google Scholar]
  123. 123. 
    Murphy MT. 2003. Avian population trends within the evolving agricultural landscape of eastern and central United States. Auk 120:20–34
    [Google Scholar]
  124. 124. 
    Narango DL, Tallamy DW, Marra PP 2017. Native plants improve breeding and foraging habitat for an insectivorous bird. Biol. Conserv. 213:42–50
    [Google Scholar]
  125. 125. 
    Narango DL, Tallamy DW, Marra PP 2018. Nonnative plants reduce population growth of an insectivorous bird. PNAS 15:11549–54
    [Google Scholar]
  126. 126. 
    Natl. Acad. Sci., Natl. Res. Counc 2006. Status of Pollinators in North America Washington, DC: Natl. Acad. Press
    [Google Scholar]
  127. 127. 
    Nebel S, Mills A, McCracken JD, Taylor PD 2010. Declines of aerial insectivores in North America follow a geographic gradient. Avian Conserv. Ecol. 5:1
    [Google Scholar]
  128. 128. 
    Nemesio A. 2013. Are orchid bees at risk? First comparative survey suggests declining populations of forest-dependent species. Braz. J. Biol. 73:367–74
    [Google Scholar]
  129. 129. 
    Newbold T, Lawrence NH, Contu S, Hill SLL, Beck J et al. 2018. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLOS Biol 16:12e2006841
    [Google Scholar]
  130. 130. 
    Newton I. 2004. The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600
    [Google Scholar]
  131. 131. 
    Nilsson SG, Franzén M, Jönsson E 2008. Long-term land-use changes and extinction of specialised butterflies. Insect Conserv. Divers. 1:197–207
    [Google Scholar]
  132. 132. 
    Nocera JJ, Blais JM, Beresford DV, Finity LK, Grooms C et al. 2012. Historical pesticide applications coincided with an altered diet of aerially foraging insectivorous Chimney Swifts. Proc. R. Soc. Lond. B 279:3114–20
    [Google Scholar]
  133. 133. 
    Noriega JA, Hortal J, Azcárate FM, Berg MP, Bonada N et al. 2018. Research trends in ecosystem services provided by insects. Basic Appl. Ecol. 26:8–23
    [Google Scholar]
  134. 134. 
    Öckinger E, Hammarstedt O, Nilsson SG, Smith HG 2006. The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biol. Conserv. 128:564–73
    [Google Scholar]
  135. 135. 
    Ollerton J, Winfree R, Tarrant S 2011. How many flowering plants are pollinated by animals?. Oikos 120:321–26
    [Google Scholar]
  136. 136. 
    Ormerod SJ, Marshall EJP, Kerby G, Rushton SP 2003. Meeting the ecological challenges of agricultural change: editors’ introduction. J. Appl. Ecol. 40:939–46
    [Google Scholar]
  137. 137. 
    Owens ACS, Lewis SM. 2018. The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecol. Evol. 8:11337–58
    [Google Scholar]
  138. 138. 
    Parain EC, Rohr RP, Gray SM, Bersier L-F 2019. Increased temperature disrupts the biodiversity-ecosystem functioning relationship. Am. Nat. 193:227–39
    [Google Scholar]
  139. 139. 
    Pardikes N, Shapiro AM, Dyer LA, Forister ML 2015. Global weather and local butterflies: variable responses to a large-scale climate pattern along an elevational gradient. Ecology 96:2891–901
    [Google Scholar]
  140. 140. 
    Phillips BB, Shaw RF, Holland MJ, Fry EL, Bardgett RD et al. 2018. Drought reduces floral resources for pollinators. Glob. Change Biol. 24:3226–35
    [Google Scholar]
  141. 141. 
    Phoenix GK, Emmett BA, Britton AJ, Caporn SJ, Dise NB et al. 2012. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob. Change Biol. 18:1197–215
    [Google Scholar]
  142. 142. 
    Pielke RA Sr., Rezaul M, McAlpine C. 2016. Land's complex role in climate change. Phys. Today 69:1140
    [Google Scholar]
  143. 143. 
    Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Goulson D et al. 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22:68–102
    [Google Scholar]
  144. 144. 
    Portman ZM, Tepedino VJ, Tripodi AD, Szalanski AL, Durham SL 2018. Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biol. Invas. 20:593–606
    [Google Scholar]
  145. 145. 
    Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25:345–53
    [Google Scholar]
  146. 146. 
    Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE et al. 2019. Widespread losses of pollinating insects in Britain. Nat. Commun. 10:1018
    [Google Scholar]
  147. 147. 
    Price PW. 1980. Evolutionary Biology of Parasites Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  148. 148. 
    Rada S, Schweiger O, Harpke A, Kühn E, Kuras T et al. 2019. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Biodivers. Res. 25:217–24
    [Google Scholar]
  149. 149. 
    Raffa KF, Powell EN, Townsend PA 2012. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. PNAS 110:2193–98
    [Google Scholar]
  150. 150. 
    Razeng E, Watson DM. 2012. What do declining woodland birds eat? A synthesis of dietary records. Emu 112:149–56
    [Google Scholar]
  151. 151. 
    Richard M, Tallamy DW, Mitchell AB 2018. Introduced plants reduced species interactions. Biol. Invas. 21:983–92
    [Google Scholar]
  152. 152. 
    Rioux Paquette S, Pelletier F, Garant D, Belisle M 2014. Severe recent decrease of adult body mass in a declining insectivorous bird population. Proc. R. Soc. B. 281:20140649
    [Google Scholar]
  153. 153. 
    Roubik DW. 2001. Ups and downs in pollinator populations: When is there a decline?. Ecol. Soc. 5:12
    [Google Scholar]
  154. 154. 
    Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J et al. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–74
    [Google Scholar]
  155. 155. 
    Sales K, Vasudeva R, Dickinson ME, Godwin JL, Lumley AJ 2018. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 13:4771
    [Google Scholar]
  156. 156. 
    Sánchez-Bayo F, Wyckhuys KAG. 2019. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232:8–27
    [Google Scholar]
  157. 157. 
    Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A et al. 2019. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363:1459–63
    [Google Scholar]
  158. 158. 
    Schirmel J, Bundschuh M, Entling MH, Kowarik I, Buchholz S 2015. Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment. Glob. Change Biol. 22:594–603
    [Google Scholar]
  159. 159. 
    Schuch S, Wesche K, Schaefer M 2012. Long-term decline in the abundance of leafhoppers and plant-hoppers (Auchenorrhyncha) in Central European protected dry grasslands. Biol. Conserv. 149:75–83
    [Google Scholar]
  160. 160. 
    Schweitzer DF. 2017. Current versus mid-20th century statuses of moths with big summer caterpillars (Saturniidae, Sphingidae, Datana) in northern New Jersey and eastern Pennsylvania. Newsl. Lepid. Soc. 59:134–41
    [Google Scholar]
  161. 161. 
    Schweitzer DF. 2017. Fluctuations of moths with big summer caterpillars (Saturniidae, Sphingidae, Datana) in early 21st century northwestern New Jersey, USA. Newsl. Lepid. Soc. 59:186–89
    [Google Scholar]
  162. 162. 
    Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA et al. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28:58–66
    [Google Scholar]
  163. 163. 
    Sorg M, Schwan H, Stenmans W, Müller A 2013. Ermittlung der Biomassen flugaktiver Insekten im Naturschutzgebiet Orbroicher Bruch mit Malaise-Fallen in den Jahren 1989 und 2013 Krefeld, Ger.: Entomol. Ver.
    [Google Scholar]
  164. 164. 
    Stavert JR, Pattemore DE, Bartomeus I, Gaskett AC, Beggs JR 2018. Exotic flies maintain pollination services as native pollinators decline with agricultural expansion. J. Appl. Ecol. 55:1737–46
    [Google Scholar]
  165. 165. 
    Stefanescu C, Peñuelas J, Filella I 2009. Rapid changes in butterfly communities following the abandonment of grasslands: a case study. Insect Conserv. Divers. 2:261–69
    [Google Scholar]
  166. 166. 
    Stenoien C, Nail KR, Zalucki JM, Parry H, Oberhauser KS et al. 2016. Monarchs in decline: a collateral landscapelevel effect of modern agriculture. Insect Sci 25:528–41
    [Google Scholar]
  167. 167. 
    Stepanian PM, Wainwright CE. 2017. Ongoing changes in migration phenology and winter residency at Bracken Bat Cave. Glob. Change Biol. 24:3266–75
    [Google Scholar]
  168. 168. 
    Stokstad E. 2018. New global study reveals the ‘staggering’ loss of forests caused by industrial agriculture. Science Sept. 13. https://www.sciencemag.org/news/2018/09/scientists-reveal-how-much-world-s-forests-being-destroyed-industrial-agriculture
    [Google Scholar]
  169. 169. 
    Stork N. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63:31–45
    [Google Scholar]
  170. 170. 
    Strong DR, Lawton JH, Southwood SR 1984. Insects on Plants: Community Patterns and Mechanisms Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  171. 171. 
    Syktus JI, McAlpine CA. 2016. More than carbon sequestration: biophysical climate benefits of restored savanna woodlands. Sci. Rep. 6:29194
    [Google Scholar]
  172. 172. 
    Thogmartin WE, Diffendorfer JE, Lopez-Hoffman L, Oberhauser K, Pleasants J et al. 2017. Density estimates of monarch butterflies overwintering in central Mexico. PeerJ 5:e3221
    [Google Scholar]
  173. 173. 
    Thomas CD, Jones TH, Hartley SE 2019. “Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25:1891–92
    [Google Scholar]
  174. 174. 
    Thomas JA. 2016. Butterfly communities under threat. Science 353:216–18
    [Google Scholar]
  175. 175. 
    Thomas JA, Clarke RT. 2004. Extinction rates and butterflies. Science 305:1563–64
    [Google Scholar]
  176. 176. 
    Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood J et al. 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–81
    [Google Scholar]
  177. 177. 
    Thompson JN. 1996. Evolutionary ecology and the conservation of biodiversity. Trends Ecol. Evol. 11:300–3
    [Google Scholar]
  178. 178. 
    Thompson JN. 1997. Conserving interaction biodiversity. The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity S Pickett, RS Ostfeld, M Shachak, GE Likens 285–93 New York: Chapman & Hall
    [Google Scholar]
  179. 179. 
    Thorp RW, Shepherd MD. 2005. Profile: subgenus Bombus. Red List of Pollinator Insects of North America MD Shepherd, DM Vaughan, SH Black Portland, OR: Xerces Soc. Invertebr. Conserv.
    [Google Scholar]
  180. 180. 
    Tilman D. 1983. Some thoughts on resource competition and diversity in plant communities. Mediter.-Type Ecosyst. 43:322–36
    [Google Scholar]
  181. 181. 
    Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C 2005. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol. Lett. 8:857–74
    [Google Scholar]
  182. 182. 
    Urban M. 2015. Accelerating extinction risk from climate change. Science 348:571–73
    [Google Scholar]
  183. 183. 
    van Langevelde F, Braamburg-Annegarn M, Huigens ME, Groendijk R, Poitevin O et al. 2018. Declines in moth populations stress the need for conserving dark nights. Glob. Change Biol. 24:925–32
    [Google Scholar]
  184. 184. 
    Vanbergen AJ, Insect Pollinat. Initiat 2013. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11:251–59
    [Google Scholar]
  185. 185. 
    Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V et al. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14:702–8
    [Google Scholar]
  186. 186. 
    Vogel G. 2017. Where have all the insects gone?. Science 356:576–79
    [Google Scholar]
  187. 187. 
    Wagner DL. 2007. Butterfly conservation. Connecticut Butterfly Atlas JE O'Donnell, LF Gall, DL Wagner 289–309 Hartford, CT: Conn. Dep. Env. Protect.
    [Google Scholar]
  188. 188. 
    Wagner DL. 2012. Moth decline in the Northeastern United States. Newsl. Lepid. Soc. 54:52–56
    [Google Scholar]
  189. 189. 
    Wagner DL. 2017. Trends in biodiversity: insects. In Encyclopedia of the Anthropocene 3 DA DellaSala, MI Goldstein 131–43 Amsterdam: Elsevier
    [Google Scholar]
  190. 190. 
    Wagner DL 2019. Global insect decline: comments on Sánchez-Bayo and Wyckhuys. Biol. Conserv. 233:332–33
    [Google Scholar]
  191. 191. 
    Wagner DL, Todd K. 2015. Ecological impacts of the emerald ash borer. Biology and Control of Emerald Ash Borer RG Van Driesche 15–63 Morgantown, WV: US Dep. Agric.
    [Google Scholar]
  192. 192. 
    Wagner DL, Van Driesche RG 2010. Threats posed to rare or endangered insects by invasions of non-native species. Annu. Rev. Entomol. 55:547–68
    [Google Scholar]
  193. 193. 
    Wallis de Vries MF, van Swaay CAM 2017. A nitrogen index to track changes in butterfly species assemblages under nitrogen deposition. Biol. Conserv. 212:448–53
    [Google Scholar]
  194. 194. 
    Warren MS. 2019. Conserving British butterflies: progress against the odds. Newsl. Lepid. Soc. 61:3–6
    [Google Scholar]
  195. 195. 
    Warren MS, Hill JK, Thomas JA, Asher J, Fox R et al. 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69
    [Google Scholar]
  196. 196. 
    Warren R, Price J, Graham E, Forstenhaeusler N, VanDerWal J 2018. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science 360:791–95
    [Google Scholar]
  197. 197. 
    Watson DM. 2011. A productivity-based explanation for woodland bird declines: poorer soils yield less food. Emu 111:10–18
    [Google Scholar]
  198. 198. 
    Weisse M, Goldman ED. 2019. The world lost a Belgium-sized area of primary rainforests last year. World Resources Institute Blog Apr. 25. https://www.wri.org/blog/2019/04/world-lost-belgium-sized-area-primary-rainforests-last-year
    [Google Scholar]
  199. 199. 
    Wepprich T, Adrion JR, Ries L, Wiedmann J, Haddad NM 2019. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLOS ONE 14:7e0216270
    [Google Scholar]
  200. 200. 
    White PJT. 2018. An aerial approach to investigating the relationship between macromoths and artificial nighttime lights across an urban landscape. J. Agric. Urban Entomol. 34:1–14
    [Google Scholar]
  201. 201. 
    Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E 1998. Quantifying threats to imperiled species in the United States. BioScience 48:607–15
    [Google Scholar]
  202. 202. 
    Williams PH, Osborne JL. 2009. Bumblebee vulnerability and conservation worldwide. Apidologie 40:367–87
    [Google Scholar]
  203. 203. 
    Willig MR, Woolbright L, Presley S, Schowalter TD, Waide RB et al. 2019. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. PNAS 116:2512143–44
    [Google Scholar]
  204. 204. 
    Wilson EO. 1987. The little things that run the world: the importance and conservation of invertebrates. Conserv. Biol. 1:344–46
    [Google Scholar]
  205. 205. 
    Wilson EO. 2002. The Future of Life London: Abacus
    [Google Scholar]
  206. 206. 
    Wilson EO. 2016. Half-Earth: Our Planet's Fight for Life New York: Leveright
    [Google Scholar]
  207. 207. 
    Wilson JF, Baker D, Cheney J, Cook M, Ellis M et al. 2018. A role for artificial night-time lighting in long-term changes in populations of 100 widespread macro-moths in UK and Ireland: a citizen-science study. J. Insect Conserv. 22:189–96
    [Google Scholar]
  208. 208. 
    Winfree R. 2010. The conservation and restoration of wild bees. Ann. N. Y. Acad. Sci. 1195:169–97
    [Google Scholar]
  209. 209. 
    Winfree RW, Fox J, Williams NM, Reilly JR, Cariveau DP 2015. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18:626–35
    [Google Scholar]
  210. 210. 
    Winfree RW, Reilly JR, Bartomeus I, Cariveau DP, Williams NM et al. 2018. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359:791–93
    [Google Scholar]
  211. 211. 
    Wood TJ, Goulson D. 2017. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. Int. 24:2117285–325
    [Google Scholar]
  212. 212. 
    Yang LH, Gratton C. 2014. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2:26–32
    [Google Scholar]
  213. 213. 
    Young BE, Auer S, Ormes M, Rapacciuolo G, Schweitzer D 2017. Are pollinating hawk moths declining in the Northeastern United States? An analysis of collection records. PLOS ONE 12:10e0185683
    [Google Scholar]
  214. 214. 
    Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB et al. 2016. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc. R. Soc. B 283:20160414
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-025151
Loading
/content/journals/10.1146/annurev-ento-011019-025151
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error