1932

Abstract

()-β-farnesene (EBF) stands out as a crucial volatile organic compound, exerting significant influence on the complex interactions between plants, aphids, and predator insects. Serving as an alarm signal within aphids, EBF is also emitted by plants as a defense mechanism to attract aphid predators. This review delves into EBF sources, functions, biosynthesis, detection mechanisms, and its coevolutionary impacts on aphids and insect predators. The exploration underscores the need to comprehend the biophysical and structural foundations of EBF receptors in aphids, emphasizing their role in unraveling the intricate patterns and mechanisms of interaction between EBF and target receptors. Furthermore, we advocate for adopting structure-based or machine-learning methodologies to anticipate receptor–ligand interactions. On the basis of this knowledge, we propose future research directions aiming at designing, optimizing, and screening more stable and efficient active odorants. A pivotal outcome of this comprehensive investigation aims to contribute to the development of more effective aphid-targeted control strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-013024-021018
2025-01-28
2025-04-17
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-013024-021018.html?itemId=/content/journals/10.1146/annurev-ento-013024-021018&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Al Abassi S, Birkett MA, Pettersson J, Pickett JA, Wadhams LJ, Woodcock CM. 2000.. Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. . J. Chem. Ecol. 26::176571
    [Crossref] [Google Scholar]
  2. 2.
    Al-Ghanim KA, Krishnappa K, Pandiyan J, Nicoletti M, Gurunathan B, Govindarajan M. 2023.. Insecticidal potential of Matricaria chamomilla’s essential oil and its components (E)-β-farnesene, germacrene D, and α-bisabolol oxide A against agricultural pests, malaria, and Zika virus vectors. . Agriculture 13::779
    [Crossref] [Google Scholar]
  3. 3.
    Ali J, Sobhy IS, Bruce TJ. 2022.. Wild potato ancestors as potential sources of resistance to the aphid Myzus persicae. . Pest Manag. Sci. 78:(9):393138
    [Crossref] [Google Scholar]
  4. 4.
    Awmack CS, Woodcock CM, Harrington R. 1997.. Climate change may increase vulnerability of aphids to natural enemies. . Ecol. Entomol. 22::36668
    [Crossref] [Google Scholar]
  5. 5.
    Badji CA, Sol-Mochkovitch Z, Fallais C, Sochard C, Simon JC, et al. 2021.. Alarm pheromone responses depend on genotype, but not on the presence of facultative endosymbionts in the pea aphid Acyrthosiphon pisum. . Insects 12::43
    [Crossref] [Google Scholar]
  6. 6.
    Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, et al. 2006.. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. . PNAS 103::1050913
    [Crossref] [Google Scholar]
  7. 7.
    Beran F, Rahfeld P, Luck K, Nagel R, Vogel H, et al. 2016.. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle. . PNAS 113::292227
    [Crossref] [Google Scholar]
  8. 8.
    Bhatia V, Maisnam J, Jain A, Sharma KK, Bhattacharya R. 2015.. Aphid-repellent pheromone E-β-farnesene is generated in transgenic Arabidopsis thaliana over-expressing farnesyl diphosphate synthase2. . Ann. Bot. 115::58191
    [Crossref] [Google Scholar]
  9. 9.
    Bowers WS, Nault LR, Webb RE, Dutky SR. 1972.. Aphid alarm pheromone: isolation, identification, synthesis. . Science 177::112122
    [Crossref] [Google Scholar]
  10. 10.
    Bowers WS, Nishino C, Montgomery ME, Nault LR, Nielson MW. 1977.. Sesquiterpene progenitor, germacrene A: an alarm pheromone in aphids. . Science 196::68081
    [Crossref] [Google Scholar]
  11. 11.
    Boyle SM, McInally S, Ray A. 2013.. Expanding the olfactory code by in silico decoding of odor-receptor chemical space. . eLife 2::e01120
    [Crossref] [Google Scholar]
  12. 12.
    Bromley AK, Dunn JA, Anderson M. 1979.. Ultrastructure of the antennal sensilla of aphids. I. Coeloconic and placoid sensilla. . Cell Tissue Res. 203::42742
    [Crossref] [Google Scholar]
  13. 13.
    Bromley AK, Dunn JA, Anderson M. 1980.. Ultrastructure of the antennal sensilla of aphids. II. Trichoid, chordotonal and campaniform sensilla. . Cell Tissue Res. 205::493511
    [Crossref] [Google Scholar]
  14. 14.
    Bruce TJA, Aradottir GI, Smart LE, Martin JL, Caulfield JC, et al. 2015.. The first crop plant genetically engineered to release an insect pheromone for defence. . Sci. Rep. 5::11183
    [Crossref] [Google Scholar]
  15. 15.
    Bruce TJA, Birkett MA, Blande J, Hooper AM, Martin JL, et al. 2005.. Response of economically important aphids to components of Hemizygia petiolata essential oil. . Pest Manag. Sci. 61::111521
    [Crossref] [Google Scholar]
  16. 16.
    Butt TM, Beckett A, Wilding N. 1990.. A histological study of the invasive and developmental processes of the aphid pathogen Erynia neoaphidis (Zygomycotina: Entomophthorales) in the pea aphid Acyrthosiphon pisum. . Can. J. Bot. 68::215363
    [Crossref] [Google Scholar]
  17. 17.
    Butterwick JA, del Mármol J, Kim KH, Kahlson MA, Rogow JA, et al. 2018.. Cryo-EM structure of the insect olfactory receptor Orco. . Nature 560::44752
    [Crossref] [Google Scholar]
  18. 18.
    Buttery RG, Ling LC. 1984.. Corn leaf volatiles: identification using Tenax trapping for possible insect attractants. . J. Agric. Food Chem. 32::11046
    [Crossref] [Google Scholar]
  19. 19.
    Caballero-Vidal G, Bouysset C, Gévar J, Mbouzid H, Nara C, et al. 2021.. Reverse chemical ecology in a moth: machine learning on odorant receptors identifies new behaviorally active agonists. . Cell. Mol. Life Sci. 78::6593603
    [Crossref] [Google Scholar]
  20. 20.
    Caballero-Vidal G, Bouysset C, Grunig H, Fiorucci S, Montagné N, et al. 2020.. Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. . Sci. Rep. 10::1655
    [Crossref] [Google Scholar]
  21. 21.
    Cao D, Liu Y, Walker WB, Li J, Wang G. 2014.. Molecular characterization of the Aphis gossypii olfactory receptor gene families. . PLOS ONE 9::e101187
    [Crossref] [Google Scholar]
  22. 22.
    Chen SW, Edwards JS. 1972.. Observations on the structure of secretory cells associated with aphid cornicles. . Z. Zellforsch. 130::31217
    [Crossref] [Google Scholar]
  23. 23.
    Cheng YJ, Li ZX. 2019.. Both farnesyl diphosphate synthase genes are involved in the production of alarm pheromone in the green peach aphid Myzus persicae. . Arch. Insect Biochem. Physiol. 100::e21530
    [Crossref] [Google Scholar]
  24. 24.
    Cheng YJ, Li ZX. 2019.. Spatiotemporal expression profiling of the farnesyl diphosphate synthase genes in aphids and analysis of their associations with the biosynthesis of alarm pheromone. . Bull. Entomol. Res. 109::398407
    [Crossref] [Google Scholar]
  25. 25.
    Chepurwar S, Gupta A, Haddad R, Gupta N. 2019.. Sequence-based prediction of olfactory receptor responses. . Chem. Senses 44::693703
    [Crossref] [Google Scholar]
  26. 26.
    Crock J, Wildung M, Croteau R. 1997.. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene. . PNAS 94::1283338
    [Crossref] [Google Scholar]
  27. 27.
    Darragh K, Orteu A, Black D, Byers KJRP, Szczerbowski D, et al. 2021.. A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. . PLOS Biol. 19::e3001022
    [Crossref] [Google Scholar]
  28. 28.
    Dawson GW, Griffiths DC, Merritt LA, Mudd A, Pickett JA, et al. 1990.. Aphid semiochemicals—a review, and recent advances on the sex pheromone. . J. Chem. Ecol. 16::301930
    [Crossref] [Google Scholar]
  29. 29.
    Dawson GW, Griffiths DC, Pickett JA, Smith MC, Woodcock CM. 1984.. Natural inhibition of the aphid alarm pheromone. . Entomol. Exp. Appl. 36::19799
    [Crossref] [Google Scholar]
  30. 30.
    Dawson GW, Griffiths DC, Pickett JA, Woodcock CM. 1983.. Decreased response to alarm pheromone by insecticide-resistant aphids. . Naturwissenschaften 70::25455
    [Crossref] [Google Scholar]
  31. 31.
    De Biasio F, Riviello L, Bruno D, Grimaldi A, Congiu T, et al. 2015.. Expression pattern analysis of odorant-binding proteins in the pea aphid Acyrthosiphon pisum. . Insect Sci. 22::22034
    [Crossref] [Google Scholar]
  32. 32.
    de Fouchier A, Walker WB, Montagné N, Steiner C, Binyameen M, et al. 2017.. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. . Nat. Commun. 8::15709
    [Crossref] [Google Scholar]
  33. 33.
    de Vos M, Cheng WY, Summers HE, Raguso RA, Jander G. 2010.. Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes. . PNAS 107::1467378
    [Crossref] [Google Scholar]
  34. 34.
    del Mármol J, Yedlin MA, Ruta V. 2021.. The structural basis of odorant recognition in insect olfactory receptors. . Nature 597::12631
    [Crossref] [Google Scholar]
  35. 35.
    Dill LM, Fraser AHG, Roitberg BD. 1990.. The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum. . Oecologia 83::47378
    [Crossref] [Google Scholar]
  36. 36.
    Dixon AFG, Agarwala BK. 1999.. Ladybird-induced life-history changes in aphids. . Proc. R. Soc. B 266::154953
    [Crossref] [Google Scholar]
  37. 37.
    Dixon AFG, Stewart WA. 1975.. Function of the siphunculi in aphids with particular reference to the sycamore aphid, Drepanosiphum platanoides. . J. Zool. 175::27989
    [Crossref] [Google Scholar]
  38. 38.
    Du S, Yang Z, Qin Y, Wang S, Duan H, Yang X. 2018.. Computational investigation of the molecular conformation-dependent binding mode of (E)-β-farnesene analogs with a heterocycle to aphid odorant-binding proteins. . J. Mol. Model. 24::70
    [Crossref] [Google Scholar]
  39. 39.
    Du YJ, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM. 1998.. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. . J. Chem. Ecol. 24::135568
    [Crossref] [Google Scholar]
  40. 40.
    Du Z, Su H, Wang W, Ye L, Wei HY, et al. 2021.. The trRosetta server for fast and accurate protein structure prediction. . Nat. Protoc. 16::563451
    [Crossref] [Google Scholar]
  41. 41.
    Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013.. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. . New Phytol. 198::1632
    [Crossref] [Google Scholar]
  42. 42.
    Edwards JS. 1966.. Defence by smear: supercooling in the cornicle wax of aphids. . Nature 211::7374
    [Crossref] [Google Scholar]
  43. 43.
    Edwards LJ, Siddall JB, Dunham LL, Uden P, Kislow C. 1973.. Trans-β-farnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). . Nature 241::12627
    [Crossref] [Google Scholar]
  44. 44.
    Eichele JL, Dreyer J, Heinz R, Foster SP, Prischmann-Voldseth DA, Harmon JP. 2016.. Soybean aphid response to their alarm pheromone E-β-farnesene (EBF). . J. Insect Behav. 29::38594
    [Crossref] [Google Scholar]
  45. 45.
    Fan J, Xue W, Duan H, Jiang X, Zhang Y, et al. 2017.. Identification of an intraspecific alarm pheromone and two conserved odorant-binding proteins associated with (E)-β-farnesene perception in aphid Rhopalosiphum padi. . J. Insect Physiol. 101::15160
    [Crossref] [Google Scholar]
  46. 46.
    Fan J, Zhang Y, Francis F, Cheng D, Sun J, Chen J. 2015.. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae. . Insect Biochem. Mol. Biol. 64::1624
    [Crossref] [Google Scholar]
  47. 47.
    Foster SP, Woodcock CM, Williamson MS, Devonshire AL, Denholm I, Thompson R. 1999.. Reduced alarm response by peach-potato aphids, Myzus persicae (Hemiptera: Aphididae), with knock-down resistance to insecticides (kdr) may impose a fitness cost through increased vulnerability to natural enemies. . Bull. Entomol. Res. 89::13338
    [Crossref] [Google Scholar]
  48. 48.
    Francis F, Vandermoten S, Verheggen F, Lognay G, Haubruge E. 2005.. Is the E-β-farnesene only volatile terpenoid in aphids. . J. Appl. Entomol. 129::611
    [Crossref] [Google Scholar]
  49. 49.
    Gao L, Zhang XT, Zhou F, Chen HL, Lin YJ. 2015.. Expression of a peppermint (E)-β-farnesene synthase gene in rice has significant repelling effect on bird cherry-oat aphid (Rhopalosiphum padi). . Plant Mol. Biol. Rep. 33::196774
    [Crossref] [Google Scholar]
  50. 50.
    Gilbson RW, Pickett JA. 1983.. Wild potato repels aphids by release of aphid alarm pheromone. . Nature 302::6089
    [Crossref] [Google Scholar]
  51. 51.
    Gosset V, Harmel N, Gobel C, Francis F, Haubruge E, et al. 2009.. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. . J. Exp. Bot. 60::123140
    [Crossref] [Google Scholar]
  52. 52.
    Gu S-H, Wu K-M, Guo Y-Y, Field LM, Pickett JA, et al. 2013.. Identification and expression profiling of odorant binding proteins and chemosensory proteins between two wingless morphs and a winged morph of the cotton aphid Aphis gossypii Glover. . PLOS ONE 8::e73524
    [Crossref] [Google Scholar]
  53. 53.
    Guo M, Du L, Chen Q, Feng Y, Zhang J, et al. 2021.. Odorant receptors for detecting flowering plant cues are functionally conserved across moths and butterflies. . Mol. Biol. Evol. 38::141327
    [Crossref] [Google Scholar]
  54. 54.
    Gupta R, Mittal A, Agrawal V, Gupta S, Gupta K, et al. 2021.. OdoriFy: a conglomerate of artificial intelligence–driven prediction engines for olfactory decoding. . J. Biol. Chem. 297::100956
    [Crossref] [Google Scholar]
  55. 55.
    Gut J, van Oosten AM. 1985.. Functional significance of the alarm pheromone composition in various morphs of the green peach aphid, Myzus persicae. . Entomol. Exp. Appl. 37::199204
    [Crossref] [Google Scholar]
  56. 56.
    Gut JP, Harrewijn P, van Oosten AM, van Rheenen B. 1987.. Additional function of alarm pheromones in development processes of aphids. . Meded. Fac. Landbouwwet. 52::37178
    [Google Scholar]
  57. 57.
    Harmel N, Almohamad R, Fauconnier M, Du Jardin P, Verheggen F, et al. 2007.. Role of terpenes from aphid-infested potato on searching and oviposition behavior of Episyrphus balteatus. . Insect Sci. 14::5763
    [Crossref] [Google Scholar]
  58. 58.
    Harrison KV, Preisser EL. 2016.. Dropping behavior in the pea aphid (Hemiptera: Aphididae): How does environmental context affect antipredator responses?. J. Insect Sci. 16::89
    [Crossref] [Google Scholar]
  59. 59.
    Hatano E, Kunert G, Bartram S, Boland W, Gershenzon J, Weisser WW. 2008.. Do aphid colonies amplify their emission of alarm pheromone?. J. Chem. Ecol. 34::114952
    [Crossref] [Google Scholar]
  60. 60.
    Hentley WT, Vanbergen AJ, Hails RS, Jones TH, Johnson SN. 2014.. Elevated atmospheric CO2 impairs aphid escape responses to predators and conspecific alarm signals. . J. Chem. Ecol. 40::111014
    [Crossref] [Google Scholar]
  61. 61.
    Heuskin S, Lorge S, Godin B, Leroy P, Frere I, et al. 2012.. Optimisation of a semiochemical slow-release alginate formulation attractive towards Aphidius ervi Haliday parasitoids. . Pest Manag. Sci. 68::12736
    [Crossref] [Google Scholar]
  62. 62.
    Heuskin S, Rozet E, Lorge S, Farmakidis J, Hubert P, et al. 2010.. Validation of a fast gas chromatographic method for the study of semiochemical slow release formulations. . J. Pharm. Biomed. Anal. 53::96272
    [Crossref] [Google Scholar]
  63. 63.
    Hockland SH, Dawson GW, Griffiths DC, Marples B, Pickett JA, Woodcock C. 1986.. The use of aphid alarm pheromone ((E)-beta-farnesene) to increase effectiveness of the entomophilic fungus Verticillium lecanii in controlling aphids on chrysanthemums under glass. . In Fundamental and Applied Aspects of Invertebrate Pathology, ed. RA Samson, JM Vlak, D Peters , p. 252. Wageningen, Neth.:: Found. Fourth Int. Colloq. Invertebr. Pathol.
    [Google Scholar]
  64. 64.
    Huber DP, Philippe RN, Godard KA, Sturrock RN, Bohlmann J. 2005.. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. . Phytochemistry 66::142739
    [Crossref] [Google Scholar]
  65. 65.
    International Aphid Genomics Consortium. 2010.. Genome sequence of the pea aphid Acyrthosiphon pisum. . PLOS Biol. 8::e1000313
    [Crossref] [Google Scholar]
  66. 66.
    Jiang H, Kong JJ, Chen HC, Xiang ZY, Zhang WP, et al. 2020.. Cypripedium subtropicum (Orchidaceae) employs aphid colony mimicry to attract hoverfly (Syrphidae) pollinators. . New Phytol. 227::121321
    [Crossref] [Google Scholar]
  67. 67.
    Jiang X, Jiang J, Yu M, Zhang S, Qin Y, et al. 2023.. Functional analysis of odorant-binding proteins for the parasitic host location to implicate convergent evolution between the grain aphid and its parasitoid Aphidius gifuensis. . Int. J. Biol. Macromol. 226::51024
    [Crossref] [Google Scholar]
  68. 68.
    Jin JY, Zhang SR, Zhao MY, Jing TT, Zhang N, et al. 2020.. Scenarios of genes-to-terpenoids network led to the identification of a novel α/β-farnesene/β-ocimene synthase in Camellia sinensis. . Int. J. Mol. Sci. 21::655
    [Crossref] [Google Scholar]
  69. 69.
    Joachim C, Hatano E, David A, Kunert M, Linse C, Weisser WW. 2013.. Modulation of aphid alarm pheromone emission of pea aphid prey by predators. . J. Chem. Ecol. 39::77382
    [Crossref] [Google Scholar]
  70. 70.
    Joachim C, Vosteen I, Weisser WW. 2015.. The aphid alarm pheromone (E)-β-farnesene does not act as a cue for predators searching on a plant. . Chemoecology 25::10513
    [Crossref] [Google Scholar]
  71. 71.
    Joachim C, Weisser WW. 2013.. Real-time monitoring of (E)-β-farnesene emission in colonies of the pea aphid, Acyrthosiphon pisum, under lacewing and ladybird predation. . J. Chem. Ecol. 39::125462
    [Crossref] [Google Scholar]
  72. 72.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  73. 73.
    Kepchia D, Xu P, Terryn R, Castro A, Schürer SC, et al. 2019.. Use of machine learning to identify novel, behaviorally active antagonists of the insect odorant receptor co-receptor (Orco) subunit. . Sci. Rep. 9::4055
    [Crossref] [Google Scholar]
  74. 74.
    Kislow CJ, Edwards L. 1972.. Repellent odour in aphids. . Nature 235::1089
    [Crossref] [Google Scholar]
  75. 75.
    Köllner TG, David A, Luck K, Beran F, Kunert G, et al. 2022.. Biosynthesis of iridoid sex pheromones in aphids. . PNAS 119::e2211254119
    [Crossref] [Google Scholar]
  76. 76.
    Kourtchev I, Bejan I, Sodeau JR, Wenger JC. 2009.. Gas-phase reaction of (E)-β-farnesene with ozone: rate coefficient and carbonyl products. . Atmos. Environ. 43::318290
    [Crossref] [Google Scholar]
  77. 77.
    Kunert G, Otto S, Röse USR, Gershenzon J, Weisser WW. 2005.. Alarm pheromone mediates production of winged dispersal morphs in aphids. . Ecol. Lett. 8::596603
    [Crossref] [Google Scholar]
  78. 78.
    Kunert G, Reinhold C, Gershenzon J. 2010.. Constitutive emission of the aphid alarm pheromone, (E)-β-farnesene, from plants does not serve as a direct defense against aphids. . BMC Ecol. 10::23
    [Crossref] [Google Scholar]
  79. 79.
    Kunert G, Weisser WW. 2003.. The interplay between density- and trait-mediated effects in predator-prey interactions: a case study in aphid wing polymorphism. . Oecologia 135::30412
    [Crossref] [Google Scholar]
  80. 80.
    Lancaster J, Khrimian A, Young S, Lehner B, Luck K, et al. 2018.. De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. . PNAS 115::E863441
    [Google Scholar]
  81. 81.
    Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. 2004.. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. . Neuron 43::70314
    [Crossref] [Google Scholar]
  82. 82.
    Lee BW, Basu S, Bera S, Casteel CL, Crowder DW. 2021.. Responses to predation risk cues and alarm pheromones affect plant virus transmission by an aphid vector. . Oecologia 196::100515
    [Crossref] [Google Scholar]
  83. 83.
    Lewis MJ, Prosser IM, Mohib A, Field LM. 2008.. Cloning and characterisation of a prenyltransferase from the aphid Myzus persicae with potential involvement in alarm pheromone biosynthesis. . Insect Mol. Biol. 17::43743
    [Crossref] [Google Scholar]
  84. 84.
    Li H, Zhu Z, Yang Z, Du S, Wang Y, et al. 2022.. Odorant-binding protein 3-oriented rational design and discovery of novel jasmonate derivatives as potential aphid-repellent agents. . J. Agric. Food Chem. 70::11792803
    [Crossref] [Google Scholar]
  85. 85.
    Li J, Hu H, Mao J, Yu L, Stoopen G, et al. 2019.. Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. . New Phytol. 223::160720
    [Crossref] [Google Scholar]
  86. 86.
    Li Q, Zhang YF, Zhang TM, Wan JH, Zhang YD, et al. 2023.. iORbase: a database for the prediction of the structures and functions of insect olfactory receptors. . Insect Sci. 30::124554
    [Crossref] [Google Scholar]
  87. 87.
    Li Z, Chang C, Yuan Y, Zhang X, Ge F. 2023.. Functional plant, Cnidium monnieri, facilitates the conservation and the biocontrol performance of natural enemies. . Innov. Geosci. 1::100045
    [Crossref] [Google Scholar]
  88. 88.
    Ling C, Zheng L, Yu X, Wang H, Wang C, et al. 2020.. Cloning and functional analysis of three aphid alarm pheromone genes from German chamomile (Matricaria chamomilla L.). . Plant Sci. 294::110463
    [Crossref] [Google Scholar]
  89. 89.
    Loughrin JH, Manukian A, Heath RR, Turlings TCJ, Tumlinson JH. 1994.. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. . PNAS 91::1183640
    [Crossref] [Google Scholar]
  90. 90.
    Ma GY, Sun XF, Zhang YL, Li ZX, Shen ZR. 2010.. Molecular cloning and characterization of a prenyltransferase from the cotton aphid, Aphis gossypii. . Insect Biochem. Mol. Biol. 40::55261
    [Crossref] [Google Scholar]
  91. 91.
    Martin P, Johnson SN. 2011.. Evidence that elevated CO2 reduces resistance to the European large raspberry aphid in some raspberry cultivars. . J. Appl. Entomol. 135::23740
    [Crossref] [Google Scholar]
  92. 92.
    Martinez-Torres D, Foster SP, Field LM, Devonshire AL, Williamson MS. 1999.. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). . Insect Mol. Biol. 8::33946
    [Crossref] [Google Scholar]
  93. 93.
    Maruyama T, Ito M, Honda G. 2001.. Molecular cloning, functional expression and characterization of (E)-β-farnesene synthase from Citrus junos. . Biol. Pharmaceut. Bull. 24::117175
    [Crossref] [Google Scholar]
  94. 94.
    Micha SG, Wyss U. 1996.. Aphid alarm pheromone (E)-β-farnesene: a host finding kairomone for the aphid primary parasitoid Aphidius uzbekistanicus (Hymenoptera-Aphidiinae). . Chemoecology 7::13239
    [Crossref] [Google Scholar]
  95. 95.
    Mondor EB, Baird DS, Slessor KN, Roitberg BD. 2000.. Ontogeny of alarm pheromone secretion in pea aphid, Acyrthosiphon pisum. . J. Chem. Ecol. 26::287582
    [Crossref] [Google Scholar]
  96. 96.
    Mondor EB, Roitberg BD. 2003.. Age-dependent fitness costs of alarm signaling in aphids. . Can. J. Zool. 81::75762
    [Crossref] [Google Scholar]
  97. 97.
    Mondor EB, Tremblay MN, Awmack CS, Lindroth RL. 2004.. Divergent pheromone-mediated insect behaviour under global atmospheric change. . Global Change Biol. 10::182024
    [Crossref] [Google Scholar]
  98. 98.
    Montgomery ME, Nault LR. 1977.. Comparative response of aphids to the alarm pheromone, (E)-β-farnesene. . Entomol. Exp. Appl. 22::23642
    [Crossref] [Google Scholar]
  99. 99.
    Mostafavi R, Henning JA, Gardea-Torresday J, Ray IM. 1996.. Variation in aphid alarm pheromone content among glandular and eglandular-haired Medicago accessions. . J. Chem. Ecol. 22::162938
    [Crossref] [Google Scholar]
  100. 100.
    Nault LR, Edwards LJ, Styer WE. 1973.. Aphid alarm pheromones: secretion and reception. . Environ. Entomol. 2::1015
    [Crossref] [Google Scholar]
  101. 101.
    Nishino C, Bowers WS, Montgomery ME, Nault LR, Nielson MW. 1977.. Alarm pheromone of the spotted alfalfa aphid, Therioaphis maculata Buckton. . J. Chem. Ecol. 3::34957
    [Crossref] [Google Scholar]
  102. 102.
    Northey T, Venthur H, De Biasio F, Chauviac F, Cole A, et al. 2016.. Crystal structures and binding dynamics of odorant-binding protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri. . Sci. Rep. 6::24739
    [Crossref] [Google Scholar]
  103. 103.
    Pan S, Li W, Qin Y, Yang Z, Liu Y, et al. 2022.. Discovery of novel potential aphid repellents: geranic acid esters containing substituted aromatic rings. . Molecules 27::5949
    [Crossref] [Google Scholar]
  104. 104.
    Park KC, Hardie J. 2002.. Functional specialisation and polyphenism in aphid olfactory sensilla. . J. Insect Physiol. 48::52735
    [Crossref] [Google Scholar]
  105. 105.
    Park KC, Hardie J. 2004.. Electrophysiological characterisation of olfactory sensilla in the black bean aphid, Aphis fabae. . J. Insect Physiol. 50::64755
    [Crossref] [Google Scholar]
  106. 106.
    Picaud S, Brodelius M, Brodelius PE. 2005.. Expression, purification and characterization of recombinant (E)-β-farnesene synthase from Artemisia annua. . Phytochemistry 66::96167
    [Crossref] [Google Scholar]
  107. 107.
    Pickett JA, Griffiths DC. 1980.. Composition of aphid alarm pheromones. . J. Chem. Ecol. 6::34960
    [Crossref] [Google Scholar]
  108. 108.
    Pickett JA, Wadhams LJ, Woodcock CM. 1992.. The chemical ecology of aphids. . Annu. Rev. Entomol. 37::6790
    [Crossref] [Google Scholar]
  109. 109.
    Qiao H, Tuccori E, He X, Gazzano A, Field L, et al. 2009.. Discrimination of alarm pheromone (E)-β-farnesene by aphid odorant-binding proteins. . Insect Biochem. Mol. Biol. 39::41419
    [Crossref] [Google Scholar]
  110. 110.
    Qin Y, Zhang J, Song DL, Duan H, Li W, Yang X. 2016.. Novel (E)-β-farnesene analogues containing 2-nitroiminohexahydro-1,3,5-triazine: synthesis and biological activity evaluation. . Molecules 21::825
    [Crossref] [Google Scholar]
  111. 111.
    Qin Y-G, Yang Z-K, Song D-L, Wang Q, Gu S-H, et al. 2020.. Bioactivities of synthetic salicylate-substituted carboxyl (E)-β-farnesene derivatives as ecofriendly agrochemicals and their binding mechanism with potential targets in aphid olfactory system. . Pest Manag. Sci. 76::246572
    [Crossref] [Google Scholar]
  112. 112.
    Qin Y-G, Yang Z-K, Zhou J-J, Zhang S-Y, Pan S-X, et al. 2022.. Effects of carboxyl and acylamino linkers in synthetic derivatives of aphid alarm pheromone (E)-β-farnesene on repellent, binding and aphicidal activity. . J. Mol. Struct. 1268::133658
    [Crossref] [Google Scholar]
  113. 113.
    Rebholz Z, Lancaster J, Larose H, Khrimian A, Luck K, et al. 2023.. Ancient origin and conserved gene function in terpene pheromone and defense evolution of stink bugs and hemipteran insects. . Insect Biochem. Mol. Biol. 152::103879
    [Crossref] [Google Scholar]
  114. 114.
    Renou M, Anton S. 2020.. Insect olfactory communication in a complex and changing world. . Curr. Opin. Insect Sci. 42::17
    [Crossref] [Google Scholar]
  115. 115.
    Robertson HM, Robertson ECN, Walden KKO, Enders LS, Miller NJ. 2019.. The chemoreceptors and odorant binding proteins of the soybean and pea aphids. . Insect Biochem. Mol. Biol. 105::6978
    [Crossref] [Google Scholar]
  116. 116.
    Roy HE, Pell JK, Alderson PG. 1999.. Effects of fungal infection on the alarm response of pea aphids. . J. Invertebr. Pathol. 74::6975
    [Crossref] [Google Scholar]
  117. 117.
    Schettino M, Grasso DA, Weldegergis BT, Castracani C, Mori A, et al. 2017.. Response of a predatory ant to volatiles emitted by aphid- and caterpillar-infested cucumber and potato plants. . J. Chem. Ecol. 43::100722
    [Crossref] [Google Scholar]
  118. 118.
    Schnee C, Köllner TG, Gershenzon J, Degenhardt J. 2002.. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. . Plant Physiol. 130::204960
    [Crossref] [Google Scholar]
  119. 119.
    Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J. 2006.. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. . PNAS 103::112934
    [Crossref] [Google Scholar]
  120. 120.
    Schwartzberg EG, Kunert G, Stephan C, David A, Röse USR, et al. 2008.. Real-time analysis of alarm pheromone emission by the pea aphid (Acyrthosiphon pisum) under predation. . J. Chem. Ecol. 34::7681
    [Crossref] [Google Scholar]
  121. 121.
    Shah PA, Pickett JA, Vandenberg JD. 1999.. Responses of Russian wheat aphid (Homoptera: Aphididae) to aphid alarm pheromone. . Environ. Entomol. 28::98385
    [Crossref] [Google Scholar]
  122. 122.
    Sims C, Withall DM, Oldham N, Stockman R, Birkett M. 2022.. Computational investigation of aphid odorant receptor structure and binding function. . J. Biomol. Struct. Dyn. 41::364758
    [Crossref] [Google Scholar]
  123. 123.
    Sloggett JJ, Weisser WW. 2002.. Parasitoids induce production of the dispersal morph in the pea aphid, Acyrthosiphon pisum. . Oikos 98::32333
    [Crossref] [Google Scholar]
  124. 124.
    Smadja C, Shi P, Butlin RK, Robertson HM. 2009.. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. . Mol. Biol. Evol. 26::207386
    [Crossref] [Google Scholar]
  125. 125.
    Sobhy IS, Woodcock CM, Powers SJ, Caulfield JC, Pickett JA, Birkett MA. 2017.. cis-Jasmone elicits aphid-induced stress signalling in potatoes. . J. Chem. Ecol. 43::3952
    [Crossref] [Google Scholar]
  126. 126.
    Song X, Qin YG, Yin Y, Li ZX. 2021.. Identification and behavioral assays of alarm pheromone in the vetch aphid Megoura viciae. . J. Chem. Ecol. 47::74046
    [Crossref] [Google Scholar]
  127. 127.
    Stökl J, Brodmann J, Dafni A, Ayasse M, Hansson BS. 2011.. Smells like aphids: Orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. . Proc. Biol. Sci. 278::121622
    [Google Scholar]
  128. 128.
    Su S, Liu X, Pan G, Hou X, Zhang H, Yuan Y. 2015.. In vitro characterization of a (E)-β-farnesene synthase from Matricaria recutita L. and its up-regulation by methyl jasmonate. . Gene 571::5864
    [Crossref] [Google Scholar]
  129. 129.
    Sun CX, Li ZX. 2019.. Production of alarm pheromone starts at embryo stage and is modulated by rearing conditions and farnesyl diphosphate synthase genes in the bird cherry-oat aphid Rhopalosiphum padi. . Bull. Entomol. Res. 109::82130
    [Crossref] [Google Scholar]
  130. 130.
    Sun CX, Li ZX. 2021.. Biosynthesis of aphid alarm pheromone is modulated in response to starvation stress under regulation by the insulin, glycolysis and isoprenoid pathways. . J. Insect Physiol. 128::104174
    [Crossref] [Google Scholar]
  131. 131.
    Sun X-F, Li Z-X. 2012.. In silico and in vitro analyses identified three amino acid residues critical to the catalysis of two aphid farnesyl diphosphate synthase. . Protein J. 31::41724
    [Crossref] [Google Scholar]
  132. 132.
    Sun Y, Li Y, Zhang W, Jiang B, Tao SM, et al. 2022.. The main component of the aphid alarm pheromone (E)-β-farnesene affects the growth and development of Spodoptera exigua by mediating juvenile hormone-related genes. . Front. Plant Sci. 13::863626
    [Crossref] [Google Scholar]
  133. 133.
    Sun Y, Qiao H, Ling Y, Yang S, Rui C, et al. 2011.. New analogues of (E)-β-farnesene with insecticidal activity and binding affinity to aphid odorant-binding proteins. . J. Agric. Food Chem. 59::245661
    [Crossref] [Google Scholar]
  134. 134.
    Sun YC, Su JW, Ge F. 2010.. Elevated CO2 reduces the response of Sitobion avenae (Homoptera: Aphididae) to alarm pheromone. . Agric. Ecosyst. Environ. 135::14047
    [Crossref] [Google Scholar]
  135. 135.
    Sun YF, De Biasio F, Qiao HL, Iovinella I, Yang SX, et al. 2012.. Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-β-farnesene and structural analogues. . PLOS ONE 7::e32759
    [Crossref] [Google Scholar]
  136. 136.
    Sun YP, Zhao LJ, Sun L, Zhang SG, Ban LP. 2013.. Immunolocalization of odorant-binding proteins on antennal chemosensilla of the peach aphid Myzus persicae (Sulzer). . Chem. Senses 38::12936
    [Crossref] [Google Scholar]
  137. 137.
    Sun ZJ, Li ZX. 2017.. Host plants and obligate endosymbionts are not the sources for biosynthesis of the aphid alarm pheromone. . Sci. Rep. 7::6041
    [Crossref] [Google Scholar]
  138. 138.
    Sun ZJ, Li ZX. 2018.. The terpenoid backbone biosynthesis pathway directly affects the biosynthesis of alarm pheromone in the aphid. . Insect Mol. Biol. 27::82434
    [Crossref] [Google Scholar]
  139. 139.
    Tegelaar K, Leimar O. 2014.. Alate production in an aphid in relation to ant tending and alarm pheromone. . Ecol. Entomol. 39::66466
    [Crossref] [Google Scholar]
  140. 140.
    Tholl D, Rebholz Z, Morozov AV, O'Maille PE. 2023.. Terpene synthases and pathways in animals: enzymology and structural evolution in the biosynthesis of volatile infochemicals. . Nat. Prod. Rep. 40::76693
    [Crossref] [Google Scholar]
  141. 141.
    Turlings TC, Loughrin JH, McCall PJ, Röse US, Lewis WJ, Tumlinson JH. 1995.. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. . PNAS 92::416974
    [Crossref] [Google Scholar]
  142. 142.
    Turlings TC, Tumlinson JH. 1992.. Systemic release of chemical signals by herbivore-injured corn. . PNAS 89::8399402
    [Crossref] [Google Scholar]
  143. 143.
    Turlings TC, Tumlinson JH, Heath RR, Proveaux AT, Doolittle RE. 1991.. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. . J. Chem. Ecol. 17::223551
    [Crossref] [Google Scholar]
  144. 144.
    Turlings TC, Tumlinson JH, Lewis WJ. 1990.. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. . Science 250::125153
    [Crossref] [Google Scholar]
  145. 145.
    Turlings TCJ, Erb M. 2018.. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. . Annu. Rev. Entomol 63::43352
    [Crossref] [Google Scholar]
  146. 146.
    van Emden HF, Dingley J, Dewhirst SY, Pickett JA, Woodcock CM, Wadhams LJ. 2014.. The effect of artificial diet on the production of alarm pheromone by Myzus persicae. . Physiol. Entomol. 39::28591
    [Crossref] [Google Scholar]
  147. 147.
    van Oosten AM, Gut J, Harrewijn P, Piron PGM. 1990.. Role of farnesene isomers and other terpenoids in the development of different forms of the aphids Aphis fabae and Myzus persicae. . Acta Phytopathol. Entomol. Hung. 25::33142
    [Google Scholar]
  148. 148.
    Verheggen FJ, Haubruge E, De Moraes CM, Mescher MC. 2009.. Social environment influences aphid production of alarm pheromone. . Behav. Ecol. 20::28388
    [Crossref] [Google Scholar]
  149. 149.
    Verheggen FJ, Haubruge E, De Moraes CM, Mescher MC. 2013.. Aphid responses to volatile cues from turnip plants (Brassica rapa) infested with phloem-feeding and chewing herbivores. . Arthropod-Plant Interact. 7::56777
    [Crossref] [Google Scholar]
  150. 150.
    Verma SS, Sinha RK, Jajoo A. 2015.. (E)-β-farnesene gene reduces Lipaphis erysimi colonization in transgenic Brassica juncea lines. . Plant Signal. Behav. 10::e1042636
    [Crossref] [Google Scholar]
  151. 151.
    Wang B, Dong W, Li H, D'Onofrio C, Bai P, et al. 2022.. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. . Curr. Biol. 32::95162.e7
    [Crossref] [Google Scholar]
  152. 152.
    Wang B, Huang T, Yao Y, Francis F, Yan C, et al. 2022.. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone. . J. Integr. Agric. 21::204254
    [Crossref] [Google Scholar]
  153. 153.
    Wang G, Carey AF, Carlson JR, Zwiebel LJ. 2010.. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. . PNAS 107::441823
    [Crossref] [Google Scholar]
  154. 154.
    Wang G-P, Yu X-D, Fan J, Wang C-S, Xia L-Q. 2015.. Expressing an (E)-β-farnesene synthase in the chloroplast of tobacco affects the preference of green peach aphid and its parasitoid. . J. Integr. Plant Biol. 57::77082
    [Crossref] [Google Scholar]
  155. 155.
    Wang L, Bi YD, Liu M, Li W, Liu M, et al. 2020.. Identification and expression profiles analysis of odorant-binding proteins in soybean aphid, Aphis glycines (Hemiptera: Aphididae). . Insect Sci. 27::101930
    [Crossref] [Google Scholar]
  156. 156.
    Wang Q, Liu J-T, Zhang Y-J, Chen J-L, Li X-C, et al. 2021.. Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. . Insect Biochem. Mol. Biol. 130::103528
    [Crossref] [Google Scholar]
  157. 157.
    Wang Q, Zhou J-J, Liu J-T, Huang G-Z, Xu W-Y, et al. 2019.. Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. . Insect Mol. Biol. 28::122
    [Crossref] [Google Scholar]
  158. 158.
    Wang S, Sun Y, Du S, Qin Y, Duan H, Yang X. 2016.. Computer-aided rational design of novel EBF analogues with an aromatic ring. . J. Mol. Model. 22::144
    [Crossref] [Google Scholar]
  159. 159.
    Wang XM, Gao YH, Chen ZH, Li JD, Huang JP, et al. 2019.. ( E)-β-farnesene synthase gene affects aphid behavior in transgenic Medicago sativa. . Pest Manag. Sci. 75::62231
    [Crossref] [Google Scholar]
  160. 160.
    Wang YD, Qiu L, Wang B, Guan ZY, Dong Z, et al. 2024.. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. . Science 384::145360
    [Crossref] [Google Scholar]
  161. 161.
    Webb B, Sali A. 2016.. Comparative protein structure modeling using MODELLER. . Curr. Protoc. Bioinform. 54::5.6.137
    [Crossref] [Google Scholar]
  162. 162.
    Weisser WW, Braendle C, Minoretti N. 1999.. Predator-induced morphological shift in the pea aphid. . Proc. R. Soc. B 266::117581
    [Crossref] [Google Scholar]
  163. 163.
    Wientjens WHJM, Lakwijk AC, van der Marel T. 1973.. Alarm pheromone of grain aphids. . Cell. Mol. Life Sci. 29::65860
    [Crossref] [Google Scholar]
  164. 164.
    Wohlers P, Tjallingii WF. 1983.. Electroantennogram responses of aphids to the alarm pheromone (E)-β-farnesene. . Entomol. Exp. Appl. 33::7982
    [Crossref] [Google Scholar]
  165. 165.
    Xu Q, Hatt S, Han Z, Francis F, Chen J. 2018.. Combining E-β-farnesene and methyl salicylate release with wheat-pea intercropping enhances biological control of aphids in North China. . Biocontrol Sci. Technol. 28::88394
    [Crossref] [Google Scholar]
  166. 166.
    Xu Q, Hatt S, Lopes T, Zhang Y, Bodson B, et al. 2018.. A push-pull strategy to control aphids combines intercropping with semiochemical releases. . J. Pest Sci. 91::93103
    [Crossref] [Google Scholar]
  167. 167.
    Xu T, Xu M, Lu Y, Zhang W, Sun J, et al. 2021.. A trail pheromone mediates the mutualism between ants and aphids. . Curr. Biol. 31::473847.e4
    [Crossref] [Google Scholar]
  168. 168.
    Xue W, Fan J, Zhang Y, Xu Q, Han Z, et al. 2016.. Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae. . PLOS ONE 11::e0161839
    [Crossref] [Google Scholar]
  169. 169.
    Yang L, Yao X, Liu B, Han Y, Ji R, et al. 2022.. Caterpillar-induced rice volatile (E)-β-farnesene impairs the development and survival of Chilo suppressalis larvae by disrupting insect hormone balance. . Front. Physiol. 13::904482
    [Crossref] [Google Scholar]
  170. 170.
    Yang ZK, Qu C, Pan SX, Liu Y, Shi Z, et al. 2022.. Aphid-repellent, ladybug-attraction activities, and binding mechanism of methyl salicylate derivatives containing geraniol moiety. . Pest Manag. Sci. 79::76070
    [Crossref] [Google Scholar]
  171. 171.
    Yu X, Jones HD, Ma Y, Wang G, Xu Z, et al. 2012.. (E)-β-farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum). . Funct. Integr. Genom. 12::20713
    [Crossref] [Google Scholar]
  172. 172.
    Yu XD, Jia DY, Duan PF. 2019.. Plasmid engineering of aphid alarm pheromone in tobacco seedlings affects the preference of aphids. . Plant Signal. Behav. 14::e1588669
    [Crossref] [Google Scholar]
  173. 173.
    Yu XD, Zhang YJ, Ma YZ, Xu ZS, Wang GP, Xia LQ. 2013.. Expression of an (E)-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation. . Crop J. 1::5060
    [Crossref] [Google Scholar]
  174. 174.
    Zhang H, Li ZX. 2014.. A type-III insect geranylgeranyl diphosphate synthase with a novel catalytic property. . Protein Pept. Lett. 21::61523
    [Crossref] [Google Scholar]
  175. 175.
    Zhang R, Wang B, Grossi G, Falabella P, Liu Y, et al. 2017.. Molecular basis of alarm pheromone detection in aphids. . Curr. Biol. 27::5561
    [Crossref] [Google Scholar]
  176. 176.
    Zhang S, Zhang Q, Jiang X, Li Q, Qin Y, et al. 2021.. Novel temporal expression patterns of EBF-binding proteins in wing morphs of the grain aphid Sitobion miscanthi. . Front Physiol. 12::732578
    [Crossref] [Google Scholar]
  177. 177.
    Zhang YL, Li ZX. 2008.. Two different farnesyl diphosphate synthase genes exist in the genome of the green peach aphid, Myzus persicae. . Genome 51::50110
    [Crossref] [Google Scholar]
  178. 178.
    Zhang YL, Li ZX. 2012.. Functional analysis and molecular docking identify two active short-chain prenyltransferases in the green peach aphid, Myzus persicae. . Arch. Insect Biochem. Physiol. 81::6376
    [Crossref] [Google Scholar]
  179. 179.
    Zhao J, Chen AQ, Ryu J, Del Marmol J. 2024.. Structural basis of odor sensing by insect heteromeric odorant receptors. . Science 384::146067
    [Crossref] [Google Scholar]
  180. 180.
    Zhao J, Zhang Y, Fan D, Feng J. 2017.. Identification and expression profiling of odorant-binding proteins and chemosensory proteins of Daktulosphaira vitifoliae (Hemiptera: Phylloxeridae). . J. Econ. Entomol. 110::181320
    [Crossref] [Google Scholar]
  181. 181.
    Zhong T, Yin J, Deng S, Li K, Cao Y. 2012.. Fluorescence competition assay for the assessment of green leaf volatiles and trans-β-farnesene bound to three odorant-binding proteins in the wheat aphid Sitobion avenae (Fabricius). . J. Insect Physiol. 58::77181
    [Crossref] [Google Scholar]
  182. 182.
    Zhou H, Chen L, Chen J, Francis F. 2016.. Use of slow-release plant infochemicals to control aphids: a first investigation in a Belgian wheat field. . Sci. Rep. 6::31552
    [Crossref] [Google Scholar]
  183. 183.
    Zhou JJ, Vieira FG, He XL, Smadja C, Liu R, et al. 2010.. Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. . Insect Mol. Biol. 19::11322
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-013024-021018
Loading
/content/journals/10.1146/annurev-ento-013024-021018
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error