1932

Abstract

Tea is the second most consumed beverage after water; thus, tea plants are economically important crops in many countries. The frequent application of chemical pesticides over large plantations of tea monoculture has led to pest outbreaks. In recent years, high amounts of highly water-soluble pesticides have been applied because of the proliferation of piercing-sucking insects; however, this method poses health hazards for humans and has negative environmental effects. This review outlines the effects of pesticide applications on the succession of tea pest populations, the risks posed by the use of highly water-soluble pesticides, and the principles of tea pest management. Various pest control techniques, including physical, biological, chemical-ecological, chemical pesticide, and cultural control methods, have been used in the last few decades. We discuss future prospects and challenges for the integrated pest management of tea plantations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-013024-014757
2025-01-28
2025-05-01
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-013024-014757.html?itemId=/content/journals/10.1146/annurev-ento-013024-014757&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahmed M, Paul SK, Mamun MSA. 2011.. Field performance and economic analysis of some commonly used insecticides against tea mosquito bug, Helopeltis theivora W. . Bangladesh J. Agric. Res. 36::44954
    [Crossref] [Google Scholar]
  2. 2.
    Ando T, Ohtani K, Yamamoto M, Miyamoto T, Qin XR, et al. 1997.. Sex pheromone of Japanese giant looper, Ascotis selenaria cretacea: identification and field tests. . J. Chem. Ecol. 23::241323
    [Crossref] [Google Scholar]
  3. 3.
    Ando T, Taguchi KY, Uchiyama M, Horikawa T. 1985.. Female sex pheromone of the tea leafroller, Caloptilia theivora Walsingham (Lepidoptera: Gracillariidae). . Agric. Biol. Chem. 49::23334
    [Google Scholar]
  4. 4.
    Antony B, Sinu PA, Das S. 2011.. New record of nucleopolyhedroviruses in tea looper caterpillars in India. . J. Invertebr. Pathol. 108::6367
    [Crossref] [Google Scholar]
  5. 5.
    Augustine N, Selvapandian U, Badakegudlu Ramaiah C, Ramakrishna Jambagi S, Venkatesan T. 2024.. Resistance to fenazaquin in broad mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae): realized heritability, risk assessment and cross-resistance. . J. Appl. Entomol. 148::27986
    [Crossref] [Google Scholar]
  6. 6.
    Bian L, Cai X-M, Luo Z-X, Li Z-Q, Chen Z-M. 2018.. Decreased capture of natural enemies of pests in light traps with light-emitting diode technology. . Ann. Appl. Biol. 173::25160
    [Crossref] [Google Scholar]
  7. 7.
    Bian L, Cai X-M, Luo Z-X, Li Z-Q, Chen Z-M. 2021.. Sticky card for Empoasca onukii with bicolor patterns captures less beneficial arthropods in tea gardens. . Crop Prot. 149::105761
    [Crossref] [Google Scholar]
  8. 8.
    Bian L, Sun X-L, Luo Z-X, Zhang Z-Q, Chen Z-M. 2014.. Design and selection of trap color for capture of the tea leafhopper, Empoasca vitis, by orthogonal optimization. . Entomol. Exp. Appl. 151::24758
    [Crossref] [Google Scholar]
  9. 9.
    Bian L, Yang PX, Yao YJ, Luo ZX, Cai XM, et al. 2016.. Effect of trap color, height, and orientation on the capture of yellow and stick tea thrips (Thysanoptera: Thripidae) and nontarget insects in tea gardens. . J. Econ. Entomol. 109::124148
    [Crossref] [Google Scholar]
  10. 10.
    Birsen Asik C, Rana A, Saim Zeki B. 2023.. Yield loss and physicochemical changes in fresh tea leaves caused by Polyphagotarsonemus latus (Banks) attack in different tea clones. . Int. J. Trop. Insect Sci. 43::297309
    [Crossref] [Google Scholar]
  11. 11.
    Bora P, Gogoi S, Deshpande MV, Garg P, Bhuyan RP, et al. 2023.. Rhizospheric Bacillus spp. exhibit miticidal efficacy against Oligonychus coffeae (Acari: Tetranychidae) of tea. . Microorganisms 11::2691
    [Crossref] [Google Scholar]
  12. 12.
    Cai XM, Bian L, Xu XX, Luo ZX, Li ZQ, et al. 2017.. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. . Sci. Rep. 7::41818
    [Crossref] [Google Scholar]
  13. 13.
    Cao P, Yang DJ, Zhu JH, Liu ZP, Jiang DG, et al. 2018.. Estimated assessment of cumulative dietary exposure to organophosphorus residues from tea infusion in China. . Environ. Health Prev. Med. 23::7
    [Crossref] [Google Scholar]
  14. 14.
    Chen HP, Pan ML, Pan R, Zhang ML, Liu X, et al. 2015.. Transfer rates of 19 typical pesticides and the relationship with their physicochemical property. . J. Agric Food Chem. 63::72330
    [Crossref] [Google Scholar]
  15. 15.
    Chen S, Wang PJ, Kong WL, Chai K, Zhang SS, et al. 2023.. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. . Nat. Plants 9::198699
    [Crossref] [Google Scholar]
  16. 16.
    Chen SL, Zhang LP, Cai XM, Li X, Bian L, et al. 2020.. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. . Hortic. Res. 7::52
    [Crossref] [Google Scholar]
  17. 17.
    Chen YL, Chen PK, Lu HJ. 2021.. Preliminary report on the efficacy of a biological pesticide against Dendrothrips minowai Priesner in organic tea garden. . Hubei Agric. Sci. 60::8790
    [Google Scholar]
  18. 18.
    Chen YS, Zhou XG, Zeng WJ, Xiao Q, Wang ZZ, et al. 2003.. Resistance monitoring of two tea geome-trid moths (Ectropis obliqua and E. grisescens) to five frequently used insecticides in different tea plantations. . J. Environ. Entomol. 45::110310
    [Google Scholar]
  19. 19.
    Chen ZM. 2022.. Development and application of green pest control technology in tea garden. . Chin. Tea 44::16
    [Google Scholar]
  20. 20.
    Chen ZM, Chen XF. 1989.. An analysis of world tea pest fauna. . J. Tea Sci. 9::1322
    [Google Scholar]
  21. 21.
    Chen ZM, Zhou L, Yang M, Luo FJ, Lou ZY, et al. 2020.. Index design and safety evaluation of pesticides application based on a fuzzy AHP model for beverage crops: tea as a case study. . Pest Manag. Sci. 76::52026
    [Crossref] [Google Scholar]
  22. 22.
    Chu B, Luo FJ, Luo ZX, Liu Y, Lou ZY, et al. 2021.. Feasibility evaluation of the application of unmanned aerial vehicle for tea plant protection. . J. Tea Sci. 41::20312
    [Google Scholar]
  23. 23.
    Cui SW, Zhao DX, Zhang JX, Shang JN, Cai XM, et al. 2022.. Sex pheromone of Andraca bipunctata mainland population in China: identification and population monitoring. . J. Tea Sci. 42::1018
    [Google Scholar]
  24. 24.
    Dashora K, Roy S, Nagpal A, Roy SM, Flood J, et al. 2017.. Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects. . Appl. Microbiol. Biotechnol. 101::1795803
    [Crossref] [Google Scholar]
  25. 25.
    Deng LM, Wang YJ, Han ZZ, Yu RS. 2018.. Research on insect pest image detection and recognition based on bio-inspired methods. . Biosyst. Eng. 169::13948
    [Crossref] [Google Scholar]
  26. 26.
    Dong ZF, Zhang XP. 2018.. Field control effect of 5 pesticides on Dendrothrips minowai Priesner and Scirtothrips dorsalis Hood. . J. Northeast Agric. Sci. 5::3840
    [Google Scholar]
  27. 27.
    FAO (Food Agric. Org. UN). 2022.. International Tea Day 2022: FAO underlines the need for greater sustainability. News Release, May 23 , FAO, Rome:. https://www.fao.org/markets-and-trade/resources/news-events/detail/en/c/1513609/
    [Google Scholar]
  28. 28.
    Fu JY, Han BY, Xiao Q. 2014.. Mitochondrial COI and 16sRNA evidence for a single species hypothesis of E. vitis, J. formosana and E. onukii in East Asia. . PLOS ONE 9::e115259
    [Crossref] [Google Scholar]
  29. 29.
    Fu NX, Magsi FH, Zhao YJ, Cai XM, Li ZQ, et al. 2022.. Identification and field evaluation of sex pheromone components and its antagonist produced by a major tea pest, Archips strojny (Lepidoptera: Tortricidae). . Insects 13::1056
    [Crossref] [Google Scholar]
  30. 30.
    Gao J, Tang J, Zhang S, Zhang C. 2024.. Intercropped Flemingia macrophylla successfully traps tea aphid (Toxoptera aurantia) and alters associated networks to enhance tea quality. . Pest Manag. Sci. 80:(3):147483
    [Crossref] [Google Scholar]
  31. 31.
    Gao JL, Zhao DX, Chen ZM. 2004.. Predatory function of Evarcha albaria upon Empoasca vitis. . Chin. J. Trop. Crops 25::7274
    [Google Scholar]
  32. 32.
    Ge GQ, Gao WJ, Yan M, Song W, Xiao Y, et al. 2021.. Comparation study on the metabolism destination of neonicotinoid and organophosphate insecticides in tea plant (Camellia sinensis L.). . Food Chem. 344::128579
    [Crossref] [Google Scholar]
  33. 33.
    Gurusubramanian G, Rahman A, Sarmah M, Roy S, Bora S. 2008.. Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. . J. Environ. Biol. 29::81326
    [Google Scholar]
  34. 34.
    Guo HW, Yao HM, Tang MJ, Xiao Q. 2016.. Control effects of two botanical insecticides on tea green leafhopper (Empoasca onukii Matsuda). . J. Zhejiang Agric. Sci. 57::99193
    [Google Scholar]
  35. 35.
    Guo MM, Li ZQ, Liu Y, Rao FQ, Yu JW, et al. 2022.. The control efficiency of afidopyropen to tea green leafhoppers and evaluation of residue in tea. . J. Tea Sci. 42::35866
    [Google Scholar]
  36. 36.
    Han BY, Li ZZ. 2001.. Growing characteristics on Czapek medium of 8 kinds of entomogenous fungi from Aleurocanthus spiniferus and their infection ratios. . Entomol. J. East China 10::3943
    [Google Scholar]
  37. 37.
    Han BY, Wang MX, Zheng YC, Niu YQ, Pan C, et al. 2014.. Sex pheromone of the tea aphid, Toxoptera aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae). . Chemoecology 24::17987
    [Crossref] [Google Scholar]
  38. 38.
    Handique G, Roy S, Rahman A, Bora FR, Barua A. 2017.. Use of some plant extracts for management of red spider mite, Oligonychus coffeae (Acarina: Tetranychidae) in tea plantations. . Int. J. Trop. Insect Sci. 37::23442
    [Crossref] [Google Scholar]
  39. 39.
    Hazarika LK, Bhuyan M, Hazarika BN. 2009.. Insect pests of tea and their management. . Annu. Rev. Entomol. 54::26784
    [Crossref] [Google Scholar]
  40. 40.
    Heath RR, McLaughlin JR, Tumlinson JH, Ashley TR, Doolittle RE. 1979.. Identification of the white peach scale sex pheromone. . J. Chem. Ecol. 5::94153
    [Crossref] [Google Scholar]
  41. 41.
    Heval D, Gulten Y, Zuhal S, Cenk Y, Aydemir B. 2022.. Survey of mite species of tea plantations in Rize. . Plant Prot. Bull. 62::3749
    [Google Scholar]
  42. 42.
    Ho HY, Tao YT, Tsai RS, Wu YL, Tseng HK, et al. 1996.. Isolation, identification, and synthesis of sex pheromone components of female tea cluster caterpillar, Andraca bipunctata Walker (Lepidoptera: Bombycidae) in Taiwan. . J. Chem. Ecol. 22::27185
    [Crossref] [Google Scholar]
  43. 43.
    Horikoshi R, Goto K, Mitomi M, Oyama K, Hirose T, et al. 2022.. Afidopyropen, a novel insecticide originating from microbial secondary extracts. . Sci. Rep. 12::2827
    [Crossref] [Google Scholar]
  44. 44.
    Hou RY, Hu JF, Qian XS, Su T, Wang XH, et al. 2013.. Comparison of the dissipation behaviour of three neonicotinoid insecticides in tea. . Food Addit. Contam. A 30::176169
    [Crossref] [Google Scholar]
  45. 45.
    ISO (Int. Organ. Stand. 2019.. ISO 3103:2019(en). Tea – Preparation of liquor for use in sensory tests. ISO. https://www.iso.org/obp/ui/#iso:std:iso:3103:ed-2:v1:en
    [Google Scholar]
  46. 46.
    Jaggi S, Sood C, Kumar V, Ravindranath SD, Shanker A. 2001.. Leaching of pesticides in tea brew. . J. Agric. Food Chem. 49::547983
    [Crossref] [Google Scholar]
  47. 47.
    Jiang N, Liu SX, Xue DY, Tang MJ, Xiao Q, et al. 2014.. External morphology and molecular identification of two tea geometrid moth from southern China. . Chin. J. Appl. Entomol. 51::9871002
    [Google Scholar]
  48. 48.
    Jin S, Chen ZM, Backus EA, Sun XL, Xiao B. 2012.. Characterization of EPG waveforms for the tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), on tea plants and their correlation with stylet activities. . J. Insect Physiol. 58::123544
    [Crossref] [Google Scholar]
  49. 49.
    Jing TT, Qian XN, Du WK, Gao T, Li DF, et al. 2021.. Herbivore-induced volatiles influence moth preference by increasing the β-ocimene emission of neighbouring tea plants. . Plant Cell Environ. 44::366780
    [Crossref] [Google Scholar]
  50. 50.
    Kamimuro T, Higashitarumizu S, Fukuda T, Suenaga H, Nomura M. 2019.. Effects of direct or indirect treatment with insecticides on adult tea leafroller, Caloptilia theivora (Lepidoptera: Gracillariidae), and its progeny. . Appl. Entomol. Zool. 54::37787
    [Crossref] [Google Scholar]
  51. 51.
    Kanmiya K, Ueda S, Kasai A, Yamashita K, Sato Y, Yoshiyasu Y. 2011.. Proposal of new specific status for tea-infesting populations of the nominal citrus spiny whitefly Aleurocanthus spiniferus (Homoptera: Aleyrodidae). . Zootaxa 2797::2544
    [Crossref] [Google Scholar]
  52. 52.
    Kashyap B, Kumar R. 2021.. Sensing methodologies in agriculture for monitoring biotic stress in plants due to pathogens and pests. . Inventions 6::29
    [Crossref] [Google Scholar]
  53. 53.
    Kimura-Kuroda J, Komuta Y, Kuroda Y, Hayashi M, Kawano H. 2012.. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. . PLOS ONE 7::e32432
    [Crossref] [Google Scholar]
  54. 54.
    Kochansky JP, Roelofs WL, Sivapalan P. 1978.. Sex pheromone of the tea tortrix moth (Homona coffearia Nietner). . J. Chem. Ecol. 4::62331
    [Crossref] [Google Scholar]
  55. 55.
    Lei PD, Sun QY, Zhang JX, Yuan Z, Wang WJ. 2016.. Toxicity effect of tea saponin on Ectropis obliqua. . J. Agric. 6::1620
    [Google Scholar]
  56. 56.
    Li JM, Yang YY, Qu YF, Wu QH. 2003.. Experimental population life table of Amblyseius cucumeris with Polyphagotarsonemus latus as prey. . J. Plant Prot. 30::38995
    [Google Scholar]
  57. 57.
    Li LD, Wang DF, Wu GY. 2020.. Effects of Empedobacter brevis on midgut cell morphology and hemolymph enzyme activity in Ectropis obliqua Prout (Lepidoptera: Geometridae). . Acta Tea Sin. 61::1519
    [Google Scholar]
  58. 58.
    Li S, Meng ZH, Lu ZY, Xiu CL, Zhang JF, et al. 2021.. Identification of a new pest of tea—Mycterothrips gongshanensis (Thysanoptera: Thripidae). . J. Tea Commun. 48::43542
    [Google Scholar]
  59. 59.
    Li XW, Zhang J, Lin SB, Xing YX, Zhang X, et al. 2022.. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. . Plant Cell Environ. 45::496511
    [Crossref] [Google Scholar]
  60. 60.
    Li Z-Q, Cai X-M, Luo Z-X, Bian L, Xin Z-J, et al. 2019.. Geographical distribution of Ectropis grisescens (Lepidoptera: Geometridae) and Ectropis obliqua in China and description of an efficient identification method. . J. Econ. Entomol. 112::27783
    [Crossref] [Google Scholar]
  61. 61.
    Li ZQ, Yuan TT, Cui SW, Zhao YJ, Shao YH, et al. 2023.. Development of a high-efficiency sex pheromone formula to control Euproctis pseudoconspersa. . J. Integr. Agric. 22::195201
    [Crossref] [Google Scholar]
  62. 62.
    Liao YY, Tan HB, Jian GT, Zhou XC, Huo LQ, et al. 2021.. Herbivore-induced (Z)-3-hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light. . J. Agric. Food Chem. 69::1260820
    [Crossref] [Google Scholar]
  63. 63.
    Long YH, Gao T, Liu S, Zhang Y, Li XY, et al. 2022.. Analysis of the humoral immunal response transcriptome of Ectropis obliqua infected by Beauveria bassiana. . Insects 13::225
    [Crossref] [Google Scholar]
  64. 64.
    Luo H, Cui QM, Cai XM, Luo FJ, Zhang Q, et al. 2021.. Study on the safe pesticides and efficient application method against tea lace bug (Stephanitis chinensis Drake). . J. Tea Sci. 41::36170
    [Google Scholar]
  65. 65.
    Luo ZX, Li ZQ, Cai XM, Bian L, Chen ZM. 2017.. Evidence of premating isolation between two sibling moths: Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae). . J. Econ. Entomol. 110::236470
    [Crossref] [Google Scholar]
  66. 66.
    Luo ZX, Magsi FH, Li ZQ, Cai XM, Bian L, et al. 2020.. Development and evaluation of sex pheromone mass trapping technology for Ectropis grisescens: a potential integrated pest management strategy. . Insects 11::15
    [Crossref] [Google Scholar]
  67. 67.
    Ma T, Xiao Q, Yu YG, Wang C, Zhu CQ. 2016.. Analysis of tea geometrid (Ectropis grisescens) pheromone gland extracts using GC-EAD and GCxGC/TOFMS. . J. Agric. Food Chem. 64::316166
    [Crossref] [Google Scholar]
  68. 68.
    Magsi FH, Li ZQ, Cai XM, Yamamoto M, Bian L, et al. 2022.. Identification of a unique three-component sex pheromone produced by the tea black tussock moth, Dasychira baibarana (Lepidoptera: Erebidae: Lymantriinae). . Pest Manag. Sci. 78::260717
    [Crossref] [Google Scholar]
  69. 69.
    Meng ZH, Wang JR, Zhou XG, Li S, Yang W, et al. 2017.. A new insect pest Crenidorsum turpiniae (Takahashi, 1932) in tea plant (Camellia sinensis) and its biology. . J. Tea Sci. 37::63844
    [Google Scholar]
  70. 70.
    Miyama D, Yoshida K, Sato Y, Sumikawa O, Araki T, Miyazaki M. 2009.. Effects of blower-type insect trapping treatment during the growth period of second tea crop on occurrences of insect pests, yields and qualities of tea. . Jpn. J. Farm Work Res. 44::8188
    [Crossref] [Google Scholar]
  71. 71.
    Mochizuki F, Fukumoto T, Noguchi H, Sugie H, Morimoto T, et al. 2002.. Resistance to a mating disruptant composed of (Z)-11-tetradecenyl acetate in the smaller tea tortrix, Adoxophyes honmai (Yasuda) (Lepidoptera: Tortricidae). . Appl. Entomol. Zool. 37::299304
    [Crossref] [Google Scholar]
  72. 72.
    Mu D, Cui L, Ge J, Wang MX, Liu LF, et al. 2012.. Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis. . Insect Sci. 19::22938
    [Crossref] [Google Scholar]
  73. 73.
    Mutisya D, Banhawy E, Cheramgoi E. 2018.. Positive yield impact of predacious mites in tea production areas of Kenya. . Sustain. Agric. Res. 7::18
    [Crossref] [Google Scholar]
  74. 74.
    Nelson WA, Bjornsta ON, Yamanaka T. 2013.. Recurrent insect outbreaks caused by temperature-driven changes in system stability. . Science 341::79699
    [Crossref] [Google Scholar]
  75. 75.
    Nicholson CC, Knapp J, Kiljanek T, Albrecht M, Chauzat M-P, et al. 2023.. Pesticide use negatively affects bumble bees across European landscapes. . Nature 628:(8007):35558
    [Crossref] [Google Scholar]
  76. 76.
    Noguchi H, Tamaki Y, Yushima T. 1979.. Sex pheromone of the tea tortrix moth: isolation and identification. . Appl. Entomol. Zool. 14::22528
    [Crossref] [Google Scholar]
  77. 77.
    Okeke ES, Olisah C, Malloum A, Adegoke KA, Ighalo JO, et al. 2024.. Ecotoxicological impact of dinotefuran insecticide and its metabolites on non-targets in agroecosystem: harnessing nanotechnology- and bio-based management strategies to reduce its impact on non-target ecosystems. . Environ. Res. 243::117870
    [Crossref] [Google Scholar]
  78. 78.
    Ozawa A, Uchiyama T. 2013.. Susceptibility to 12 insecticides in the Oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae), collected at tea fields in Shizuoka Prefecture, Japan from 2004 to 2008. . Ann. Rep. Kanto-Tosan Plant Prot. Soc. 60::13942
    [Google Scholar]
  79. 79.
    Paramasivam M, Chandrasekaran S. 2014.. Persistence behaviour of deltamethrin on tea and its transfer from processed tea to infusion. . Chemosphere 111::29195
    [Crossref] [Google Scholar]
  80. 80.
    Piyasaengthong N, Kinoshita N, Sato Y, Kainoh Y. 2016.. Sex-specific elicitor from Adoxophyes honmai (Lepidoptera: Tortricidae) induces tea leaf to arrest the egg-larval parasitoid Ascogaster reticulata (Hymenoptera: Braconidae). . Appl. Entomol. Zool. 51::35362
    [Crossref] [Google Scholar]
  81. 81.
    Pokharel SS, Zhong YN, Lv CN, Shen FY, Parajulee MN, et al. 2022.. Influence of reduced N-fertilizer application on foliar chemicals and functional qualities of tea plants under Toxoptera aurantii infestation. . BMC Plant Biol. 22::166
    [Crossref] [Google Scholar]
  82. 82.
    Prasad AK, Roy S, Neave S, Sarma AJ, Phukan PJ, et al. 2019.. Sticky bands as effective tools to manage looper pests (Lepidoptera: Geometridae) in tea crops. . Entomol. Gen. 39::34751
    [Crossref] [Google Scholar]
  83. 83.
    Qin DZ, Zhang L, Xiao Q, Dietrich C, Matsumura M. 2015.. Clarification of the identity of the tea green leafhopper based on morphological comparison between Chinese and Japanese specimens. . PLOS ONE 10::e0139202
    [Crossref] [Google Scholar]
  84. 84.
    Qu MZ, Hu SS, Kong XJ, Yi XF, Li ZQ, et al. 2012.. Field efficacy test of rotenone and pymetrozine against Apolygus lucorum. . Chin. Tea 34::1011
    [Google Scholar]
  85. 85.
    Roy D, Samanta A, Biswas A, Chakraborty G, Sarkar PK, et al. 2021.. Insecticide resistance status of Hyposidra talaca (Lepidoptera: Geometridae) in major tea growing zone of India. . Phytoparasitica 49::9831002
    [Crossref] [Google Scholar]
  86. 86.
    Roy S, Das S, Handique G, Mukhopadhyay A, Muraleedharan N. 2017.. Ecology and management of the black inch worm, Hyposidra talaca Walker (Geometridae: Lepidoptera) infesting Camellia sinensis (Theaceae): a review. . J. Integr. Agric. 16::211527
    [Crossref] [Google Scholar]
  87. 87.
    Roy S, Gurusubramanian G. 2013.. Comparison of life cycle traits of Helopeltis theivora Waterhouse (Heteroptera: Miridae) population infesting organic and conventional tea plantations, with emphasis on deltamethrin resistance. . Arch. Biol. Sci. 65::5764
    [Crossref] [Google Scholar]
  88. 88.
    Roy S, Handique G, Dutta R, Bora A, Gogoi H, et al. 2021.. Insecticide resistance among field populations of Hyposidra talaca Walker (Geometridae: Lepidoptera) in tea plantations of Assam, India: detection through a biochemical approach. . Phytoparasitica 49::43342
    [Crossref] [Google Scholar]
  89. 89.
    Roy S, Handique G, Muraleedharn N, Dashora K, Roy SM, et al. 2016.. Use of plant extracts for tea pest peat management in India. . Appl. Microbiol. Biotechnol. 100::483144
    [Crossref] [Google Scholar]
  90. 90.
    Roy S, Mukhopadhyay A, Gurusubramanian G. 2010.. Field efficacy of a biopesticide prepared from Clerodendrum viscosum Vent. (Verbenaceae) against two major tea pests in the sub Himalayan tea plantation of North Bengal, India. . J. Pest Sci. 83::37177
    [Crossref] [Google Scholar]
  91. 91.
    Roy S, Muraleedharan N, Mukhapadhyay A, Handique G. 2015.. The tea mosquito bug, Helopeltis theivora Waterhouse (Heteroptera: Miridae): its status, biology, ecology and management in tea plantations. . Int. J. Pest Manag. 61::17997
    [Crossref] [Google Scholar]
  92. 92.
    Roy S, Prasad AK. 2018.. Sex-based variation in insecticide susceptibility and tolerance related biochemical parameters in tea mosquito bug Helopeltis theivora. . Phytoparasitica 46::40510
    [Crossref] [Google Scholar]
  93. 93.
    Sachin JP, Selvasundaram R, Babu A, Muraleedharan N. 2008.. Behavioral and electroantennographic responses of the tea mosquito, Helopeltis theivora, to female sex pheromones. . Environ. Entomol. 37::141621
    [Crossref] [Google Scholar]
  94. 94.
    Sanchez-Bayo F, Goka K. 2014.. Pesticide residues and bees—a risk assessment. . PLOS ONE 9::e94482
    [Crossref] [Google Scholar]
  95. 95.
    Santoso S, Takahuji A, Amano H, Ozawa A. 2004.. Species composition of phytoseiid mites (Acari: Phytoseiidae) in tea fields with different management practices in Shizuoka Prefecture, Japan. . J. Acarol. Soc. Jpn. 13::7782
    [Crossref] [Google Scholar]
  96. 96.
    Selvasundaram R, Sasidhar R, Sanjay R, Muraleedharan N. 2004.. Seasonal abundance of thrips and crop loss in tea. . J. Plant. Crops 32::4952
    [Google Scholar]
  97. 97.
    Shan Y, Xu MF, Tan C, Chen ZM, Wang GC, et al. 2023.. Effect of monochromatic light on light adaptation and opsin expression in Ectropis grisescens. . Bull. Entomol. Res. 113::52936
    [Crossref] [Google Scholar]
  98. 98.
    Shan Y, Zhou X-S, Cai X-M, Luo Z-X, Li Z-Q, et al. 2023.. Mating and post-copulation behavior in the tea leafhopper, Empoasca onukii (Hemiptera: Cicadellidae). . Front. Plant Sci. 14::1273718
    [Crossref] [Google Scholar]
  99. 99.
    Shi LQ, He HF, Yang G, Huang HS, You MS. 2020.. Are yellow sticky cards and light traps effective on tea green leafhoppers and their predators in Chinese tea plantations?. Insects 12::14
    [Crossref] [Google Scholar]
  100. 100.
    Singha D, Singha B, Dutta BK. 2011.. Potential of Metarhizium anisopliae and Beauveria bassiana in the control of tea termite Microtermes obesi Holmgren in vitro and under field conditions. . J. Pest Sci. 84::6975
    [Crossref] [Google Scholar]
  101. 101.
    Sinu PA, Mandal P, Banerjee D, Mallick S, Talukdar T, et al. 2013.. Moth pests collected in light traps of tea plantations in North East India: species composition, seasonality and effect of habitat type. . Curr. Sci. India 104::64651
    [Google Scholar]
  102. 102.
    Sola P, Mvumi BM, Ogendo JO, Mponda O, Kamanula JF, et al. 2014.. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: making a case for plant-based pesticidal products. . Food Secur. 6::36984
    [Crossref] [Google Scholar]
  103. 103.
    Sudoi V, Cheramgoi E, Langat JK, Kamunya SM, Wachira FK. 2011.. Screening of Kenyan tea clones at different ecological zones for their susceptibility to mite attack and effect on the crop yields. . In Proceedings of the 4th National Conference on Science, Technology and Innovation as a Platform for National Development, ed. KRM Swamy , AMS Abdul Hannan, pp. 2543. Nairobi:: Kenyatta Int. Conf. Cent.
    [Google Scholar]
  104. 104.
    Tabata J, Noguchi H, Kainoh Y, Mochizuki F, Sugie H, et al. 2007.. Sex pheromone production and perception in the mating disruption-resistant strain of the smaller tea leafroller moth, Adoxophyes honmai. . Entomol. Exp. Appl. 122::14553
    [Crossref] [Google Scholar]
  105. 105.
    Takahashi M, Nakai M, Nakanishi K, Sato T, Hilton S, et al. 2008.. Genetic and biological comparisons of four nucleopolyhedrovirus isolates that are infectious to Adoxophyes honmai (Lepidoptera: Tortricidae). . Biol. Control 46::54246
    [Crossref] [Google Scholar]
  106. 106.
    Takahashi M, Nakai M, Saito Y, Sato Y, Ishijima C, et al. 2015.. Field efficacy and transmission of fast- and slow-killing nucleopolyhedroviruses that are infectious to Adoxophyes honmai (Lepidoptera: Tortricidae). . Viruses 7::127183
    [Crossref] [Google Scholar]
  107. 107.
    Tamaki Y, Noguchi H, Yushima T. 1971.. Two sex pheromones of the smaller tea tortrix: isolation, identification, and synthesis. . Appl. Entomol. Zool. 6::13941
    [Crossref] [Google Scholar]
  108. 108.
    Tamaki Y, Noguchi H, Yushima T. 1973.. Sex pheromone of Spodoptera litura (F.) (Lepidoptera: Noctuidae): isolation, identification, and synthesis. . Appl. Entomol. Zool. 8::200203
    [Crossref] [Google Scholar]
  109. 109.
    Tan C, Cai XM, Luo ZX, Li ZQ, Chen ZM, et al. 2023.. Visual acuity of Empoasca onukii (Hemiptera, Cicadellidae). . Insects 14::370
    [Crossref] [Google Scholar]
  110. 110.
    Tang MJ. 2018.. The tea pests damaged by leaf curling—Archips strojny Razowski. . Chin. Tea 40::79
    [Google Scholar]
  111. 111.
    Tang MJ, Wang ZB, Guo HW, Yin KS, Xiao Q. 2017.. Introduction of a new pest of tea: Mictis serina Dallas. . Chin. Tea 39::2
    [Google Scholar]
  112. 112.
    Tang MJ, Wang ZB, Zhang XX, Yin KS, Zhou XG, et al. 2023.. Picromerus viridipunctatus Yang: a new natural enemy in tea plantations. . Plant Prot. 49::23135
    [Google Scholar]
  113. 113.
    Tian YY, Chen ZJ, Huang XQ, Zhang LX, Zhang ZQ. 2020.. Evaluation of botanicals for management of piercing-sucking pests and the effect on beneficial arthropod populations in tea trees Camellia sinensis (L.) O. Kuntze (Theaceae). . J. Insect Sci. 20::27
    [Crossref] [Google Scholar]
  114. 114.
    Uchibori-Asano M, Uchiyama T, Jouraku A, Ozawa A, Akiduki G, et al. 2019.. Tebufenozide resistance in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae): establishment of a molecular diagnostic method based on EcR mutation and its application for field-monitoring. . Appl. Entomol. Zool. 54::22330
    [Crossref] [Google Scholar]
  115. 115.
    Uchibori-Asano M, Uchiyama T, Jouraku A, Shinoda T. 2022.. Development of allele-specific loop-mediated isothermal amplification (AS-LAMP) to detect the tebufenozide-resistant allele in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). . Appl. Entomol. Zool. 57::101
    [Crossref] [Google Scholar]
  116. 116.
    Uchiyama T, Ozawa A. 2014.. Rapid development of resistance to diamide insecticides in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), in the tea fields of Shizuoka Prefecture, Japan. . Appl. Entomol. Zool. 49::52934
    [Crossref] [Google Scholar]
  117. 117.
    Uesugi R, Yara K, Sato Y. 2016.. Changes in population density of Aleurocanthus camelliae (Hemiptera: Aleyrodidae) and parasitism rate of Encarsia smithi (Hymenoptera: Aphelinidae) during the early invasion stages. . Appl. Entomol. Zool. 51::58188
    [Crossref] [Google Scholar]
  118. 118.
    Varatharajan R, Roy S, Prasad AK, Mukhopadhyay A, Muraleedharan N. 2019.. Bionomics and management of Scirtothrips dorsalis Hood (Insecta: Thysanoptera: Thripidae) on Camellia sinensis (L) O. Kuntze in tea plantations of north-eastern India. . Int. J. Trop. Insect Sci. 39::17994
    [Crossref] [Google Scholar]
  119. 119.
    Vasanthakumar D, Babu A, Shanmugapriyan R, Subramaniam SR. 2013.. Impact of Azter (azadirachtin 0.15% EC), a neem-based pesticide, against tea red spider mite, Oligonychus coffeae Nietner (Acarina:Tetranychidae), and its natural enemies. . Int. J. Acarol. 39::14045
    [Crossref] [Google Scholar]
  120. 120.
    Wakamura S, Tanaka H, Masumoto Y, Sawada H, Toyohara N. 2007.. Sex pheromone of the blue-striped nettle grub moth Parasa lepida (Cramer) (Lepidoptera: Limacodidae): identification and field attraction. . Appl. Entomol. Zool. 42::34752
    [Crossref] [Google Scholar]
  121. 121.
    Wakamura S, Yasuda T, Hirai Y, Tanaka H, Doki T, et al. 2007.. Sex pheromone of the oriental tussock moth Artaxa subflava (Bremer) (Lepidoptera: Lymantriidae): identification and field attraction. . Appl. Entomol. Zool. 42::37582
    [Crossref] [Google Scholar]
  122. 122.
    Wakamura S, Yasuda T, Ichikawa A, Fukumoto T, Mochizuki F. 1994.. Sex attractant pheromone of the tea tussock moth, Euproctis pseudoconspersa (Strand) (Lepidoptera: Lymantriidae): identification and field attraction. . Appl. Entomol. Zool. 29::40311
    [Crossref] [Google Scholar]
  123. 123.
    Wang MX, Han SJ, Wu YQ, Lin JL, Zhou JX, et al. 2023.. Tea green leafhopper-induced synomone attracts the egg parasitoids, mymarids to suppress the leafhopper. . Pest Manag. Sci. 79::378595
    [Crossref] [Google Scholar]
  124. 124.
    Wang XL, Su H, Wang J, Li GP, Feng HQ, et al. 2023.. Monitoring of insecticide resistance for Apolygus lucorum populations in the apple orchard in China. . Crop Prot. 170::106279
    [Crossref] [Google Scholar]
  125. 125.
    Wang XR, Zhou L, Zhang XZ, Luo FJ, Chen ZM. 2019.. Transfer of residue during tea brewing: understanding the effects of pesticide's physico-chemical parameters on its transfer behavior. . Food Res. Int. 121::77684
    [Crossref] [Google Scholar]
  126. 126.
    Wang XQ, Ran L, Peng P, Duan XF. 2014.. Study on novel tea plant pest mite, Eotetranychus kankitus (Ehara). S. Chin. . J. Agric. Sci. 27::242327
    [Google Scholar]
  127. 127.
    Wang ZB, Jiang N, Yin KS, Tang MJ, Li H, et al. 2019.. New record of a tea pest—Coremecis leukohyperythra (Wehrli, 1925). . J. Tea. Commun. 46::5
    [Google Scholar]
  128. 128.
    Wang ZQ, Zhou XG, Xiao Q, Tang P, Chen XX. 2022.. The potential of Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae) as biocontrol agents for the tea grey geometrid Ectropis grisescens (Lepidoptera). . Insects 13::937
    [Crossref] [Google Scholar]
  129. 129.
    Xin ZJ, Ge LG, Chen SL, Sun XL. 2019.. Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol. . J. Plant Res. 132::28593
    [Crossref] [Google Scholar]
  130. 130.
    Xiu CL, Zhang FG, Pan HS, Bian L, Luo ZX, et al. 2022.. Evaluation of selected plant volatiles as attractants for the stick tea thrip Dendrothrips minowai in the laboratory and tea plantation. . Insects 13::509
    [Crossref] [Google Scholar]
  131. 131.
    Xu XX, Cai XM, Bian L, Luo ZX, Li ZQ, et al. 2017.. Does background odor in Tea Gardens mask attractants? Screening and application of attractants for Empoasca onukii Matsuda. . J. Econ. Entomol. 110::235763
    [Crossref] [Google Scholar]
  132. 132.
    Yamashita K, Hayashida Y. 2006.. Occurrence and control of the citrus spiny whitefly, Aleurocanthus spiniferus (Quaintance), on tea tree in Kyoto Prefecture. . Plant Prot. 60::37880
    [Google Scholar]
  133. 133.
    Yao Q, Wang MQ, Chen ZM. 2022.. The relative preference of Empoasca onukii (Hemiptera: Cicadellidae) for oviposition on twenty-four tea cultivars. . J. Econ. Entomol. 115::152130
    [Crossref] [Google Scholar]
  134. 134.
    Yara K, Uesugi R, Shimoda T, Sato Y. 2019.. Distribution and population structure of two phylogroups of the parasitoid Encarsia smithi (Hymenoptera: Aphelinidae) in tea fields infested with the invasive camellia spiny whitefly Aleurocanthus camelliae (Hemiptera: Aleyrodidae) in Shizuoka Prefecture, Japan. . Appl. Entomol. Zool. 54::5562
    [Crossref] [Google Scholar]
  135. 135.
    Yasuda T, Wakamura S, Arakaki N. 1995.. Identification of sex attractant pheromone components of the tussock moth, Euproctis taiwana (Shiraki) (Lepidoptera: Lymantriidae). . J. Chem. Ecol. 21::181322
    [Crossref] [Google Scholar]
  136. 136.
    Yasuda T, Yoshii S, Wakamura S. 1994.. Identification of sex attractant pheromone of the browntail moth, Euproctis similis (Fuessly) (Lepidoptera: Lymantriidae). . Appl. Entomol. Zool. 29::2130
    [Crossref] [Google Scholar]
  137. 137.
    Ye GY, Xiao Q, Chen M, Chen XX, Yuan ZJ, et al. 2014.. Tea: biological control of insect and mite pests in China. . Biol. Control 68::7391
    [Crossref] [Google Scholar]
  138. 138.
    Ye M, Liu MM, Erb M, Glauser G, Zhang J, et al. 2021.. Indole primes defence signalling and increases herbivore resistance in tea plants. . Plant Cell Environ. 44::116577
    [Crossref] [Google Scholar]
  139. 139.
    Yorozuya H. 2017.. Analysis of tea plant resistance to tea green leafhopper, Empoasca onukii, by detecting stylet-probing behavior with DC electropenetrography. . Entomol. Exp. Appl. 165::6269
    [Crossref] [Google Scholar]
  140. 140.
    Yorozuya H, Sudo M, Sato Y. 2021.. Field evaluation of resistance to tea green leafhopper, Empoasca onukii, in tea plant. . Entomol. Exp. Appl. 169::104956
    [Crossref] [Google Scholar]
  141. 141.
    Zhang CG, Cheng WJ, Li DY. 2014.. The evaluation of Osthol's control efficacy on tea geometrid and Empoasca vitis. . Agrochemicals 53::9
    [Google Scholar]
  142. 142.
    Zhang CR, Liu M, Ban FX, Shang XL, Liu SL, et al. 2021.. Establishment of a faba bean banker plant system with predator Orius strigicollis for the control of thrips Dendrothrips minowai on tea plants under laboratory conditions. . Insects 12::397
    [Crossref] [Google Scholar]
  143. 143.
    Zhang GH, Yuan ZJ, Zhang CX, Yin KS, Tang MJ, et al. 2014.. Detecting deep divergence in seventeen populations of tea geometrid (Ectropis obliqua Prout) in China by COI mtDNA and cross-breeding. . PLOS ONE 9::e99373
    [Crossref] [Google Scholar]
  144. 144.
    Zhang HH, Tan JC. 2004.. Tea Pests in China and Their Contaminant-Free Management. Anhui, China:: Sci. Technical Publ. 389 pp.
    [Google Scholar]
  145. 145.
    Zhang HN, Bian L, Cai XM, Yao Q, Fu NX, et al. 2023.. Vibrational signals are species-specific and sex-specific for sexual communication in the tea leafhopper, Empoasca onukii. . Entomol. Exp. Appl. 171::27786
    [Crossref] [Google Scholar]
  146. 146.
    Zhang RF, Ji DZ, Zhang QQ, Jin LH. 2021.. Evaluation of eleven plant species as potential banker plants to support predatory Orius sauteri in tea plant systems. . Insects 12::162
    [Crossref] [Google Scholar]
  147. 147.
    Zhang T, Mei XD, Zhang XF, Lu YH, Ning J, et al. 2020.. Identification and field evaluation of the sex pheromone of Apolygus lucorum (Hemiptera: Miridae) in China. . Pest Manag. Sci. 76::184755
    [Crossref] [Google Scholar]
  148. 148.
    Zhang XX, Mei Y, Li H, Tang MJ, He K, et al. 2021.. Differences in virulence and genomics of two Ectropis obliqua nucleopolyhedrovirus strains to Ectropis grisescens. . J. Plant Prot. 48::145765
    [Google Scholar]
  149. 149.
    Zhang ZQ, Luo ZX, Gao Y, Bian L, Sun XL, et al. 2014.. Volatiles from non-host aromatic plants repel tea green leafhopper Empoasca vitis. . Entomol. Exp. Appl. 153::15669
    [Crossref] [Google Scholar]
  150. 150.
    Zhang ZQ, Sun XL, Xin ZJ, Luo ZX, Gao Y, et al. 2013.. Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis obliqua. . J. Chem. Ecol. 39::128496
    [Crossref] [Google Scholar]
  151. 151.
    Zhao DX, Chen ZM, Cheng JA. 2001.. Predatory functional responses of Agelena labyrinthica (Clerck) to Empoasca vitis (Göthe). . Plant Prot. 27::13
    [Google Scholar]
  152. 152.
    Zhou XG, Tang P, Wu Q, Guo HW, Xiao Q, et al. 2023.. Identification of two common larval parasitic wasps of Ectropis obliqua and Ectropis grisescens (Lepidoptera: Geometridae). . Chin. J. Biol. Control 39::9
    [Google Scholar]
/content/journals/10.1146/annurev-ento-013024-014757
Loading
/content/journals/10.1146/annurev-ento-013024-014757
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error