1932

Abstract

The past decade has seen the availability of insect genomic data explode, with mitochondrial (mt) genome data seeing the greatest growth. The widespread adoption of next-generation sequencing has solved many earlier methodological limitations, allowing the routine sequencing of whole mt genomes, including from degraded or museum specimens and in parallel to nuclear genomic projects. The diversity of available taxa now allows finer-scale comparisons between mt and nuclear phylogenomic analyses; high levels of congruence have been found for most orders, with some significant exceptions (e.g., Odonata, Mantodea, Diptera). The evolution of mt gene rearrangements and their association with haplodiploidy have been tested with expanded taxonomic sampling, and earlier proposed trends have been largely supported. Multiple model systems have been developed based on findings unique to insects, including mt genome fragmentation (lice and relatives) and control region duplication (thrips), allowing testing of hypothesized evolutionary drivers of these aberrant genomic phenomena. Finally, emerging research topics consider the contributions of mt genomes to insect speciation and habitat adaption, with very broad potential impacts. Integration between insect mt genomic research and other fields within entomology continues to be our field's greatest opportunity and challenge.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-013024-015553
2025-01-28
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-013024-015553.html?itemId=/content/journals/10.1146/annurev-ento-013024-015553&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allen JM, LaFrance R, Folk RA, Johnson KP, Guralnick RP. 2018.. aTRAM 2.0: an improved, flexible locus assembler for NGS data. . Evol. Bioinform. 14::117693431877454
    [Crossref] [Google Scholar]
  2. 2.
    Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. 2020.. MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. . Mol. Ecol. Res. 20::892905
    [Crossref] [Google Scholar]
  3. 3.
    Al-Nakeeb K, Petersen TN, Sicheritz-Pontén T. 2017.. Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data. . BMC Bioinform. 18::510
    [Crossref] [Google Scholar]
  4. 4.
    Aydemir MN, Korkmaz EM. 2020.. Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition. . Int. J. Biol. Macromol. 144::46072
    [Crossref] [Google Scholar]
  5. 5.
    Bai C, Wu Y, Merchang A, Xie D, Cao J, et al. 2023.. The complete mitochondrial genome and novel gene arrangement in Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae). . Funct. Int. Genom. 23::41
    [Crossref] [Google Scholar]
  6. 6.
    Bayless KM, Trautwein MD, Meusemann K, Shin S, Petersen M, et al. 2021.. Beyond Drosophila: resolving the rapid radiation of schizophoran flies with phylotranscriptomics. . BMC Biol. 19::23
    [Crossref] [Google Scholar]
  7. 7.
    Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, et al. 2007.. CREx: inferring genomic rearrangements based on common intervals. . Bioinformation 23::295758
    [Crossref] [Google Scholar]
  8. 8.
    Blackmon H, Ross L, Bachtog D. 2017.. Sex determination, sex chromosomes and karyotype evolution in insects. . J. Hered. 108::7893
    [Crossref] [Google Scholar]
  9. 9.
    Blaimer BB, Santos BF, Cruaud A, Gates MW, Kula RR, et al. 2023.. Key innovations and the diversification of Hymenoptera. . Nat. Commun. 14::1212
    [Crossref] [Google Scholar]
  10. 10.
    Blair C. 2022.. Organelle DNA continues to provide a rich source of information in the genomics era. . Mol. Ecol. 32::214450
    [Crossref] [Google Scholar]
  11. 11.
    Bourguignon T, Lo N, Šobotnik J, Ho SYW, Iqbal N, et al. 2016.. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. . Mol. Biol. Evol. 34::58997
    [Google Scholar]
  12. 12.
    Bourguignon T, Tang Q, Ho SYW, Juna F, Wang Z, et al. 2018.. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. . Mol. Biol. Evol. 35::97083
    [Crossref] [Google Scholar]
  13. 13.
    Buckman RS, Mound LA, Whiting MF. 2013.. Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. . Syst. Entomol. 38::12333
    [Crossref] [Google Scholar]
  14. 14.
    Burskaia V, Artyushin I, Potapova NA, Konovalov K, Bazykin GA. 2021.. Convergent adaptation in mitochondria of phylogenetically distant birds: Does it exist?. Genome Biol. Evol. 13::evab113
    [Crossref] [Google Scholar]
  15. 15.
    Burton RS. 2022.. The role of mitonuclear incompatibilities in allopatric speciation. . Cell. Mol. Life Sci. 79::103
    [Crossref] [Google Scholar]
  16. 16.
    Bybee SM, Kalkman VJ, Erickson RJ, Frandsen PB, Breinholt JW, et al. 2021.. Phylogeny and classification of Odonata using targeted genomics. . Mol. Phylogenet. Evol. 160::107115
    [Crossref] [Google Scholar]
  17. 17.
    Cai C, Tihelka E, Giacomelli M, Lawrence JF, Ślipiński A, et al. 2022.. Integrated phylogenomics and fossil data illuminate the evolution of beetles. . R. Soc. Open Sci. 9::211771
    [Crossref] [Google Scholar]
  18. 18.
    Cameron SL. 2014.. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. . Syst. Entomol. 39::40011
    [Crossref] [Google Scholar]
  19. 19.
    Cameron SL. 2014.. Insect mitochondrial genomics: implications for evolution and phylogeny. . Annu. Rev. Entomol. 59::95117
    [Crossref] [Google Scholar]
  20. 20.
    Cameron SL. 2023.. Mitochondrial phylogenomics of the Australian scribbly-gum moth Ogmograptis (Lepidoptera: Buccaltricidae), and an examination of deep-level relationships within Lepidoptera. . Austral Entomol. 62::44963
    [Crossref] [Google Scholar]
  21. 21.
    Cariou M, Duret L, Charlat S. 2017.. The global impact of Wolbachia on mitochondrial diversity and evolution. . J. Evol. Biol. 30::220410
    [Crossref] [Google Scholar]
  22. 22.
    Chen Z-T. 2022.. Comparative mitogenomics analysis of two earwigs (Insecta, Dermaptera) and the preliminary phylogenetic implications. . ZooKeys 1087::10522
    [Crossref] [Google Scholar]
  23. 23.
    Chernomor O, von Haeseler A, Minh BQ. 2016.. Terrace aware data structure for phylogenomic inference from supermatrices. . Syst. Biol. 65::9971008
    [Crossref] [Google Scholar]
  24. 24.
    Crampton-Platt A, Yu DW, Zhou X, Vogler AP. 2016.. Mitochondrial metagenomics: letting the genes out of the bottle. . GigaScience 5::15
    [Crossref] [Google Scholar]
  25. 25.
    Cucini C, Carapelli A, Brunetti C, Molero-Baltanás R, Gaju-Ricart M, Nardi F. 2021.. Characterization of the complete mitochondrial genome of Neoasterolepisma foreli (Insecta: Zygentoma: Lepismatidae) and the phylogeny of basal Ectognatha. . Mitochondrial DNA B 6::11921
    [Crossref] [Google Scholar]
  26. 26.
    da Moya R, Yoshizawa K, Walden KKO, Sweet AD, Dietrich CH, Johnson KP. 2021.. Phylogenomics of parasitic and nonparasitic lice (Insecta: Psocodea): combining sequence data and exploring compositional bias solutions in next generation data sets. . Syst. Biol. 70::71938
    [Crossref] [Google Scholar]
  27. 27.
    Dickey AM, Kumar V, Morgan JK, Jara-Cavieres A, Shatters RG, et al. 2015.. A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): extreme size asymmetry among chromosomes and possible recent control region duplication. . BMC Genom. 16::439
    [Crossref] [Google Scholar]
  28. 28.
    Dierckxens N, Mardulyn P, Smits G. 2016.. NOVOPlaty: de novo assembly of organelle genomes from whole genome data. . Nucleic Acids Res. 45::e18
    [Google Scholar]
  29. 29.
    Ding S, Li W, Wang Y, Cameron SL, Murányi D, Yang D. 2019.. The phylogeny and evolutionary timescale of stoneflies (Insecta: Plecoptera) inferred from mitochondrial genomes. . Mol. Phylogenet. Evol. 135::12335
    [Crossref] [Google Scholar]
  30. 30.
    Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, et al. 2019.. Improved annotation of protein-coding gene boundaries in metazoan mitochondrial genomes. . Nucleic Acids Res. 47::1054352
    [Crossref] [Google Scholar]
  31. 31.
    Dong Y, Jelocnik M, Gillet A, Valenza L, Conroy G, et al. 2023.. Mitochondrial genome fragmentation occurred multiple times independently in bird lice of the families Menoponidae and Laemobothriidae. . Animals 13::2046
    [Crossref] [Google Scholar]
  32. 32.
    Dowling DK, Wolff JN. 2023.. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. . Genetics 224::iyad036
    [Crossref] [Google Scholar]
  33. 33.
    Dowton M, Campbell NJH. 2001.. Intramitochondrial recombination—is it why some mitochondrial genes sleep around?. Trends Ecol. Evol. 16::26971
    [Crossref] [Google Scholar]
  34. 34.
    Du Z, Wu Y, Chen Z, Cao L, Ishikawa T, et al. 2021.. Global phylogeography and invasion history of the spotted latternfly revealed by mitochondrial phylogenomics. . Evol. Appl. 14::91530
    [Crossref] [Google Scholar]
  35. 35.
    Eberhard JR, Wright TF. 2016.. Rearrangement and evolution of mitochondrial genomes in parrots. . Mol. Phylogenet. Evol. 64::3446
    [Crossref] [Google Scholar]
  36. 36.
    Evangelista DA, Wipfler B, Béthoux O, Donath A, Fujita M, et al. 2019.. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termite (Blattodea). . Proc. R. Soc. B 286::20182076
    [Crossref] [Google Scholar]
  37. 37.
    Feng S, Pozzi A, Stejskal V, Opit G, Yang Q, et al. 2022.. Fragmentation in mitochondrial genomes in relation to elevated divergence and extreme rearrangements. . BMC Biol. 20::7
    [Crossref] [Google Scholar]
  38. 38.
    Forni G, Plazzi F, Cussigh A, Conle O, Hennemann F, et al. 2021.. Phylomitogenomics provides new perspectives on the Euphasmatodea radiation (Insecta: Phasmatodea). . Mol. Phylogenet. Evol. 155::106983
    [Crossref] [Google Scholar]
  39. 39.
    Fu Y-T, Shao R, Suleman Wang W, Wang H-M, Liu G-H. 2023.. The fragmented mitochondrial genomes of two Linognathus lice reveal active minichromosomal recombination and recombination hotspots. . iScience 26::107351
    [Crossref] [Google Scholar]
  40. 40.
    Gaugel SM, Hawlitschek O, Dey L-S, Husemann M. 2023.. Evolution of mitogenomic gene order in Orthoptera. . Insect Mol. Biol. 32::38799
    [Crossref] [Google Scholar]
  41. 41.
    Ge J-J, Ying H-F, Xu S-Q, Huang H-T. 2023.. Mitochondrial genome phylogeny reveals the deep-time origin of the Gomphomastacinae (Orthoptera: Eumastacidae) and its alpine genera in China. . J. Syst. Evol. 61::104755
    [Crossref] [Google Scholar]
  42. 42.
    Ge X, Peng L, Vogler AP, Morse JC, Yang L, et al. 2023.. Massive gene rearrangements of mitochondrial genomes and implications for the phylogeny of Trichoptera (Insecta). . Syst. Entomol. 48::27895
    [Crossref] [Google Scholar]
  43. 43.
    Gibson T, Blok VC, Dowton M. 2007.. Sequence and characterization of six mitochondrial subgenomes from Globodera rostochiensis: multipartite structure is conserved among close nematode relatives. . J. Mol. Evol. 65::30815
    [Crossref] [Google Scholar]
  44. 44.
    Gillett CPDT, Crampton-Platt A, Timmermans MJTM, Jordal BH, Emerson BC, Vogler AP. 2014.. Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). . Mol. Biol. Evol. 31::222337
    [Crossref] [Google Scholar]
  45. 45.
    Goremykin VV, Nikiforova SV, Bininda-Emonds ORP. 2010.. Automated removal of noisy data in phylogenomic analyses. . J. Mol. Evol. 71::31931
    [Crossref] [Google Scholar]
  46. 46.
    Hahn C, Bachmann L, Chevreux B. 2013.. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. . Nucleic Acids Res. 41::e129
    [Crossref] [Google Scholar]
  47. 47.
    Heckenhauer J, Frandsen PB, Sproul JS, Li Z, Paule J, et al. 2022.. Genome size evolution in the diverse insect Trichoptera. . GigaScience 11::giac011
    [Crossref] [Google Scholar]
  48. 48.
    Hellemans S, Wang M, Hasegawa N, Šobotnik J, Scheffrahn R, Bourguignon T. 2022.. Using ultraconserved elements to reconstruct the termite tree of life. . Mol. Phylogenet. Evol. 173::107520
    [Crossref] [Google Scholar]
  49. 49.
    Hill GE. 2020.. Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps. . Ecol. Evol. 10::904859
    [Crossref] [Google Scholar]
  50. 50.
    Hill GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK. 2019.. Assessing the fitness consequences of mitonuclear interactions in natural populations. . Biol. Rev. 94::1089104
    [Crossref] [Google Scholar]
  51. 51.
    Hitchcock TJ, Gardner A, Ross L. 2022.. Sexual antagonism in haplodiploids. . Evolution 76::292309
    [Crossref] [Google Scholar]
  52. 52.
    Hodson CN, Hamilton PT, Dilworth D, Nelson CJ, Curtis CI, Perlman SJ. 2017.. Paternal genome elimination in Liposcelis booklice (Insecta: Psocodea). . Genetics 206::1091100
    [Crossref] [Google Scholar]
  53. 53.
    Hotaling S, Sproul JS, Heckenhauer J, Powell A, Larracuente AM, et al. 2021.. Long reads are revolutionizing 20 years of insect genome sequencing. . Genome Biol. Evol. 13::evab138
    [Crossref] [Google Scholar]
  54. 54.
    Jasso-Martínez JM, Quicke DLJ, Belokobylskij SA, Santos BF, Fernández-Triana JL, et al. 2022.. Mitochondrial phylogenomics of mitogenome organization in the parasitoid wasp family Braconidae (Hymenoptera: Ichneumonoidea). . BMC Ecol. Evol. 22::46
    [Crossref] [Google Scholar]
  55. 55.
    Jiang Y, Yue L, Yang F, Gillung JP, Winterton SL, et al. 2022.. Similar pattern, different paths: tracing the biogeographical history of Megaloptera (Insecta: Neuropterida) using mitochondrial phylogenomics. . Cladistics 38::37491
    [Crossref] [Google Scholar]
  56. 56.
    Jin JJ, Yu W-B, Yang J-B, Song Y, dePamphilis CW, et al. 2020.. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. . Genome Biol. 21::241
    [Crossref] [Google Scholar]
  57. 57.
    Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, et al. 2018.. Phylogenomics and the evolution of hemipteroid insects. . PNAS 115::1277580
    [Crossref] [Google Scholar]
  58. 58.
    Kang N, Hu H. 2023.. Adaptive evidence of mitochondrial genes in Pteromalidae and Eulophidae (Hymenoptera: Chalcidoidea). . PLOS ONE 18::e0294687
    [Crossref] [Google Scholar]
  59. 59.
    Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, et al. 2019.. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. . PNAS 116::2265763
    [Crossref] [Google Scholar]
  60. 60.
    Kim MJ, Kim I, Cameron SL. 2020.. How well do multispecies coalescent methods perform with mitochondrial genomic data? A case study of butterflies and moths (Insecta: Lepidoptera). . Syst. Entomol. 45::85773
    [Crossref] [Google Scholar]
  61. 61.
    Kipp EJ, Lindsey LL, Milstein MS, Blanco CM, Baker JP, et al. 2023.. Nanopore adaptive sampling for targeted mitochondrial genome sequencing and bloodmeal identification in hematophagous insects. . Parasites Vectors 16::68
    [Crossref] [Google Scholar]
  62. 62.
    Kočárek P, Horká I, Kundrata R. 2020.. Molecular phylogeny and infraordinal classification of Zoraptera (Insecta). . Insects 11::51
    [Crossref] [Google Scholar]
  63. 63.
    Koch RE, Dowling DK. 2022.. Effects of mitochondrial haplotype on pre-copulatory mating success in male fruit flies (Drosophila melanogaster). . J. Evol. Biol. 35::1396402
    [Crossref] [Google Scholar]
  64. 64.
    Kück P, Meid SA, Groß C, Wägele JW, Misof B. 2014.. AliGROOVE—visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. . BMC Bioinform. 15::294
    [Crossref] [Google Scholar]
  65. 65.
    Latrillot N, Philippe H. 2004.. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. . Mol. Biol. Evol. 21::1095109
    [Crossref] [Google Scholar]
  66. 66.
    Lavrov DV, Boore JL, Brown WM. 2002.. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. . Mol. Biol. Evol. 19::16369
    [Crossref] [Google Scholar]
  67. 67.
    Li JY, Li W-X, Wang A-T, Zhang Y. 2021.. MitoFlex: an efficient, high-performance toolkit for animal mitogenome assembly, annotation and visualization. . Bioinformation 37::30013
    [Crossref] [Google Scholar]
  68. 68.
    Li N, Hu G-L, Hua B-Z. 2019.. Complete mitochondrial genomes of Bittacus strigosus and Panorpa debilis and genomic comparisons of Mecoptera. . Int. J. Biol. Macromol. 140::67281
    [Crossref] [Google Scholar]
  69. 69.
    Li X-D, Jiang G-F, Yan L-Y, Li R, Mu Y, Deng W-A. 2018.. Positive selection drove the adaptation of mitochondrial genes to the demands of flight and high-altitude environments in grasshoppers. . Front. Genet. 9::605
    [Crossref] [Google Scholar]
  70. 70.
    Liang G, Mi D, Chang J, Yau TO, Xu G, et al. 2022.. Precise annotation of Drosophila mitochondrial genomes leads to insights into AT-rich regions. . Mitochondrion 65::14549
    [Crossref] [Google Scholar]
  71. 71.
    Liao C-Q, Yagi S, Chen L, Chen Q, Hirowatari T, et al. 2023.. Higher-level phylogeny and evolutionary history of nonditrysians (Lepidoptera) inferred from mitochondrial genome sequences. . Zool. J. Linn. Soc. 198::47693
    [Crossref] [Google Scholar]
  72. 72.
    Lin Y-J, Zhang L-H, Ma Y, Storey KB, Yu D-N, Zhang J-Y. 2023.. Novel gene rearrangements in mitochondrial genomes of four families of praying mantises (Insecta, Mantodea) and phylogenetic relationships of Mantodea. . Gene 880::147603
    [Crossref] [Google Scholar]
  73. 73.
    Linard B, Crampton-Platt A, Gillett CPDT, Timmermans MJTM, Vogler AP. 2015.. Metagenome skimming of insect specimen pools: potential for comparative genomics. . Genome Biol. Evol. 14::147489
    [Crossref] [Google Scholar]
  74. 74.
    Liu H-L, Chen S, Chen Q-D, Pu D-Q, Chen Z-T, et al. 2022.. The first mitochondrial genomes of the family Haplodiplatyidae (Insecta: Dermaptera) reveal intraspecific variation and extensive gene rearrangement. . Biology 11::807
    [Crossref] [Google Scholar]
  75. 75.
    Liu Q, Cai YD, Ma L, Liu H, Linghu T, et al. 2023.. Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes. . Int. J. Biol. Macromol. 253::126742
    [Crossref] [Google Scholar]
  76. 76.
    Lozano-Fernandez J. 2022.. A practical guide to design and assess a phylogenomic study. . Genome Biol. Evol. 14::evac129
    [Crossref] [Google Scholar]
  77. 77.
    Lu C, Huang X, Deng J. 2023.. Mitochondrial genomes of soft scales (Hemiptera: Coccidae): features, structures and significance. . BMC Genom. 24::37
    [Crossref] [Google Scholar]
  78. 78.
    Ma Y, Zhang L-P, Lin Y-J, Yu D-N, Storey KB, Zhang JY. 2023.. Phylogenetic relationships and divergence dating of Mantodea using mitochondrial phylogenomics. . Syst. Entomol. 48::64457
    [Crossref] [Google Scholar]
  79. 79.
    Mao M, Austin AD, Johnson NF, Dowton M. 2014.. Coexistence of minicircular and highly rearranged mtDNA molecule suggests that recombination shapes mitochondrial genome organization. . Mol. Biol. Evol. 31::63644
    [Crossref] [Google Scholar]
  80. 80.
    McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, et al. 2019.. The evolution and genomics basis of beetle diversity. . PNAS 116::2472937
    [Crossref] [Google Scholar]
  81. 81.
    Meier R, Zhang G, Ali F. 2008.. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. . Syst. Biol. 57::80913
    [Crossref] [Google Scholar]
  82. 82.
    Meng G, Li Y, Yang C, Liu S. 2019.. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. . Nucleic Acids Res. 47::e63
    [Crossref] [Google Scholar]
  83. 83.
    Meusemann K, Trautwein M, Friedrich F, Beutel RG, Wiegmann BM, et al. 2020.. Are fleas highly modified Mecoptera? Phylogenomic resolution of Antilphora (Insecta: Holometabola). . bioRxiv 2020.11.19.390666. https://doi.org/10.1101/2020.11.19.390666
  84. 84.
    Mindell DP, Sorenson MD, Dimcheff DR. 1998.. Multiple independent origins of mitochondrial gene order in birds. . PNAS 95::1069397
    [Crossref] [Google Scholar]
  85. 85.
    Misof B, Liu S, Meusemann K, Peters RS, Donath A, et al. 2014.. Phylogenomics resolves the timing and pattern of insect evolution. . Science 346::76367
    [Crossref] [Google Scholar]
  86. 86.
    Moreno-Carmona M, Cameron SL, Prada Quiroga CF. 2021.. How are the mitochondrial genomes reorganized in Hexapoda? Differential evolution and the first report of convergences within Hexapoda. . Gene 791::145719
    [Crossref] [Google Scholar]
  87. 87.
    Ogden TH, Breinholt JW, Bybee SM, Miller DB, Sartori M, et al. 2019.. Mayfly phylogenomics: initial evaluation of anchored hybrid enrichment data for the order Ephemeroptera. . Zoosymposia 16::16781
    [Google Scholar]
  88. 88.
    Pääbo S, Thomas WK, Whitfield KM, Kumazawa Y. 1991.. Rearrangement of mitochondrial transfer RNA genes in marsupials. . J. Mol. Evol. 33::42630
    [Crossref] [Google Scholar]
  89. 89.
    Pakrashi A, Kumar V, Stanford-Beale DA, Cameron SL, Tyagi K. 2022.. Gene arrangement, phylogeny and divergence time estimation of mitogenomes in Thrips. . Mol. Biol. Rep. 42::626983
    [Crossref] [Google Scholar]
  90. 90.
    Percy DM, Crampton-Platt A, Sveinsson S, Lemmon AR, Lemmon EM, et al. 2018.. Resolving the psyllid tree of life: phylogenomic analyses of the superfamily Psylloidea (Hemiptera). . Syst. Entomol. 43::76276
    [Crossref] [Google Scholar]
  91. 91.
    Pistone D, Gohli J, Jordal BH. 2018.. Molecular phylogeny of bark and ambrosia beetles (Curculionidae: Scolytinae) based on 18 molecular markers. . Syst. Entomol. 43::387406
    [Crossref] [Google Scholar]
  92. 92.
    Prugnolle F, de Meeus T. 2002.. Inferring sex-biased dispersal from population genetic tools: a review. . Heredity 88::16165
    [Crossref] [Google Scholar]
  93. 93.
    Rand DM, Mossman JA, Spierer AN, Santiago JA. 2022.. Mitochondria as environments for the nuclear genome in Drosophila: a mitonuclear GxGxE. . J. Hered. 113::3747
    [Crossref] [Google Scholar]
  94. 94.
    Rank NE, Mardulyn P, Heidl SJ, Roberts KT, Zavala NA, et al. 2020.. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. . Evolution 74::172440
    [Crossref] [Google Scholar]
  95. 95.
    Saenz Manchola OF, Herrera SV, D'Alessio LM, Yoshizawa K, García Aldrete A, Johnson KP. 2021.. Mitochondrial genomes within bark lice (Insecta: Psocodea: Psocomorpha) reveal novel gene rearrangements containing phylogenetic signal. . Syst. Entomol. 46::93851
    [Crossref] [Google Scholar]
  96. 96.
    Sánchez-Martínez A, Ningguang L, Clemente P, Adán C, Hernández-Sierra R, et al. 2006.. Modelling human mitochondrial disease in flies. . Biochim. Biophys. Acta Bioenerg. 1757::119098
    [Crossref] [Google Scholar]
  97. 97.
    Sanno R, Kataoka K, Hayakawa S, Ide K, Nguyen CN, et al. 2021.. Comparative analysis of mitochondrial genomes in Gryllidea (Insecta: Orthoptera): implications for adaptive evolution in ant-loving crickets. . Genome Biol. Evol. 13::evab222
    [Crossref] [Google Scholar]
  98. 98.
    Schoville SD, Simon S, Bai M, Beethem Z, Dudko RY, et al. 2020.. Comparative transcriptomics of ice-crawlers demonstrates cold specialization constrains niche evolution in a relict lineage. . Evol. Appl. 14::36082
    [Crossref] [Google Scholar]
  99. 99.
    Shen R, Aspöck H, Aspöck U, Plant J, Dai Y, Liu X. 2022.. Unraveling the evolutionary history of the snakefly family Inocelliidae (Insecta: Raphidioptera) through integrative phylogenetics. . Cladistics 38::51537
    [Crossref] [Google Scholar]
  100. 100.
    Shi Y, Chu Q, Wei D-D, Qiu Y-J, Shang F, et al. 2016.. The mitochondrial genome of booklouse, Liposcelis sculptilis (Psocoptera: Liposcelididae) and the evolutionary timescale of Liposcelis. . Sci. Rep. 6::30660
    [Crossref] [Google Scholar]
  101. 101.
    Shtolz N, Mishmar D. 2023.. The metazoan landscape of mitochondrial DNA gene order and content is shaped by selection and affect mitochondrial transcription. . Commun. Biol. 6::93
    [Crossref] [Google Scholar]
  102. 102.
    Simon S, Blanke A, Meusemann K. 2018.. Reanalyzing the Palaeoptera problem—the origin of insect flight remains obscure. . Arthropod Struct. Dev. 47::32838
    [Crossref] [Google Scholar]
  103. 103.
    Simon S, Letsch H, Bank S, Buckley TR, Donath A, et al. 2019.. Old world and new world Phasmatodea: Phylogenomics resolve the evolutionary history of stick and leaf insects. . Front. Ecol. Evol. 7::345
    [Crossref] [Google Scholar]
  104. 104.
    Smith AD, Kamiński MJ, Kanda K, Sweet AD, Betancourt JL, et al. 2021.. Recovery and analysis of ancient beetle DNA from subfossil packrat middens using high-throughput sequencing. . Sci. Rep. 11::12635
    [Crossref] [Google Scholar]
  105. 105.
    Smith DR, Keeling PJ. 2015.. Mitochondrial and plastid genome architecture: recurring themes, but significant differences at the extremes. . PNAS 112::1017784
    [Crossref] [Google Scholar]
  106. 106.
    Song F, Li H, Jiang P, Zhou X, Liu J, et al. 2016.. Capturing the phylogeny of Holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models. . Genome Biol. Evol. 8::141126
    [Crossref] [Google Scholar]
  107. 107.
    Song H, Amédégnato C, Cigliano MM, Desutter-Grandcolas L, Heads SW, et al. 2015.. 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. . Cladistics 31::62151
    [Crossref] [Google Scholar]
  108. 108.
    Song H, Béthoux O, Shin S, Donath A, Letsch H, et al. 2020.. Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. . Nat. Commun. 11::4939
    [Crossref] [Google Scholar]
  109. 109.
    Song N, Li H, Song F, Cai W. 2016.. Molecular phylogeny of Polyneoptera (Insecta) inferred from expanded mitogenomic data. . Sci. Rep. 6::36175
    [Crossref] [Google Scholar]
  110. 110.
    Song N, Li X, Yin X, Li X, Yin J, Pan P. 2019.. The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships. . Sci. Rep. 9::17765
    [Crossref] [Google Scholar]
  111. 111.
    Song N, Li X-X, Zhai Q, Bozdoğan H, Yin X-M. 2019.. The mitochondrial genomes of neuropteridan insects and implications for the phylogeny of Neuroptera. . Genes 10::108
    [Crossref] [Google Scholar]
  112. 112.
    Song N, Zhang H, Bai R-E, Meng H-G. 2022.. The mitogenome of Aleuroclava psidii (Singh, 1931) (Hemiptera: Aleyrodidae) and increased number of mitochondrial gene rearrangements in whiteflies. . Front. Biosci. 27::154
    [Crossref] [Google Scholar]
  113. 113.
    Song N, Zhang H, Zhao T. 2019.. Insights into the phylogeny of Hemiptera from increasing mitogenomic taxon sampling. . Mol. Phylogenet. Evol. 137::23649
    [Crossref] [Google Scholar]
  114. 114.
    South EJ, Skinner RK, DeWalt E, Kondratieff BC, Johnson KP, et al. 2021.. Phylogenomics of the North American Plecoptera. . Syst. Entomol. 46::287305
    [Crossref] [Google Scholar]
  115. 115.
    Stork NE. 2018.. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63::3145
    [Crossref] [Google Scholar]
  116. 116.
    Suga K, Mark Welch DB, Tanaka Y, Sakakura Y, Hagiwara A. 2008.. Two circular chromosomes of unequal copy number make the mitochondrial genome of the rotifer Brachionus plicatilis. . Mol. Biol. Evol. 25::112937
    [Crossref] [Google Scholar]
  117. 117.
    Sunnucks P, Morales HE, Lamb AM, Pavlova A, Greening C. 2017.. Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. . Front. Genet. 8::25
    [Crossref] [Google Scholar]
  118. 118.
    Svenson GJ, Whiting MF. 2009.. Reconstructing the origins of praying mantises (Dicytoptera, Mantodea): the role of Gondwanan vicariance and morphological convergence. . Cladistics 25::468514
    [Crossref] [Google Scholar]
  119. 119.
    Sweet AD, Johnson KP, Cameron SL. 2020.. Mitochondrial genome of Columbicola feather lice are highly fragmented, indicating repeated evolution of minicircle-type genomes in parasitic lice. . PeerJ 8::e8759
    [Crossref] [Google Scholar]
  120. 121.
    Sweet AD, Johnson KP, Cameron SL. 2022.. Independent evolution of highly variable, fragmented mitogenomes of parasitic lice. . Commun. Biol. 5::677
    [Crossref] [Google Scholar]
  121. 120.
    Sweet AD, Johnson KP, Cao Y, de Moya RS, Skinner RK, et al. 2021.. Structure, gene order and nucleotide composition of mitochondrial genomes in parasitic lice from Ambylcera. . Gene 768::145312
    [Crossref] [Google Scholar]
  122. 122.
    Talavera G, Castresana J. 2007.. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. . Syst. Biol. 56::56477
    [Crossref] [Google Scholar]
  123. 123.
    Timmermans MJTM, Barton C, Haran J, Ahrens D, Culverwell CL, et al. 2016.. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. . Genome Biol. Evol. 8::16175
    [Crossref] [Google Scholar]
  124. 124.
    Timmermans MJTM, Viber C, Martin G, Hopkins K, Vogler AP. 2016.. Rapid assembly of taxonomically validated mitochondrial genomes from historical insect collections. . Biol. J. Linn. Soc. 117::8395
    [Crossref] [Google Scholar]
  125. 125.
    Tong Y, Wu L, Galilee Ayivi SP, Storey KB, Ma Y, et al. 2022.. Cryptic species exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from studies of complete mitochondrial genomes. . Insects 13::412
    [Crossref] [Google Scholar]
  126. 126.
    Trinca V, Cardoso Uliana JV, Sousa Ribeiro GK, Teixeira Torres T, Monesi N. 2022.. Characterization of the mitochondrial genomes of Bradysia hygida, Phytosciara flavipes and Trichosia splendens (Diptera: Sciaridae) and novel insights on the control region of sciarid mitogenomes. . Insect Mol. Biol. 31::48296
    [Crossref] [Google Scholar]
  127. 127.
    Tyagi K, Chakraborty R, Cameron SL, Sweet AD, Chandra K, Kumar V. 2020.. Rearrangement and evolution of mitochondrial genomes in Thysanoptera. . Sci. Rep. 10::695
    [Crossref] [Google Scholar]
  128. 128.
    Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Formenti G, Abueg L, et al. 2023.. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. . BMC Bioinform. 24::288
    [Crossref] [Google Scholar]
  129. 129.
    Vasilikopoulos A, Misof B, Meusemann K, Lieberz D, Flouri T, et al. 2020.. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). . BMC Evol. Biol. 20::64
    [Crossref] [Google Scholar]
  130. 130.
    Voigt O, Erpenbeck D, Worheide G. 2008.. A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. . BMC Genom. 9::350
    [Crossref] [Google Scholar]
  131. 131.
    Wang H-C, Susko E, Roger AJ. 2019.. The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference. . Syst. Biol. 68::100319
    [Crossref] [Google Scholar]
  132. 132.
    Wang L, Ding S, Cameron SL, Li X, Liu Y, et al. 2022.. Middle Jurassic origin in India: a new look at evolution of Vermileonidae and time-scaled relationships of lower brachyceran flies. . Zool. J. Linn. Soc. 194::93859
    [Crossref] [Google Scholar]
  133. 133.
    Wang T, Zhang S, Pei T, Yu T, Liu J. 2019.. Tick mitochondrial genomes: structural characteristics and phylogenetic implications. . Parasites Vectors 12::451
    [Crossref] [Google Scholar]
  134. 134.
    Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim J-W, et al. 2011.. Episodic radiations in the fly tree of life. . PNAS 108::569095
    [Crossref] [Google Scholar]
  135. 135.
    Wipfler B, Koehler W, Frandsen PB, Donath A, Liu S, et al. 2020.. Phylogenomics changes our understanding about earwig evolution. . Syst. Evol. 45::51626
    [Google Scholar]
  136. 136.
    Wipfler B, Letsch H, Frandsen PB, Kapli P, Mayer C, et al. 2019.. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. . PNAS 116::302429
    [Crossref] [Google Scholar]
  137. 137.
    Xu H, Liu X, Wang P, Li H, Wu S-A. 2023.. Phylogenetic implications of mitogenomic sequences and gene rearrangements of scale insects (Hemiptera and Coccoidea). . Insects 14::257
    [Crossref] [Google Scholar]
  138. 138.
    Xu X-D, Guan J-Y, Zhang Z-Y, Cao Y-R, Storey KB, et al. 2021.. Novel tRNA gene rearrangements in the mitochondrial genomes of praying mantises (Mantodea: Mantidae): translocation, duplication and pseudogenization. . Int. J. Biol. Macromol. 185::40311
    [Crossref] [Google Scholar]
  139. 139.
    Yan Z, Ye G, Werren JH. 2019.. Evolutionary rate correlation between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins in insects. . Mol. Biol. Evol. 36::102236
    [Crossref] [Google Scholar]
  140. 140.
    Yang Z. 1996.. Among-site rate variation and its impact on phylogenetic analysis. . Trends Ecol. Evol. 11::36772
    [Crossref] [Google Scholar]
  141. 141.
    Yoshizawa K, Johnson KP, Sweet AD, Yao I, Ferreira RL, Cameron SL. 2018.. Mitochondrial phylogenomics and genome rearrangements in the barklice (Insecta: Psocodea). . Mol. Phylogenet. Evol. 119::11827
    [Crossref] [Google Scholar]
  142. 142.
    Yu D-N, Yu P-P, Zhang L-P, Storey KB, Gao Z-Y, Zhang J-Y. 2021.. Increasing 28 mitogenomes of Ephemeroptera, Odonata and Plecoptera support the Chiastomyaria hypothesis with three different outgroup combinations. . PeerJ 9::e11402
    [Crossref] [Google Scholar]
  143. 143.
    Yuan ML, Zhang L-J, Zhang Q-L, Zhang L, Li M, et al. 2020.. Mitogenome evolution in ladybirds: potential association with dietary adaptation. . Ecol. Evol. 10::104253
    [Crossref] [Google Scholar]
  144. 144.
    Yuan ML, Zhang Q-L, Zhang L, Jia C-L, Li X-P, et al. 2018.. Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau. . Mol. Phylogenet. Evol. 122::11624
    [Crossref] [Google Scholar]
  145. 145.
    Zhang J, Kan X, Miao G, Hu S, Sun Q, Tian W. 2020.. qMGR: a new approach for quantifying mitochondrial genome rearrangement. . Mitochondrion 52::2023
    [Crossref] [Google Scholar]
  146. 146.
    Zhang W, Li H, Shih C, Zhang A, Ren D. 2018.. Phylogenetic analyses with four new Cretaceous bristletails reveal inter-relationships of Archaeognatha and Gondwana origin of Meinertellidae. . Cladistics 34::384406
    [Crossref] [Google Scholar]
  147. 147.
    Zhang X, Kang Z, Mao M, Li X, Cameron SL, et al. 2016.. Comparative mt genomics of the Tipuloidea (Diptera: Nematocera: Tipulomorpha) and its implications for the phylogeny of the Tipulomorpha. . PLOS ONE 11::e0158167
    [Crossref] [Google Scholar]
  148. 148.
    Zhang Y, Fu Y-T, Yao C, Deng Y-P, Nie Y, Liu G-H. 2022.. Mitochondrial phylogenomics provides insights into the taxonomy and phylogeny of fleas. . Parasites Vectors 15::223
    [Crossref] [Google Scholar]
  149. 149.
    Zhang Z-Q. 2013.. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). . Zootaxa 3703::182
    [Google Scholar]
  150. 150.
    Zhu Q, Hastriter MW, Whiting MF, Dittmar K. 2015.. Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. . Mol. Phylogenet. Evol. 90::12939
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-013024-015553
Loading
/content/journals/10.1146/annurev-ento-013024-015553
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error