1932

Abstract

Thanks to the fast development of sequencing techniques and bioinformatics tools, sequencing the genome of an insect species for specific research purposes has become an increasingly popular practice. Insect genomes not only provide sets of gene sequences but also represent a change in focus from reductionism to systemic biology in the field of entomology. Using insect genomes, researchers are able to identify and study the functions of all members of a gene family, pathway, or gene network associated with a trait of interest. Comparative genomics studies provide new insights into insect evolution, addressing long-lasting controversies in taxonomy. It is also now feasible to uncover the genetic basis of important traits by identifying variants using genome resequencing data of individual insects, followed by genome-wide association analysis. Here, we review the current progress in insect genome sequencing projects and the application of insect genomes in uncovering the phylogenetic relationships between insects and unraveling the mechanisms of important life-history traits. We also summarize the challenges in genome data sharing and possible solutions. Finally, we provide guidance for fully and deeply mining insect genome data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-013024-013420
2025-01-28
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-013024-013420.html?itemId=/content/journals/10.1146/annurev-ento-013024-013420&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al. 2000.. The genome sequence of Drosophila melanogaster. . Science 287::218595
    [Crossref] [Google Scholar]
  2. 2.
    Agrawal AA. 2001.. Phenotypic plasticity in the interactions and evolution of species. . Science 294::32126
    [Crossref] [Google Scholar]
  3. 3.
    Allen JM, Huang DI, Cronk QC, Johnson KP. 2015.. aTRAM—automated target restricted assembly method: a fast method for assembling loci across divergent taxa from next-generation sequencing data. . BMC Bioinf. 16::98
    [Crossref] [Google Scholar]
  4. 4.
    Andere AA, Platt RN, Ray DA, Picard CJ. 2016.. Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research. . BMC Genom. 17::842
    [Crossref] [Google Scholar]
  5. 5.
    Ando T, Matsuda T, Goto K, Hara K, Ito A, et al. 2018.. Repeated inversions within a pannier intron drive diversification of intraspecific colour patterns of ladybird beetles. . Nat. Commun. 9::3843
    [Crossref] [Google Scholar]
  6. 6.
    Arce CC, Theepan V, Schimmel BC, Jaffuel G, Erb M, Machado RA. 2021.. Plant-associated CO2 mediates long-distance host location and foraging behaviour of a root herbivore. . eLife 10::e65575
    [Crossref] [Google Scholar]
  7. 7.
    Deleted in proof
  8. 8.
    Barribeau SM, Sadd BM, du Plessis L, Brown MJF, Buechel SD, et al. 2015.. A depauperate immune repertoire precedes evolution of sociality in bees. . Genome Biol. 16::83
    [Crossref] [Google Scholar]
  9. 9.
    Benoit JB, Adelman ZN, Reinhardt K, Dolan A, Poelchau M, et al. 2016.. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. . Nat. Commun. 7::10165
    [Crossref] [Google Scholar]
  10. 10.
    Bergman M, Smolka J, Nilsson D-E, Kelber A. 2021.. Seeing the world through the eyes of a butterfly: visual ecology of the territorial males of Pararge aegeria (Lepidoptera: Nymphalidae). . J. Comp. Physiol. A 207::70113
    [Crossref] [Google Scholar]
  11. 11.
    Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, et al. 2010.. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. . Science 329::106871
    [Crossref] [Google Scholar]
  12. 12.
    Bonomi L, Huang Y, Ohno-Machado L. 2020.. Privacy challenges and research opportunities for genomic data sharing. . Nat. Genet. 52::64654
    [Crossref] [Google Scholar]
  13. 13.
    Carter JK, Kimball RT, Funk ER, Kane NC, Schield DR, et al. 2023.. Estimating phylogenies from genomes: a beginners review of commonly used genomic data in vertebrate phylogenomics. . J. Hered. 114::113
    [Crossref] [Google Scholar]
  14. 14.
    Chakraborty M, Ramaiah A, Adolfi A, Halas P, Kaduskar B, et al. 2021.. Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. . BMC Biol. 19::28. . 2022.. BMC Biol. 20::96
    [Google Scholar]
  15. 15.
    Chandra V, Fetter-Pruneda I, Oxley PR, Ritger AL, McKenzie SK, et al. 2018.. Social regulation of insulin signaling and the evolution of eusociality in ants. . Science 361::398402
    [Crossref] [Google Scholar]
  16. 16.
    Cong Y, Ye X, Mei Y, He K, Li F. 2022.. Transposons and non-coding regions drive the intrafamily differences of genome size in insects. . iScience 25::104873
    [Crossref] [Google Scholar]
  17. 17.
    Deleted in proof
  18. 18.
    De Obaldia ME, Morita T, Dedmon LC, Boehmler DJ, Jiang CS, et al. 2022.. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. . Cell 185::4099116
    [Crossref] [Google Scholar]
  19. 19.
    Ding D, Liu GJ, Hou L, Gui WY, Chen B, et al. 2018.. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. . Nat. Commun. 9::4991
    [Crossref] [Google Scholar]
  20. 20.
    Drum ZA, Lanno SM, Gregory SM, Shimshak SJ, Ahamed M, et al. 2022.. Genomics analysis of hexanoic acid exposure in Drosophila species. . G3 12::jkab354
    [Crossref] [Google Scholar]
  21. 21.
    Etebari K, Gharuka M, Asgari S, Furlong MJ. 2021.. Diverse host immune responses of different geographical populations of the coconut rhinoceros beetle to Oryctes rhinoceros nudivirus (OrNV) infection. . Microbiol. Spectr. 9::e0068621
    [Crossref] [Google Scholar]
  22. 22.
    Evangelista DA, Wipfler B, Bethoux O, Donath A, Fujita M, et al. 2019.. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). . Proc. Biol. Sci. 286::20182076
    [Google Scholar]
  23. 23.
    Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. 2012.. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. . Syst. Biol. 61::71726
    [Crossref] [Google Scholar]
  24. 24.
    Feng S, Opit G, Deng W, Stejskal V, Li Z. 2022.. A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation. . GigaScience 11::giac062
    [Crossref] [Google Scholar]
  25. 25.
    Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, et al. 2020.. Dense sampling of bird diversity increases power of comparative genomics. . Nature 587::25257
    [Crossref] [Google Scholar]
  26. 26.
    Deleted in proof
  27. 27.
    Ficarrotta V, Hanly JJ, Loh LS, Francescutti CM, Ren A, et al. 2022.. A genetic switch for male UV iridescence in an incipient species pair of sulphur butterflies. . PNAS 119::e2109255118
    [Crossref] [Google Scholar]
  28. 28.
    Frandsen PB, Holzenthal RW, Espeland M, Breinholt J, Thomas Thorpe JA, et al. 2024.. Phylogenomics recovers multiple origins of portable case making in caddisflies (Insecta: Trichoptera), nature's underwater architects. . Proc. Biol. Sci. 291::20240514
    [Google Scholar]
  29. 29.
    Garland T Jr., Kelly SA. 2006.. Phenotypic plasticity and experimental evolution. . J. Exp. Biol. 209::234461
    [Crossref] [Google Scholar]
  30. 30.
    Deleted in proof
  31. 31.
    Gautier M, Yamaguchi J, Foucaud J, Loiseau A, Ausset A, et al. 2018.. The genomic basis of color pattern polymorphism in the harlequin ladybird. . Curr. Biol. 28::3296302
    [Crossref] [Google Scholar]
  32. 32.
    Giraldo-Calderón GI, Harb OS, Kelly SA, Rund SS, Roos DS, McDowell MA. 2022.. VectorBase.org updates: bioinformatic resources for invertebrate vectors of human pathogens and related organisms. . Curr. Opin. Insect Sci. 50::100860
    [Crossref] [Google Scholar]
  33. 33.
    Gramates LS, Agapite J, Attrill H, Calvi BR, Crosby MA, et al. 2022.. FlyBase: a guided tour of highlighted features. . Genetics 220::iyac035
    [Crossref] [Google Scholar]
  34. 34.
    Green ED, Watson JD, Collins FS. 2015.. Human Genome Project: twenty-five years of big biology. . Nature 526::2931
    [Crossref] [Google Scholar]
  35. 35.
    Greene MJ, Gordon DM. 2003.. Social insects: Cuticular hydrocarbons inform task decisions. . Nature 423::32
    [Crossref] [Google Scholar]
  36. 36.
    Grimaldi DA. 1990.. Manual of Nearctic Diptera. Volume 3. Research Branch: Agriculture Canada, Monograph Number 32. J. F. McAlpine, D. M. Wood. . Q. Rev. Biol. 65:(4):51314
    [Crossref] [Google Scholar]
  37. 37.
    Gui F, Lan T, Zhao Y, Guo W, Dong Y, et al. 2022.. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. . Protein Cell 13::51331
    [Crossref] [Google Scholar]
  38. 38.
    He M, Ma Y-F, Guo H, Liu X-Z, Long G-J, et al. 2022.. Genome-wide identification and expression pattern analysis of novel chemosensory genes in the German cockroach Blattella germanica. . Genomics 114::110310
    [Crossref] [Google Scholar]
  39. 39.
    Heckenhauer J, Frandsen PB, Sproul JS, Li Z, Paule J, et al. 2022.. Genome size evolution in the diverse insect order Trichoptera. . GigaScience 11::giac011
    [Crossref] [Google Scholar]
  40. 40.
    Honeybee Genome Sequencing Consortium. 2006.. Insights into social insects from the genome of the honeybee Apis mellifera. . Nature 443::93149
    [Crossref] [Google Scholar]
  41. 41.
    Hotaling S, Kelley JL, Frandsen PB. 2021.. Toward a genome sequence for every animal: Where are we now?. PNAS 118::e2109019118
    [Crossref] [Google Scholar]
  42. 42.
    Hotaling S, Sproul JS, Heckenhauer J, Powell A, Larracuente AM, et al. 2021.. Long reads are revolutionizing 20 years of insect genome sequencing. . Genome Biol. Evol. 13::evab138
    [Crossref] [Google Scholar]
  43. 43.
    Huber R, Knaden M. 2017.. Homing ants get confused when nest cues are also route cues. . Curr. Biol. 27::370610
    [Crossref] [Google Scholar]
  44. 44.
    Hudson M, Garrison NA, Sterling R, Caron NR, Fox K, et al. 2020.. Rights, interests and expectations: indigenous perspectives on unrestricted access to genomic data. . Nat. Rev. Genet. 21::37784
    [Crossref] [Google Scholar]
  45. 45.
    Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, et al. 2013.. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. . Cell 153::156778
    [Crossref] [Google Scholar]
  46. 46.
    International HapMap Consortium. 2003.. The International HapMap Project. . Nature 426::78996
    [Crossref] [Google Scholar]
  47. 47.
    Jia Q, Li S. 2023.. Mmp-induced fat body cell dissociation promotes pupal development and moderately averts pupal diapause by activating lipid metabolism. . PNAS 120::e2215214120
    [Crossref] [Google Scholar]
  48. 48.
    Deleted in proof
  49. 49.
    Johnson KP. 2019.. Putting the genome in insect phylogenomics. . Curr. Opin. Insect. Sci. 36::11117
    [Crossref] [Google Scholar]
  50. 50.
    Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, et al. 2018.. Phylogenomics and the evolution of hemipteroid insects. . PNAS 115::1277580
    [Crossref] [Google Scholar]
  51. 51.
    Jouraku A, Yamamoto K, Kuwazaki S, Urio M, Suetsugu Y, et al. 2013.. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella. . BMC Genom. 14::464
    [Crossref] [Google Scholar]
  52. 52.
    Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, et al. 2019.. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. . PNAS 116::2265763
    [Crossref] [Google Scholar]
  53. 53.
    Kaye J, Heeney C, Hawkins N, de Vries J, Boddington P. 2009.. Data sharing in genomics—re-shaping scientific practice. . Nat. Rev. Genet. 10::33135
    [Crossref] [Google Scholar]
  54. 54.
    Kim BY, Wang JR, Miller DE, Barmina O, Delaney E, et al. 2021.. Highly contiguous assemblies of 101 drosophilid genomes. . eLife 10::e66405
    [Crossref] [Google Scholar]
  55. 55.
    Kim HS, Murphy T, Xia J, Caragea D, Park Y, et al. 2010.. BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. . Nucleic Acids Res. 38::D43742
    [Crossref] [Google Scholar]
  56. 56.
    Kjer KM, Simon C, Yavorskaya M, Beutel RG. 2016.. Progress, pitfalls and parallel universes: a history of insect phylogenetics. . J. R. Soc. Interface 13::20160363
    [Crossref] [Google Scholar]
  57. 57.
    Kočárek P, Horká I, Kundrata R. 2020.. Molecular phylogeny and infraordinal classification of Zoraptera (Insecta). . Insects 11:(1):51
    [Crossref] [Google Scholar]
  58. 58.
    Kohli M, Letsch H, Greve C, Béthoux O, Deregnaucourt I, et al. 2021.. Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. . iScience 24::103324
    [Crossref] [Google Scholar]
  59. 59.
    Kucharski R, Maleszka J, Foret S, Maleszka R. 2008.. Nutritional control of reproductive status in honeybees via DNA methylation. . Science 319::182730
    [Crossref] [Google Scholar]
  60. 60.
    Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, et al. 2014.. doublesex is a mimicry supergene. . Nature 507::22932
    [Crossref] [Google Scholar]
  61. 61.
    Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, et al. 2023.. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. . Nucleic Acids Res. 51::D44551
    [Crossref] [Google Scholar]
  62. 62.
    Lang D, Zhang S, Ren P, Liang F, Sun Z, et al. 2020.. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. . GigaScience 9::giaa123
    [Crossref] [Google Scholar]
  63. 63.
    Lemmon AR, Emme SA, Lemmon EM. 2012.. Anchored hybrid enrichment for massively high-throughput phylogenomics. . Syst. Biol. 61::72744
    [Crossref] [Google Scholar]
  64. 64.
    Letsch H, Simon S, Frandsen PB, Liu SL, Machida R, et al. 2021.. Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). . Syst. Entomol. 46::95267
    [Crossref] [Google Scholar]
  65. 65.
    Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, et al. 2018.. Earth BioGenome Project: sequencing life for the future of life. . PNAS 115::432533
    [Crossref] [Google Scholar]
  66. 66.
    Li F, Zhao X, Li M, He K, Huang C, et al. 2019.. Insect genomes: progress and challenges. . Insect Mol. Biol. 28::73958
    [Crossref] [Google Scholar]
  67. 67.
    Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI, et al. 2018.. Multiple large-scale gene and genome duplications during the evolution of hexapods. . PNAS 115::471318
    [Crossref] [Google Scholar]
  68. 68.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. 2009.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. . Science 326::28993
    [Crossref] [Google Scholar]
  69. 69.
    Liu J, Xie J, Khashaveh A, Zhou J, Zhang Y, et al. 2022.. Identification and tissue expression profiles of odorant receptor genes in the green peach aphid Myzus persicae. . Insects 13::398
    [Crossref] [Google Scholar]
  70. 70.
    Liu Z, Xing L, Huang W, Liu B, Wan F, et al. 2022.. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. . BMC Biol. 20::190
    [Crossref] [Google Scholar]
  71. 71.
    Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, et al. 2022.. Peppers in diet: genome-wide transcriptome and metabolome changes in Drosophila melanogaster. . Int. J. Mol. Sci. 23::9924
    [Crossref] [Google Scholar]
  72. 72.
    Lu F, Wei Z, Luo Y, Guo H, Zhang G, et al. 2020.. SilkDB 3.0: visualizing and exploring multiple levels of data for silkworm. . Nucleic Acids Res. 48::D74955
    [Crossref] [Google Scholar]
  73. 73.
    Luo S, Tang M, Frandsen PB, Stewart RJ, Zhou X. 2018.. The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera). . GigaScience 7::giy143
    [Crossref] [Google Scholar]
  74. 74.
    Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. 2010.. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. . PLOS Biol. 8::e1000506
    [Crossref] [Google Scholar]
  75. 75.
    Ma C, Yang P, Jiang F, Chapuis M-P, Shali Y, et al. 2012.. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. . Mol. Ecol. 21::434458
    [Crossref] [Google Scholar]
  76. 76.
    Ma X-Z, Wang Z-Q, Ye X-Q, Liu X-Y, Tang P, et al. 2022.. A high-quality genome of the dobsonfly Neoneuromus ignobilis reveals molecular convergences in aquatic insects. . Genomics 114::110437
    [Crossref] [Google Scholar]
  77. 77.
    Ma Y, Zhang LP, Lin YJ, Yu DN, Storey KB, Zhang JY. 2023.. Phylogenetic relationships and divergence dating of Mantodea using mitochondrial phylogenomics. . Syst. Entomol. 48::64457
    [Crossref] [Google Scholar]
  78. 78.
    Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021.. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. . Mol. Biol. Evol. 38::464754
    [Crossref] [Google Scholar]
  79. 79.
    Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, et al. 2012.. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. . PNAS 109::1263237
    [Crossref] [Google Scholar]
  80. 80.
    Masuoka Y, Yaguchi H, Toga K, Shigenobu S, Maekawa K. 2018.. TGFβ signaling related genes are involved in hormonal mediation during termite soldier differentiation. . PLOS Genet. 14::e1007338
    [Crossref] [Google Scholar]
  81. 81.
    Maumus F, Fiston-Lavier A-S, Quesneville H. 2015.. Impact of transposable elements on insect genomes and biology. . Curr. Opin. Insect Sci. 7::3036
    [Crossref] [Google Scholar]
  82. 82.
    Mazo-Vargas A, Concha C, Livraghi L, Massardo D, Wallbank RWR, et al. 2017.. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. . PNAS 114::107016
    [Crossref] [Google Scholar]
  83. 83.
    Mazo-Vargas A, Langmuller AM, Wilder A, van der Burg KRL, Lewis JJ, et al. 2022.. Deep cis-regulatory homology of the butterfly wing pattern ground plan. . Science 378::3048
    [Crossref] [Google Scholar]
  84. 84.
    McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, et al. 2016.. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. . Genome Biol. 17::227
    [Crossref] [Google Scholar]
  85. 85.
    McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, et al. 2019.. The evolution and genomic basis of beetle diversity. . PNAS 116::2472937
    [Crossref] [Google Scholar]
  86. 86.
    Mei Y, Jing D, Tang S, Chen X, Chen H, et al. 2022.. InsectBase 2.0: a comprehensive gene resource for insects. . Nucleic Acids Res. 50::D104045
    [Crossref] [Google Scholar]
  87. 87.
    Meusemann K, Trautwein M, Friedrich F, Beutel RG, Wiegmann BM, et al. 2020.. Are fleas highly modified Mecoptera? Phylogenomic resolution of Antliophora (Insecta: Holometabola). . bioRxiv 2020.11.19.390666. https://doi.org/10.1101/2020.11.19.390666
  88. 88.
    Mirarab S, Nakhleh L, Warnow T. 2021.. Multispecies coalescent: theory and applications in phylogenetics. . Annu. Rev. Ecol. Evol. Syst. 52::24768
    [Crossref] [Google Scholar]
  89. 89.
    Misof B, Liu S, Meusemann K, Peters RS, Donath A, et al. 2014.. Phylogenomics resolves the timing and pattern of insect evolution. . Science 346::76367
    [Crossref] [Google Scholar]
  90. 90.
    Nanoth Vellichirammal N, Zera AJ, Schilder RJ, Wehrkamp C, Riethoven J-JM, Brisson JA. 2014.. De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus. . PLOS ONE 9::e82129
    [Crossref] [Google Scholar]
  91. 91.
    Niehuis O, Hartig G, Grath S, Pohl H, Lehmann J, et al. 2012.. Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. . Curr. Biol. 22::130913
    [Crossref] [Google Scholar]
  92. 92.
    Papanicolaou A, Gebauer-Jung S, Blaxter ML, Owen McMillan W, Jiggins CD. 2008.. ButterflyBase: a platform for lepidopteran genomics. . Nucleic Acids Res. 36::D58287
    [Crossref] [Google Scholar]
  93. 93.
    Parker BJ, Brisson JA. 2019.. A laterally transferred viral gene modifies aphid wing plasticity. . Curr. Biol. 29::2098103
    [Crossref] [Google Scholar]
  94. 94.
    Peccoud J, Loiseau V, Cordaux R, Gilbert C. 2017.. Massive horizontal transfer of transposable elements in insects. . PNAS 114::472126
    [Crossref] [Google Scholar]
  95. 95.
    Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, et al. 2017.. Evolutionary history of the Hymenoptera. . Curr. Biol. 27::101318
    [Crossref] [Google Scholar]
  96. 96.
    Petersen M, Armisén D, Gibbs RA, Hering L, Khila A, et al. 2019.. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. . BMC Evol. Biol. 19::11
    [Crossref] [Google Scholar]
  97. 97.
    Deleted in proof
  98. 98.
    Poelchau M, Childers C, Moore G, Tsavatapalli V, Evans J, et al. 2015.. The i5k Workspace@NAL–enabling genomic data access, visualization and curation of arthropod genomes. . Nucleic Acids Res. 43::D71419
    [Crossref] [Google Scholar]
  99. 99.
    Rahman SR, Cnaani J, Kinch LN, Grishin NV, Hines HM. 2021.. A combined RAD-Seq and WGS approach reveals the genomic basis of yellow color variation in bumble bee Bombus terrestris. . Sci. Rep. 11::7996
    [Crossref] [Google Scholar]
  100. 100.
    Raji JI, DeGennaro M. 2017.. Genetic analysis of mosquito detection of humans. . Curr. Opin. Insect Sci. 20::3438
    [Crossref] [Google Scholar]
  101. 101.
    Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, et al. 2021.. Towards complete and error-free genome assemblies of all vertebrate species. . Nature 592::73746
    [Crossref] [Google Scholar]
  102. 102.
    Richards S. 2019.. Arthropod genome sequencing and assembly strategies. . Methods Mol. Biol. 1858::114
    [Crossref] [Google Scholar]
  103. 103.
    Robinson GE, Hackett KJ, Purcell-Miramontes M, Brown SJ, Evans JD, et al. 2011.. Creating a buzz about insect genomes. . Science 331::1386
    [Crossref] [Google Scholar]
  104. 104.
    Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, et al. 2020.. Genome-enabled insights into the biology of thrips as crop pests. . BMC Biol. 18::142
    [Crossref] [Google Scholar]
  105. 105.
    Sayers EW, Beck J, Bolton EE, Brister JR, Chan J, et al. 2024.. Database resources of the National Center for Biotechnology Information. . Nucleic Acids Res. 52::D3343
    [Crossref] [Google Scholar]
  106. 106.
    Schoville SD, Simon S, Bai M, Beethem Z, Dudko RY, et al. 2021.. Comparative transcriptomics of ice-crawlers demonstrates cold specialization constrains niche evolution in a relict lineage. . Evol. Appl. 14::36082
    [Crossref] [Google Scholar]
  107. 107.
    Sheehan MJ, Botero CA, Hendry TA, Sedio BE, Jandt JM, et al. 2015.. Different axes of environmental variation explain the presence versus extent of cooperative nest founding associations in Polistes paper wasps. . Ecol. Lett. 18::105767
    [Crossref] [Google Scholar]
  108. 108.
    Simon S, Letsch H, Bank S, Buckley TR, Donath A, et al. 2019.. Old World and New World Phasmatodea: Phylogenomics resolve the evolutionary history of stick and leaf insects. . Front. Ecol. Evol. 7::345
    [Crossref] [Google Scholar]
  109. 109.
    Solvi C, Gutierrez Al-Khudhairy S, Chittka L. 2020.. Bumble bees display cross-modal object recognition between visual and tactile senses. . Science 367::91012
    [Crossref] [Google Scholar]
  110. 110.
    Song HJ, Béthoux O, Shin S, Donath A, Letsch H, et al. 2020.. Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. . Nat. Commun. 11::4939
    [Crossref] [Google Scholar]
  111. 111.
    Sun X, Yu DY, Xie ZJ, Dong J, Ding YH, et al. 2020.. Phylomitogenomic analyses on collembolan higher taxa with enhanced taxon sampling and discussion on method selection. . PLOS ONE 15:(4):e0230827
    [Crossref] [Google Scholar]
  112. 112.
    Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, et al. 2020.. Gene content evolution in the arthropods. . Genome Biol. 21::15
    [Crossref] [Google Scholar]
  113. 113.
    Tihelka E, Giacomelli M, Huang D-Y, Pisani D, Donoghue PCJ, Cai C-Y. 2020.. Fleas are parasitic scorpionflies. . Palaeoentomology 3::64153
    [Crossref] [Google Scholar]
  114. 114.
    Tong X, Han MJ, Lu K, Tai S, Liang S, . 2022.. High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. . Nat. Commun. 13::5619
    [Crossref] [Google Scholar]
  115. 115.
    Tvedte ES, Walden KKO, McElroy KE, Werren JH, Forbes AA, et al. 2019.. Genome of the parasitoid wasp Diachasma alloeum, an emerging model for ecological speciation and transitions to asexual reproduction. . Genome Biol. Evol. 11::276773
    [Crossref] [Google Scholar]
  116. 116.
    Van't Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, et al. 2016.. The industrial melanism mutation in British peppered moths is a transposable element. . Nature 534::1025
    [Crossref] [Google Scholar]
  117. 117.
    van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, et al. 2010.. Hi-C: a method to study the three-dimensional architecture of genomes. . J. Vis. Exp. 6::1869
    [Google Scholar]
  118. 118.
    van der Burg KRL, Lewis JJ, Brack BJ, Fandino RA, Mazo-Vargas A, Reed RD. 2020.. Genomic architecture of a genetically assimilated seasonal color pattern. . Science 370::72125
    [Crossref] [Google Scholar]
  119. 119.
    Vasilikopoulos A, Misof B, Meusemann K, Lieberz D, Flouri T, et al. 2020.. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). . BMC Evol. Biol. 20::64
    [Crossref] [Google Scholar]
  120. 120.
    Vellichirammal NN, Gupta P, Hall TA, Brisson JA. 2017.. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. . PNAS 114::141923
    [Crossref] [Google Scholar]
  121. 121.
    Vellichirammal NN, Madayiputhiya N, Brisson JA. 2016.. The genomewide transcriptional response underlying the pea aphid wing polyphenism. . Mol. Ecol. 25::414660
    [Crossref] [Google Scholar]
  122. 122.
    Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH. 1995.. Adaptive phenotypic plasticity: consensus and controversy. . Trends Ecol. Evol. 10::21217
    [Crossref] [Google Scholar]
  123. 123.
    Villoutreix R, de Carvalho CF, Soria-Carrasco V, Lindtke D, De-la-Mora M, et al. 2020.. Large-scale mutation in the evolution of a gene complex for cryptic coloration. . Science 369::46066
    [Crossref] [Google Scholar]
  124. 124.
    Wallberg A, Bunikis I, Pettersson OV, Mosbech MB, Childers AK, et al. 2019.. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. . BMC Genom. 20::275
    [Crossref] [Google Scholar]
  125. 125.
    Walsh AT, Triant DA, Le Tourneau JJ, Shamimuzzaman M, Elsik CG. 2022.. Hymenoptera Genome Database: new genomes and annotation datasets for improved go enrichment and orthologue analyses. . Nucleic Acids Res. 50::D103239
    [Crossref] [Google Scholar]
  126. 126.
    Wang R, Yang Y, Jing Y, Segar ST, Zhang Y, et al. 2021.. Molecular mechanisms of mutualistic and antagonistic interactions in a plant-pollinator association. . Nat. Ecol. Evol. 5::97486
    [Crossref] [Google Scholar]
  127. 127.
    Wang S, Teng D, Li X, Yang P, Da W, et al. 2022.. The evolution and diversification of oakleaf butterflies. . Cell 185::313852.e20
    [Crossref] [Google Scholar]
  128. 128.
    Wang Y, Fang G, Xu P, Gao B, Liu X, et al. 2022.. Behavioral and genomic divergence between a generalist and a specialist fly. . Cell Rep. 41::111654
    [Crossref] [Google Scholar]
  129. 129.
    Whitfield JB, Kjer KM. 2008.. Ancient rapid radiations of insects: challenges for phylogenetic analysis. . Annu. Rev. Entomol. 53::44972
    [Crossref] [Google Scholar]
  130. 130.
    Wipfler B, Pohl H, Yavorskaya MI, Beutel RG. 2016.. A review of methods for analysing insect structures: the role of morphology in the age of phylogenomics. . Curr. Opin. Insect Sci. 18::6068
    [Crossref] [Google Scholar]
  131. 131.
    Wolf M, Greve C, Schell T, Janke A, Schmitt T, et al. 2023.. The de novo genome of the black-necked snakefly (Venustoraphidia nigricollis Albarda, 1891): a resource to study the evolution of living fossils. . J. Hered. 21::esad074
    [Google Scholar]
  132. 132.
    Xia Q, Zhou Z, Lu C, Cheng D, Dai F, et al. 2004.. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). . Science 306::193740
    [Crossref] [Google Scholar]
  133. 133.
    Xiao H, Ye X, Xu H, Mei Y, Yang Y, et al. 2020.. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. . Mol. Ecol. Resour. 20::105068
    [Crossref] [Google Scholar]
  134. 134.
    Xu H-J, Xue J, Lu B, Zhang X-C, Zhuo J-C, et al. 2015.. Two insulin receptors determine alternative wing morphs in planthoppers. . Nature 519::46467
    [Crossref] [Google Scholar]
  135. 135.
    Xue J, Zhou X, Zhang CX, Yu LL, Fan HW, et al. 2014.. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. . Genome Biol. 15::521
    [Crossref] [Google Scholar]
  136. 136.
    Yang ML, Wang YL, Liu Q, Liu ZK, Jiang F, et al. 2019.. A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. . eLife 8::e41362
    [Crossref] [Google Scholar]
  137. 137.
    Yang PC, Hou L, Wang XH, Kang L. 2019.. Core transcriptional signatures of phase change in the migratory locust. . Protein Cell 10::883901
    [Crossref] [Google Scholar]
  138. 138.
    Yang Y, Jiang H-B, Liang C-H, Ma Y-P, Dou W, Wang J-J. 2023.. Chromosome-level genome assembly reveals potential epigenetic mechanisms of the thermal tolerance in the oriental fruit fly, Bactrocera dorsalis. . Int. J. Biol. Macromol. 225::43041
    [Crossref] [Google Scholar]
  139. 139.
    Yang Y, Ye X, Dang C, Cao Y, Hong R, et al. 2021.. Genome of the pincer wasp Gonatopus flavifemur reveals unique venom evolution and a dual adaptation to parasitism and predation. . BMC Biol. 19::145
    [Crossref] [Google Scholar]
  140. 140.
    Yao YL, Ma XY, Wang TY, Yan JY, Chen NF, et al. 2023.. A bacteriocyte symbiont determines whitefly sex ratio by regulating mitochondrial function. . Cell Rep. 42::112102
    [Crossref] [Google Scholar]
  141. 141.
    Ye X, Xiong S, Teng Z, Yang Y, Wang J, et al. 2022.. Genome of the parasitoid wasp Cotesia chilonis sheds light on amino acid resource exploitation. . BMC Biol. 20::118
    [Crossref] [Google Scholar]
  142. 142.
    Ye X, Xu L, Li X, He K, Hua H, et al. 2019.. miR-34 modulates wing polyphenism in planthopper. . PLOS Genet. 15::e1008235
    [Crossref] [Google Scholar]
  143. 143.
    Ye X, Yan Z, Yang Y, Xiao S, Chen L, et al. 2020.. A chromosome-level genome assembly of the parasitoid wasp Pteromalus puparum. . Mol. Ecol. Resour. 20::1384402
    [Crossref] [Google Scholar]
  144. 144.
    Deleted in proof
  145. 145.
    Ye Y-X, Zhang H-H, Li D-T, Zhuo J-C, Shen Y, et al. 2021.. Chromosome-level assembly of the brown planthopper genome with a characterized Y chromosome. . Mol. Ecol. Resour. 21::128798
    [Crossref] [Google Scholar]
  146. 146.
    Yin C, Shen G, Guo D, Wang S, Ma X, et al. 2016.. InsectBase: a resource for insect genomes and transcriptomes. . Nucleic Acids Res. 44::D8017
    [Crossref] [Google Scholar]
  147. 147.
    Ylla G, Nakamura T, Itoh T, Kajitani R, Toyoda A, et al. 2021.. Insights into the genomic evolution of insects from cricket genomes. . Commun Biol. 4::733
    [Crossref] [Google Scholar]
  148. 148.
    You M, Ke F, You S, Wu Z, Liu Q, et al. 2020.. Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore. . Nat. Commun. 11::2321
    [Crossref] [Google Scholar]
  149. 149.
    Yuan H, Gao B, Wu C, Zhang L, Li H, et al. 2022.. Genome of the hoverfly Eupeodes corollae provides insights into the evolution of predation and pollination in insects. . BMC Biol. 20::157
    [Crossref] [Google Scholar]
  150. 150.
    Yuan R, Zheng B, Li Z, Ma X, Shu X, et al. 2022.. The chromosome-level genome of Chinese praying mantis Tenodera sinensis (Mantodea: Mantidae) reveals its biology as a predator. . GigaScience 12::giad090
    [Crossref] [Google Scholar]
  151. 151.
    Zhang F, Ding Y, Zhu CD, Zhou X, Orr MC, et al. 2019.. Phylogenomics from low-coverage whole-genome sequencing. . Methods Ecol. Evol. 10::50717
    [Crossref] [Google Scholar]
  152. 152.
    Zhang L, Mazo-Vargas A, Reed RD. 2017.. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. . PNAS 114::1070712
    [Crossref] [Google Scholar]
  153. 153.
    Zhang Z-Y, Chen B, Zhao D-J, Kang L. 2013.. Functional modulation of mitochondrial cytochrome c oxidase underlies adaptation to high-altitude hypoxia in a Tibetan migratory locust. . Proc. R. Soc. B 280::20122758
    [Crossref] [Google Scholar]
  154. 154.
    Zhu D, Ge J, Guo S, Hou L, Shi R, et al. 2021.. Independent variations in genome-wide expression, alternative splicing, and DNA methylation in brain tissues among castes of the buff-tailed bumblebee, Bombus terrestris. . J. Genet. Genom. 48::68194
    [Crossref] [Google Scholar]
  155. 155.
    Zhang S-Q, Che L-H, Li Y, Liang D, Pang H, . 2018.. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. . Nat. Commun. 9::205
    [Crossref] [Google Scholar]
  156. 156.
    Liu Y, Liu H, Wang H, Huang T, Liu B, . 2021.. Apolygus lucorum genome provides insights into omnivorousness and mesophyll feeding. . Mol. Ecol. Resour. 21::287300
    [Crossref] [Google Scholar]
  157. 157.
    Li S, Zhu S, Jia Q, Yuan D, Ren C, . 2018.. The genomic and functional landscapes of developmental plasticity in the American cockroach. . Nat. Commun. 9::1008
    [Crossref] [Google Scholar]
  158. 158.
    Sackton TB, Lazzaro BP, Clark AG. 2017.. Rapid expansion of immune-related gene families in the house fly, Musca domestica. . Mol. Biol. Evol. 34::85772
    [Google Scholar]
  159. 159.
    Geng T, Lu F, Zhu F, Wang S. 2021.. Lineage-specific gene evolution of innate immunity in Bombyx mori to adapt to challenge by pathogens, especially entomopathogenic fungi. . Dev. Comp. Immunol. 123::104171
    [Crossref] [Google Scholar]
  160. 160.
    Tian L, Rahman SR, Ezray BD, Franzini L, Strange JP, . 2019.. A homeotic shift late in development drives mimetic color variation in a bumble bee. . PNAS 116::1185765
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-013024-013420
Loading
/content/journals/10.1146/annurev-ento-013024-013420
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error