1932

Abstract

Many farmers rely on regular pesticide applications to avoid losses from arthropod pests and the diseases they vector. However, widespread and injudicious use of pesticides is detrimental to the environment, poses a health risk, and undermines biocontrol services. Researchers are increasingly required to develop techniques to quantify the trade-offs and risks associated with pesticides. Laboratory studies, though useful for assessing short-term impacts (e.g., mortality), cannot detect longer-term or indirect effects that can potentially be assessed using semifield studies. Here we review the range and scope of studies that have used semifield methods for regulatory testing and risk assessment of pesticides and for understanding the community-level effects of pesticide use in agricultural landscapes. We include studies on target and nontarget species, with an emphasis on quantifying effects when the target species is highly mobile. We suggest improvements in the design and analysis of semifield studies to more effectively assess effects on highly mobile species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011613-162109
2014-01-07
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/ento/59/1/annurev-ento-011613-162109.html?itemId=/content/journals/10.1146/annurev-ento-011613-162109&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott WS. 1.  1925. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265–67 [Google Scholar]
  2. Ahmed N, Åhman I, Englund JE, Johansson E. 2.  2011. Effect on radish pests by application of insecticides in a nearby spring oilseed rape field. J. Appl. Entomol. 135:168–76 [Google Scholar]
  3. Ajayi OC, Akinnifesi FK. 3.  2007. Farmers' understanding of pesticide safety labels and field spraying practices: a case study of cotton farmers in northern Cote d'Ivoire. Sci. Res. Essays 2:204–10 [Google Scholar]
  4. Amano H, Haseeb M. 4.  2001. Recently-proposed methods and concepts of testing the effects of pesticides on the beneficial mite and insect species: study limitations and implications in IPM. Appl. Entomol. Zool. 36:1–11 [Google Scholar]
  5. Armenta R, Martinez AM, Chapman JW, Magallanes R, Goulson D. 5.  et al. 2003. Impact of a nucleopolyhedrovirus bioinsecticide and selected synthetic insecticides on the abundance of insect natural enemies on maize in southern Mexico. J. Econ. Entomol. 96:649–61 [Google Scholar]
  6. 6. Aust. Pestic. Vet. Med. Auth 2011. Understanding Pesticide Chemical Labels. Kingston, Aust. APVMA. http://www.apvma.gov.au/use_safely/docs/understanding_labels_booklet.pdf [Google Scholar]
  7. Bahlai CA, Xue Y, McCreary CM, Schaafsma AW, Hallett RH. 7.  2010. Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risk in soybeans. PLoS One 5e11250 [Google Scholar]
  8. Banks JE, Ackleh AS, Stark JD. 8.  2010. The use of surrogate species in risk assessment: using life history data to safeguard against false negatives. Risk Anal. 30:175–82 [Google Scholar]
  9. Banks JE, Stark JD. 9.  2011. Effects of a nicotinic insecticide, imidacloprid, and vegetation diversity on movement of a common predator, Coccinella septempunctata. Biopestic. Int. 7:113–22 [Google Scholar]
  10. Banks JE, Yasenak CL. 10.  2003. Effects of plot vegetation diversity and spatial scale on Coccinella septempunctata movement in the absence of prey. Entomol. Exp. Appl. 108:197–204 [Google Scholar]
  11. Bergelson J, Kareiva P. 11.  1987. Barriers to movement and the response of herbivores to alternative cropping patterns. Oecologia 71:457–60 [Google Scholar]
  12. Biondi A, Mommaerts V, Smagghe G, Vinuela E, Zappala L, Desneux N. 12.  2012. The non-target impact of spinosyns on beneficial arthropods. Pest Manag. Sci. 68:1523–36 [Google Scholar]
  13. Bodnaruk KP, Papacek DF. 13.  1993. Residual toxicity of three insecticides to five beneficial arthropod species in citrus. Pest Control and Sustainable Agriculture SA Corey, DJ Dall, WM Milne 129–32 Melbourne, Aust.: CSIRO [Google Scholar]
  14. Boller EF, Vogt H, Ternes P, Malavolta C. 14.  2005. Working Document on Selectivity of Pesticides 2005 http://www.iobc-wprs.org/ip_ipm/03022_IOBC_PesticideDatabase_2005.pdf, http://www.iobc-wprs.org/ip_ipm/03021_IOBC_WorkingDocumentPesticides_Explanations.pdf [Google Scholar]
  15. Brévault T, Carletto J, Tribot J, Vanlerberghe-Masutti F. 15.  2011. Insecticide use and competition shape the genetic diversity of the aphid Aphis gossypii in a cotton-growing landscape. Bull. Entomol. Res. 101:407–13 [Google Scholar]
  16. Brooks DR, Bohan DA, Champion GT, Haughton AJ, Hawes C. 16.  et al. 2003. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philos. Trans. R. Soc. B 358:1847–62 [Google Scholar]
  17. Brown KC. 17.  1989. The design of experiments to assess the effects of pesticides on beneficial arthropods in orchards: replication versus plot size. Pesticides and Non-target Invertebrates PC Jepson 71–80 Dorset, UK: Intercept [Google Scholar]
  18. Bylemans D, Jansen JP, Van de Veire M, Tirry L. 18.  2000. A simplified way of mentioning the side-effects of pesticides on beneficials as shown on the label. IOBC-WPRS Bull. 23:27–29 [Google Scholar]
  19. Cain ML, Eccleston J, Kareiva PM. 19.  1985. The influence of food plant dispersion on caterpillar searching success. Ecol. Entomol. 10:1–7 [Google Scholar]
  20. Candolfi M, Bigler F, Campbell P, Heimbach U, Schmuck R. 20.  et al. 2000. Principles for regulatory testing and interpretation of semi-field and field studies with non-target arthropods. J. Pest Sci. 73:141–47 [Google Scholar]
  21. Carruthers GF, Hooper GHS, Walker PW. 21.  1993. Impact of fenitrothion on the relative abundance and diversity of non-target organisms. Pest Control and Sustainable Agriculture SS Corey, DJ Dall, WM Milne 136–39 Melbourne, Aust.: CSIRO [Google Scholar]
  22. Coll M, Bottrell DG. 22.  1996. Movement of an insect parasitoid in simple and diverse plant assemblages. Ecol. Entomol. 21:141–49 [Google Scholar]
  23. Cresswell JE. 23.  2011. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20:149–57 [Google Scholar]
  24. Cross P, Edwards-Jones G. 24.  2011. Variation in pesticide hazard from arable crop production in Great Britain from 1992 to 2008: an extended time-series analysis. Crop Prot. 30:1579–85 [Google Scholar]
  25. Curtis JE, Horne PA. 25.  1995. Effect of chlorpyrifos and cypermethrin applications on nontarget invertebrates in a conservation-tillage crop. J. Aust. Entomol. Soc. 34:229–31 [Google Scholar]
  26. De Barro P. 26.  1992. The role of temperature, photoperiod, crowding and plant quality on the production of alate viviparous females of the bird cherry-oat aphid, Rhopalosiphum padi. Entomol. Exp. Appl. 65:205–14 [Google Scholar]
  27. Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delegue MH. 27.  2004. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 57:410–19 [Google Scholar]
  28. Desneux N, Decourtye A, Delpuech J-M. 28.  2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52:81–106 [Google Scholar]
  29. Desneux N, Denoyelle R, Kaiser L. 29.  2006. A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 65:1697–706 [Google Scholar]
  30. Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L. 30.  2005. Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J. Econ. Entomol. 98:9–17 [Google Scholar]
  31. Dhillon MK, Pampapathy G, Wadaskar RM, Sharma HC. 31.  2012. Impact of Bt transgenic cottons and insecticides on target and non-target insect pests, natural enemies and seedcotton yield in India. Indian J. Agric. Sci. 82:248–54 [Google Scholar]
  32. Dhillon MK, Sharma HC. 32.  2013. Comparative studies on the effects of Bt-transgenic and non-transgenic cotton on arthropod diversity, seedcotton yield and bollworms control. J. Environ. Biol. 34:67–73 [Google Scholar]
  33. Duan JJ, Jiang C, Head GP, Bhatti MA, Ward DP. 33.  et al. 2006. Statistical power analysis of a 2-year field study and design of experiments to evaluate non-target effects of genetically modified Bacillus thuringiensis corn. Ecol. Entomol. 31:521–31 [Google Scholar]
  34. Duffield SJ, Aebischer NJ. 34.  1994. The effect of spatial scale of treatment with dimethoate on invertebrate population recovery in winter-wheat. J. Appl. Ecol. 31:263–81 [Google Scholar]
  35. Ehler EL. 35.  2006. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 62:787–89 [Google Scholar]
  36. El-Ghar GESA, El-Sayed AEGM. 36.  1989. Impact of two synthetic pyrethroids and methomyl on management of the cabbage aphid, Brevicoryne brassicae (L.) and its associated parasitoid, Diaeretiella rapae (M'Intosh). Pestic. Sci. 25:35–41 [Google Scholar]
  37. Elton C. 37.  1974. Population dispersion: an essay on animal community patterns. Ecology 37:1–23 [Google Scholar]
  38. Endlweber K, Schadler M, Scheu S. 38.  2006. Effects of foliar and soil insecticide applications on the collembolan community of an early set-aside arable field. Appl. Soil Ecol. 31:136–46 [Google Scholar]
  39. Förster B, Boxall A, Coors A, Jensen J, Liebig M. 39.  et al. 2011. Fate and effects of ivermectin on soil invertebrates in terrestrial model ecosystems. Ecotoxicology 20:234–45 [Google Scholar]
  40. Frampton GK. 40.  1999. Spatial variation in non-target effects of the insecticides chlorpyrifos, cypermethrin and pirimicarb on Collembola in winter wheat. Pestic. Sci. 55:875–86 [Google Scholar]
  41. Frampton GK. 41.  2002. Long-term impacts of an organophosphate-based regime of pesticides on field and field-edge Collembola communities. Pest Manag. Sci. 58:991–1001 [Google Scholar]
  42. Frampton GK, Gould PJL, van den Brink PJ, Hendy E. 42.  2007. Type ‘A’ and ‘B’ recovery revisited: the role of field-edge habitats for Collembola and macroarthropod community recovery after insecticide treatment. Environ. Pollut. 145:874–83 [Google Scholar]
  43. Frampton GK, van den Brink PJ. 43.  2007. Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: direct and indirect effects. Environ. Pollut. 147:14–25 [Google Scholar]
  44. Frampton GK, Wratten SD. 44.  2000. Effects of benzimidazole and triazole fungicide use on epigeic species of Collembola in wheat. Ecotoxicol. Environ. Saf. 46:64–72 [Google Scholar]
  45. Furlong MJ, Ju KH, Su PW, Chol JK, Il RC, Zalucki MP. 45.  2008. Integration of endemic natural enemies and Bacillus thuringiensis to manage insect pests of Brassica crops in North Korea. Agric. Ecosyst. Environ. 125:223–38 [Google Scholar]
  46. Furlong MJ, Shi ZH, Liu SS, Zalucki MP. 46.  2004. Evaluation of the impact of natural enemies on Plutella xylostella L. (Lepidoptera: Yponomeutidae) populations on commercial Brassica farms. Agric. For. Entomol. 6:311–22 [Google Scholar]
  47. Furlong MJ, Shi ZH, Liu YQ, Guo SJ, Lu YB. 47.  et al. 2004. Experimental analysis of the influence of pest management practice on the efficacy of an endemic arthropod natural enemy complex of the diamondback moth. J. Econ. Entomol. 97:1814–27 [Google Scholar]
  48. Ghatak SS, Mondal S, Vishwakarma R. 48.  2009. Bioefficacy of botanicals and biopesticides against brinjal shoot and fruit borer, Leucinodes orbonalis Guen. (Pyraustidae: Lepidoptera). Indian J. Entomol. 71:284–87 [Google Scholar]
  49. Goncalves MF, Santos SAP, Torres LM. 49.  2012. Efficacy of spinosad bait sprays to control Bactrocera oleae and impact on non-target arthropods. Phytoparasitica 40:17–28 [Google Scholar]
  50. Gould F. 50.  1991. Arthropod behavior and the efficacy of plant protectants. Annu. Rev. Entomol. 36:305–30 [Google Scholar]
  51. Greig-Smith PW, Hardy AR. 51.  1992. Design and management of the Boxworth Project. Pesticides, Cereal Farming and the Environment PW Greig-Smith, G Frampton, T Hardy 6–17 London: HMSO [Google Scholar]
  52. Gross K, Rosenheim JA. 52.  2011. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol. Appl. 21:2770–80 [Google Scholar]
  53. Gutierrez AP, Baumgartner J. 53.  2007. Modeling the dynamics of tritrophic population interactions. Perspectives in Ecological Theory and Integrated Pest Management M Kogan, PC Jepson 301–60 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  54. Harrison S, Murphy DD, Ehrlich PR. 54.  1988. Distribution of the bay checkerspot butterfly, Euphydryas editha bayensis evidence for a metapopulation model. Am. Nat. 132:360–82 [Google Scholar]
  55. Hassan SA. 55.  1985. Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS Working Group, ‘Pesticides and Beneficial Organisms’. Bull. OEPP 15:214–55 [Google Scholar]
  56. Hassell MP, Southwood TRE. 56.  1978. Foraging strategies of insects. Annu. Rev. Ecol. Syst. 9:75–98 [Google Scholar]
  57. Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR. 57.  et al. 2003. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Philos. Trans. R. Soc. B 358:1863–77 [Google Scholar]
  58. Heimbach U, Dohmen P, Barrett KL, Brown KC, Kennedy PJ. 58.  et al. 2000. A method for testing effects of plant protection products on the carabid beetle Poecilus cupreus (Coleoptera, Carabidae) under laboratory and semi-field conditions. Guidelines to Evaluate Side-Effects of Plant Protection Products to Non-Target Arthropods M Candolfi, S Blumel, R Forster, F Bakker, C Grimm, et al. 87–106 Gent, Belgium: IOBC, BART, EPPO [Google Scholar]
  59. Henderson CF, Tilton EW. 59.  1955. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48:157–61 [Google Scholar]
  60. Huiting H, Ester A. 60.  2011. Perennial ryegrass seed treatment to control slug damage. IOBC/WPRS Bull. 64:135–45 [Google Scholar]
  61. Jaensch S, Frampton GK, Roembke J, Van den Brink PJ, Scott-Fordsmand JJ. 61.  2006. Effects of pesticides on soil invertebrates in model ecosystem and field studies: a review and comparison with laboratory toxicity data. Environ. Toxicol. Chem. 25:2490–501 [Google Scholar]
  62. Jansen JP. 62.  2001. Toxicity of insecticides used in wheat to adults of Aphidius rhopalosiphi DeStefani-Perez (Hymenoptera: Aphidiidae) with field treated plants. Bull. OILB/SROP 24:17–24 [Google Scholar]
  63. Jepson PC. 63.  1989. The temporal and spatial dynamics of pesticide side-effects on non-target invertebrates. Pesticides and Non-Target Invertebrates PC Jepson 95–127 Dorset, UK: Intercept [Google Scholar]
  64. Jepson PC. 64.  2007. Ecotoxicology: the ecology of interactions between pesticides and non-target organisms. Perspectives in Ecological Theory and Integrated Pest Management M Kogan, PC Jepson 522–51 New York: Cambridge Univ. Press [Google Scholar]
  65. Jepson PC, Thacker JRM. 65.  1990. Analysis of the spatial component of pesticide side-effects on nontarget invertebrate populations and its relevance to hazard analysis. Funct. Ecol. 4:349–55 [Google Scholar]
  66. Kareiva P, Andersen M. 66.  1988. Spatial aspects of species interactions: the wedding of models and experiments. Lect. Notes Biomath. 77:35–50 [Google Scholar]
  67. Kay IR. 67.  1993. Insecticidal control of Helicoverpa spp. and Phthorimaea operculella on tomatoes. Pest Control and Sustainable Agriculture SA Corey, DJ Dall, WM Milne 154–57 Melbourne, Aust.: CSIRO [Google Scholar]
  68. Kennedy PJ, Conrad KF, Perry JN, Powell D, Aegerter J. 68.  et al. 2001. Comparison of two field-scale approaches for the study of effects of insecticides on polyphagous predators in cereals. Appl. Soil Ecol. 17:253–66 [Google Scholar]
  69. Kjaer C, Jepson PC. 69.  1995. The toxic effects of direct pesticide exposure for a nontarget weed-dwelling chrysomelid beetle (Gastrophysa polygoni) in cereals. Environ. Toxicol. Chem. 14:993–99 [Google Scholar]
  70. Knabe S, Cole JFH, Waltersdorfer A. 70.  2001. Pre-sampling for large field trials: a valuable instrument to choose the ‘perfect’ site?. Bull. OILB/SROP 24:89–95 [Google Scholar]
  71. Knutson AE, Butler J, Bernal J, Bogran C, Campos M. 71.  2011. Impact of area-wide malathion on predatory arthropods and secondary pests in cotton during boll weevil eradication in Texas. Crop Prot. 30:456–67 [Google Scholar]
  72. Kogan M. 72.  1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43:243–70 [Google Scholar]
  73. Langhof M, Gathmann A, Poehling HM, Meyhofer R. 73.  2003. Impact of insecticide drift on aphids and their parasitoids: residual toxicity, persistence and recolonisation. Agric. Ecosyst. Environ. 94:265–74 [Google Scholar]
  74. Lemke R, Malhi S, Johnson EN, Brandt SA, Zentner RP, Olfert OO. 74.  2012. Alternative cropping systems study—Scott, Saskatchewan. Prairie Soils Crops J. 5:74–84 [Google Scholar]
  75. Leskey TC, Lee DH, Short BD, Wright SE. 75.  2012. Impact of insecticides on the invasive Halyomorpha halys (Hemiptera: Pentatomidae): analysis of insecticide lethality. J. Econ. Entomol. 105:1726–35 [Google Scholar]
  76. Levin SA. 76.  1974. Dispersion and population interactions. Am. Nat. 108:207–28 [Google Scholar]
  77. Levins R. 77.  1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15:237–40 [Google Scholar]
  78. Longley M, Jepson PC. 78.  1996. Effects of honeydew and insecticide residues on the distribution of foraging aphid parasitoids under glasshouse and field conditions. Entomol. Exp. Appl. 81:189–98 [Google Scholar]
  79. Longley M, Jepson PC, Izquierdo J, Sotherton N. 79.  1997. Temporal and spatial changes in aphid and parasitoid populations following applications of deltamethrin in winter wheat. Entomol. Exp. Appl. 83:41–52 [Google Scholar]
  80. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. 80.  2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–65 [Google Scholar]
  81. Lv C, Zhong B, Zhong G, Weng Q, Chen S. 81.  et al. 2012. Four botanical extracts are toxic to the hispine beetle, Brontispa longissima, in laboratory and semi-field trials. J. Insect Sci. 12:1–8 [Google Scholar]
  82. Macfadyen S, Zalucki MP. 82.  2012. Assessing the short-term impact of an insecticide (deltamethrin) on predator and herbivore abundance in soybean Glycine max using a replicated small-plot field experiment. Insect Sci. 19:112–20 [Google Scholar]
  83. Mansfield S, Dillon ML, Whitehouse MEA. 83.  2006. Are arthropod communities in cotton really disrupted? An assessment of insecticide regimes and evaluation of the beneficial disruption index. Agric. Ecosyst. Environ. 113:326–35 [Google Scholar]
  84. Martini X, Kincy N, Nansen C. 84.  2012. Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Manag. Sci. 68:1471–77 [Google Scholar]
  85. Meehan TD, Werling BP, Landis DA, Gratton C. 85.  2011. Agricultural landscape simplification and insecticide use in the midwestern United States. Proc. Natl. Acad. Sci. USA 108:11500–5 [Google Scholar]
  86. Miles M, Dutton R. 86.  2003. Testing the effects of spinosad to predatory mites in laboratory, extended laboratory, semi-field and field studies. Bull. OILB/SROP 26:9–20 [Google Scholar]
  87. Moll M, Schuld M. 87.  2001. A semi-field test for evaluating the side-effects of plant protection products on the aphid parasitoid Aphidius rhopalosiphi (DeStefani-Perez) (Hymenoptera, Braconidae): first results. Bull. OILB/SROP 24:67–70 [Google Scholar]
  88. Moreby SJ, Sotherton NW, Jepson PC. 88.  1997. The effects of pesticides on species of non-target Heteroptera inhabiting cereal fields in southern England. Pestic. Sci. 51:39–48 [Google Scholar]
  89. Muther J. 89.  2000. Predatory mite field studies at different test sites in Europe: particularities and problems. Bull. OILB/SROP 23:17–26 [Google Scholar]
  90. Nash MA, Hoffmann AA, Thomson LJ. 90.  2010. Identifying signature of chemical applications on indigenous and invasive nontarget arthropod communities in vineyards. Ecol. Appl. 20:1693–703 [Google Scholar]
  91. Odum EP. 91.  1984. The mesocosm. Bioscience 34:558–62 [Google Scholar]
  92. Ohnesorg WJ, Johnson KD, O'Neal ME. 92.  2009. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies. J. Econ. Entomol. 102:1816–26 [Google Scholar]
  93. Okubo A, Kareiva P. 93.  2001. Some examples of animal diffusion. Diffusion and Ecological Problems: Modern Perspectives A Okubo, SA Levin 170–96 New York: Springer [Google Scholar]
  94. Pascual S, Cobos G, Medina P, Budia F, Vinuela E, González-Núñez M. 94.  2010. Field assessment of effects of control strategies against the olive fruit fly (Bactrocera oleae (Rossi)) on predatory arthropods: comparison of different methods of data analysis. IOBC/WPRS Bull. 55:11–18 [Google Scholar]
  95. Pascual S, Cobos G, Seris E, González-Núñez M. 95.  2010. Effects of processed kaolin on pests and non-target arthropods in a Spanish olive grove. J. Pest Sci. 83:121–33 [Google Scholar]
  96. Pasqualini E, Civolani S. 96.  2003. Studies on side effects of some insecticides on aphid-feeding Coccinellidae in Emilia-Romagna fruit crops. Bull. OILB/SROP 26:51–55 [Google Scholar]
  97. Pimentel D, Acquay H, Biltonen M, Rice P, Silva M. 97.  et al. 1992. Environmental and economic costs of pesticide use. BioScience 42:750–60 [Google Scholar]
  98. Pimentel D, Andow D, Dyson-Hudson R, Gallahan D, Jacobson S. 98.  et al. 1980. Environmental and social costs of pesticides: a preliminary assessment. Oikos 34:126–40 [Google Scholar]
  99. Pimentel D, McLaughlin L, Zepp A, Lakitan B, Kraus T. 99.  et al. 1991. Environmental and economic effects of reducing pesticide use. BioScience 41:402–9 [Google Scholar]
  100. Prasifka JR, Hellmich RL, Dively GP, Higgins LS, Dixon PM, Duan JJ. 100.  2008. Selection of nontarget arthropod taxa for field research on transgenic insecticidal crops: using empirical data and statistical power. Environ. Entomol. 37:1–10 [Google Scholar]
  101. Pullen AJ, Jepson PC, Sotherton NW. 101.  1992. Terrestrial nontarget invertebrates and the autumn application of synthetic pyrethroids: experimental methodology and the trade-off between replication and plot size. Arch. Environ. Contam. Toxicol. 23:246–58 [Google Scholar]
  102. Rands MRW, Sotherton NW. 102.  1986. Pesticide use on cereal crops and changes in the abundance of butterflies on arable farmland in England. Biol. Conserv. 36:71–82 [Google Scholar]
  103. Ridha R, Chermiti B. 103.  2011. Comparative impact of spinosad and malathion on the temporal evolution of parasitism caused by Semielacher petiolatus Girault (Hymenoptera: Eulophidae), a specific parasitoid of the citrus leafminer. IOBC/WPRS Bull. 62:325–36 [Google Scholar]
  104. Rodrigues R, Goncalves R, Silva C, Torres L. 104.  2004. Toxicity of five insecticides on predatory mites (Acari: Phytoseiidae) in vineyards in two Portuguese regions. Bull. OILB/SROP 27:37–44 [Google Scholar]
  105. Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MMC. 105.  et al. 2008. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat. Biotechnol. 26:203–8 [Google Scholar]
  106. Rosenheim JA, Parsa S, Forbes AA, Krimmel WA, Law YH. 106.  et al. 2011. Ecoinformatics for integrated pest management: expanding the applied insect ecologist's tool-kit. J. Econ. Entomol. 104:331–42 [Google Scholar]
  107. Rother H-A. 107.  2008. South African farm workers' interpretation of risk assessment data expressed as pictograms on pesticide labels. Environ. Res. 108:419–27 [Google Scholar]
  108. Sanchez-Bayo F, Goka K. 108.  2012. Evaluation of suitable endpoints for assessing the impacts of toxicants at the community level. Ecotoxicology 21:667–80 [Google Scholar]
  109. Schaeffer A, van den Brink PJ, Heimbach F, Hoy SP, de Jong FMW. 109.  et al. 2010. Semi-Field Methods for the Environmental Risk Assessment of Pesticides in Soil Boca Raton, FL: CRC Press [Google Scholar]
  110. Schellhorn NA, Bianchi FJJA, Hsu CL. 110.  2014. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annu. Rev. Entomol. 59559–81 [Google Scholar]
  111. Scholz-Starke B, Nikolakis A, Leicher T, Lechelt-Kunze C, Heimbach F. 111.  et al. 2011. Outdoor terrestrial model ecosystems are suitable to detect pesticide effects on soil fauna: design and method development. Ecotoxicology 20:1932–48 [Google Scholar]
  112. Schumacher K, Freier B. 112.  2008. Who benefits from low-input pesticide use within the tritrophic system: crop–aphid–predator?. IOBC/WPRS Bull. 35:10–17 [Google Scholar]
  113. Shelton AM, Badenes-Perez E. 113.  2006. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51:285–308 [Google Scholar]
  114. Slosser JE, Parajulee MN, Bordovsky DG. 114.  2000. Evaluation of food sprays and relay strip crops for enhancing biological control of bollworms and cotton aphids in cotton. Int. J. Pest Manag. 46:267–75 [Google Scholar]
  115. Smart LE, Stevenson JH, Walters JHH. 115.  1989. Development of field trial methodology to assess short-term effects of pesticides on beneficial arthropods in arable crops. Crop Prot. 8:169–80 [Google Scholar]
  116. Stanley J, Chandrasekaran S, Preetha G, Kuttalam S. 116.  2010. Toxicity of diafenthiuron to honey bees in laboratory, semi-field and field conditions. Pest Manag. Sci. 66:505–10 [Google Scholar]
  117. Stark JD, Banks JE. 117.  2003. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 48:505–19 [Google Scholar]
  118. Stark JD, Banks JE. 118.  2011. Evaluating the effects of pesticides on target and non-target organisms: population-level approaches and models. Biopestic. Int. 7:71–81 [Google Scholar]
  119. Stark JD, Banks JE, Vargas R. 119.  2004. How risky is risk assessment: the role that life history strategies play in susceptibility of species to stress. Proc. Natl. Acad. Sci. USA 101:732–36 [Google Scholar]
  120. Stark JD, Sugayama RL, Kovaleski A. 120.  2007. Why demographic and modeling approaches should be adopted for estimating the effects of pesticides on biocontrol agents. Biocontrol 52:365–74 [Google Scholar]
  121. Thomas CFG, Brown NJ, Kendall DA. 121.  2006. Carabid movement and vegetation density: implications for interpreting pitfall trap data from split-field trials. Agric. Ecosyst. Environ. 113:51–61 [Google Scholar]
  122. Thomas CFG, Hol EHA, Everts JW. 122.  1990. Modeling the diffusion component of dispersal during recovery of a population of linyphiid spiders from exposure to an insecticide. Funct. Ecol. 4:357–68 [Google Scholar]
  123. Thomas MB, Langewald J, Wood SN. 123.  1996. Evaluating the effects of a biopesticide on populations of the variegated grasshopper, Zonocerus variegatus. J. Appl. Ecol. 33:1509–16 [Google Scholar]
  124. Thompson HM, Maus C. 124.  2007. The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manag. Sci. 63:1058–61 [Google Scholar]
  125. Thomson LJ, Hoffmann AA. 125.  2006. Field validation of laboratory-derived IOBC toxicity ratings for natural enemies in commercial vineyards. Biol. Control 39:507–15 [Google Scholar]
  126. Tilman D, May RM, Lehman CL, Nowak MA. 126.  1994. Habitat destruction and the extinction debt. Nature 371:65–66 [Google Scholar]
  127. Topping CJ, Lagisz M. 127.  2012. Spatial dynamic factors affecting population-level risk assessment for a terrestrial arthropod: an agent-based modeling approach. Hum. Ecol. Risk Assess. 18:168–80 [Google Scholar]
  128. Van den Brink PJ, Ter Braak CJF. 128.  1999. Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18:138–48 [Google Scholar]
  129. Vickerman GP. 129.  1992. The effects of different pesticide regimes on the invertebrate fauna of winter wheat. Pesticides, Cereal Farming and the Environment PW Greig-Smith, G Frampton, T Hardy 82–109 London: HMSO [Google Scholar]
  130. Vishwakarma R, Chand P, Ghatak SS. 130.  2011. Potential plant extracts and entomopathogenic fungi against red pumpkin beetle, Raphidopalpa foveicollis (Lucas). Ann. Plant Prot. Sci. 19:84–87 [Google Scholar]
  131. Volkmar C, Schumacher K, Muller J. 131.  2008. Impact of low-input pesticides usage on spider communities with special regard to accumulated effects. IOBC/WPRS Bull. 35:18–25 [Google Scholar]
  132. Waage J. 132.  1989. The population ecology of pest–pesticide–natural enemy interactions. Pesticides and Non-Target Invertebrates PC Jepson 81–93 Dorset, UK: Intercept [Google Scholar]
  133. Weyers A, Sokull-Kluttgen B, Knacker T, Martin S, Van Gestel CAM. 133.  2004. Use of terrestrial model ecosystem data in environmental risk assessment for industrial chemicals, biocides and plant protection products in the EU. Ecotoxicology 13:163–76 [Google Scholar]
  134. Wick M, Freier B. 134.  2000. Long-term effects of an insecticide application on non-target arthropods in winter wheat—a field study over two seasons. J. Pest Sci. 73:61–69 [Google Scholar]
  135. Wiles JA, Jepson PC. 135.  1992. In situ bioassay techniques to evaluate the toxicity of pesticides to beneficial invertebrates in cereals. Aspects Appl. Biol. 31:61–68 [Google Scholar]
  136. Wiles JA, Jepson PC. 136.  1994. Sublethal effects of deltamethrin residues on the within-crop behaviour and distribution of Coccinella septempunctata. Entomol. Exp. Appl. 72:33–45 [Google Scholar]
  137. Wilson LJ, Bauer LR, Lally DA. 137.  1998. Effect of early season insecticide use on predators and outbreaks of spider mites (Acari: Tetranychidae) in cotton. Bull. Entomol. Res. 88:477–88 [Google Scholar]
  138. Wilson LJ, Bauer LR, Lally DA. 138.  1999. Insecticide-induced increases in aphid abundance in cotton. Aust. J. Entomol. 38:242–43 [Google Scholar]
  139. Wilson LJ, Heimoana S, Mensah RK, Khan M, Dillon M. 139.  et al. 2012. Impact of insecticides and miticides on beneficials in Australian cotton. Cotton Pest Management Guide 2012–13 S Maas 7–9 The Australian Cotton Industry Development and Delivery Team [Google Scholar]
  140. Wilson LJ, Herron GA, Leigh TF, Rophail J. 140.  1995. Laboratory and field evaluation of the selective acaricides dicofol and propargite for control of Tetranychus urticae Koch (Acari, Tetranychidae) in Australian cotton. J. Aust. Entomol. Soc. 34:247–52 [Google Scholar]
  141. Zalucki MP, Adamson D, Furlong MJ. 141.  2009. The future of IPM: whither or wither?. Aust. J. Entomol. 48:85–96 [Google Scholar]
  142. Banks JE, Stark JD, Vargas RI, Ackleh AS. 142.  2011. Parasitoids and ecological risk assessment: Can toxicity data developed for one species be used to protect an entire guild?. Biol. Control 59:336–39 [Google Scholar]
/content/journals/10.1146/annurev-ento-011613-162109
Loading
/content/journals/10.1146/annurev-ento-011613-162109
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error