1932

Abstract

Improved understanding of tick phylogeny has allowed testing of some biogeographical patterns. On the basis of both literature data and a meta-analysis of available sequence data, there is strong support for a Gondwanan origin of Ixodidae, and probably Ixodida. A particularly strong pattern is observed for the genus , which appears to have originated in Antarctica/southern South America, with subsequent dispersal to Australia. The endemic Australian lineages of Ixodidae (no other continent has such a pattern) appear to result from separate dispersal events, probably from Antarctica. Minimum ages for a number of divergences are determined as part of an updated temporal framework for tick evolution. Alternative hypotheses for tick evolution, such as a very old Pangean group, a Northern hemisphere origin, or an Australian origin, fit less well with observed phylogeographic patterns.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020117-043027
2019-01-07
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-020117-043027.html?itemId=/content/journals/10.1146/annurev-ento-020117-043027&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Avise J, Arnold J, Ball R, Bermingham E, Lamb T et al. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18:489–522
    [Google Scholar]
  2. 2.  Avise JC 1998. The history and purview of phylogeography: a personal reflection. Mol. Ecol. 7:371–379
    [Google Scholar]
  3. 3.  Avise JC 2000. Phylogeography: The History and Formation of Species London: Harvard Univ. Press
    [Google Scholar]
  4. 4.  Avise JC, Bowen BW, Ayala FJ 2016. In the light of evolution X: comparative phylogeography. PNAS 113:7957–61
    [Google Scholar]
  5. 5.  Balashov YS 1989. Coevolution of ixodid ticks and terrestrial vertebrates. Parazitologiya 23:427–467
    [Google Scholar]
  6. 6.  Balashov YS 1994. Importance of continental drift in the distribution and evolution of ixodid ticks. Entomol. Rev. 73:42–50
    [Google Scholar]
  7. 7.  Bandoni de Olivera F, Cassola Molina E, Marroig G 2009. Paleontology of the South Atlantic: a route for primates and rodents into the New World?. South American Primates P Garber55–68 New York: Springer Sci.
    [Google Scholar]
  8. 8.  Barker SC, Burger TD 2018. Two new genera of hard ticks, Robertsicus n. gen. and Archaeocroton n. gen., and the solution of the mystery of Hoogstraal's and Kaufman's “primitive” tick from the Carpathian Mountains. Zootaxa In press
    [Google Scholar]
  9. 9.  Barker SC, Murrell A 2002. Phylogeny, evolution and historical zoogeography of ticks: a review of recent progress. Exp. Appl. Acarol. 28:55–68
    [Google Scholar]
  10. 10.  Beati L, Keirans JE, Durden LA, Opiang MD 2008. Bothriocroton oudemansi (Neumann, 1910) n. comb. (Acari: Ixodida: Ixodidae), an ectoparasite of the western long-beaked echidna in Papua New Guinea: redescription of the male and first description of the female and nymph. Syst. Parasitol. 69:185–200
    [Google Scholar]
  11. 11.  Beati L, Nava S, Burkman EJ, Barros-Battesti DM, Labruna MB et al. 2013. Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evol. Biol. 13:267
    [Google Scholar]
  12. 12.  Beck RMD, Godthelp H, Weisbecker V, Archer M, Hand SJ 2008. Australia's oldest marsupial fossils and their biogeographical implications. PLOS ONE 3:e1858
    [Google Scholar]
  13. 13.  Bedford G 1931. Nuttalliella namaqua, a new genus and species of tick. Parasitology 23:230–232
    [Google Scholar]
  14. 14.  Black WC, Piesman J 1994. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. PNAS 91:10034–38
    [Google Scholar]
  15. 15.  Black WC 4th, Klompen JS, Keirans JE 1997. Phylogenetic relationships among tick subfamilies (Ixodida: Ixodidae: Argasidae) based on the 18S nuclear rDNA gene. Mol. Phylogenet. Evol. 7:129–44
    [Google Scholar]
  16. 16.  Briggs JC 1989. The historic biogeography of India: isolation or contact?. Syst. Zool. 38:322–332
    [Google Scholar]
  17. 17.  Briggs JC 2003. Fishes and birds: Gondwana life rafts reconsidered. Syst. Biol. 52:548–53
    [Google Scholar]
  18. 18.  Burger TD, Shao R, Labruna MB, Barker SC 2014. Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA sequences. Ticks Tick-Borne Dis. 5:195–207
    [Google Scholar]
  19. 19.  Cantrill DJ, Poole I 2005. A new Eocene Araucaria from Seymour Island, Antarctica: evidence from growth form and bark morphology. Alcheringa 29:341–350
    [Google Scholar]
  20. 20.  Chitimia-Dobler L, Cancian de Araujo BC, Ruthensteiner B, Pfeffer T, Dunlop JA 2017. Amblyomma birmitum, a new species of hard tick in Burmese amber. Parasitology 144:1441–48
    [Google Scholar]
  21. 21.  Clifford CM, Sonenshine DE, Keirans JE, Kohls GM 1973. Systematics of the subfamily Ixodinae (Acarina: Ixodidae) 1. The subgenera of Ixodes. Ann. Entomol. Soc. Am. 66:489–500
    [Google Scholar]
  22. 22.  Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R 2001. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704–7
    [Google Scholar]
  23. 23.  Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J 2010. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 56:222–41
    [Google Scholar]
  24. 24.  Dobson SJ, Barker SC 1999. Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genus Aponomma is paraphyletic. Mol. Phylogenet. Evol. 11:288–95
    [Google Scholar]
  25. 25.  Dunlop JA, Apanaskevich DA, Lehmann J, Hoffmann R, Fusseis F et al. 2016. Microtomography of the Baltic amber tick Ixodes succineus reveals affinities with the modern Asian disease vector Ixodes ovatus. BMC Evol. Biol. 16:203
    [Google Scholar]
  26. 26.  Dunlop JA, de Olivera Bernardi LF 2014. An opilioacarid mite in Cretaceous Burmese amber. Naturwissenschaften 10:759–763
    [Google Scholar]
  27. 27.  Dunlop JA, Selden PA 2009. Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy. Exp. Appl. Acarol. 48:183–97
    [Google Scholar]
  28. 28.  Dunlop JA, Sempf C, Wunderlich J 2010. A new opilioacarid mite in Baltic amber. Contrib. Nat. Hist. (Bern) 1:59–70
    [Google Scholar]
  29. 29.  Durden L, Beati L 2013. Modern tick systematics. Biology of Ticks DE Sonenshine, R Roe17–58 New York: Oxford Univ. Press
    [Google Scholar]
  30. 30.  Estrada-Peña A, Mangold AJ, Nava S, Venzal JM, Labruna M, Guglielmone AA 2010. A review of the systematics of the tick family Argasidae (Ixodida). Acarologia 50:317–333
    [Google Scholar]
  31. 31.  Filippova NA 1977. Ixodid Ticks of the Subfamily Amblyomminae Leningrad: Izd. Nauka
    [Google Scholar]
  32. 32.  Filippova NA 2010. Uncommon zoogeographical connections in the subgenus Exopalpiger Schultze of the genus Ixodes Latreille (Acari, Ixodidae). Entomol. Rev. 90:793–797
    [Google Scholar]
  33. 33.  Francis JE, Ashworth A, Cantrill DJ, Crame JA, Howe J et al. 2008. 100 million years of antarctic climate evolution: evidence from fossil plants. Antarctica, a Keystone in a Changing World AK Cooper, PJ Barrett, H Stagg, B Storey, E Stump, W Wise 10th ISAES Ed. Team 19–27 Washington, DC: Natl. Acad. Press
    [Google Scholar]
  34. 34.  Fujita MK, Engstrom TN, Starkey DE, Shaffer HB 2004. Turtle phylogeny: insights from a novel nuclear intron. Mol. Phylogenet. Evol. 31:1031–40
    [Google Scholar]
  35. 35.  Fukunaga M, Yabuki M, Hamase A, Oliver JH, Nakao M 2000. Molecular phylogenetic analysis of ixodid ticks based on the ribosomal DNA spacer, internal transcribed spacer 2, sequences. J. Parasitol. 86:38–43
    [Google Scholar]
  36. 36.  Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D 2007. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol. 24:269–80
    [Google Scholar]
  37. 37.  Goin FJ, Tejedor MF, Chornogubsky L, López GM, Gelfo JN et al. 2012. Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia. Naturwissenschaften 99:449–63
    [Google Scholar]
  38. 38.  Graham-Reynolds R, Niemiller ML, Revell LJ 2014. Toward a tree-of-life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling. Mol. Phylogenet. Evol. 71:201–13
    [Google Scholar]
  39. 39.  Grimaldi DA, Engel MS, Nascimbene PC 2002. Fossiliferous cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novitates 3361:1–71
    [Google Scholar]
  40. 40.  Guglielmone AA, Nava S 2014. Names for Ixodidae (Acari: Ixodoidea): valid, synonyms, incertae sedis, nomina dubia, nomina nuda, lapsus, incorrect and suppressed names—with notes on confusions and misidentifications. Zootaxa 3767:1–256
    [Google Scholar]
  41. 41.  Heine C, Müller R 2005. Late Jurassic rifting along the Australian Northwest shelf: margin geometry and spreading ridge configuration. Austral. J. Earth Sci. 52:27–39
    [Google Scholar]
  42. 42.  Hill D 2009. Salticidae of the Antarctic land bridge. Peckhamia 76:1–14
    [Google Scholar]
  43. 43.  Hoogstraal H 1978. Biology of ticks. Tick-Borne Diseases and Their Vectors J Wilde3–14 Edinburgh: Cent. Trop. Vet. Med.
    [Google Scholar]
  44. 44.  Hoogstraal H, Aeschlimann A 1982. Tick-host specificity. Mitt. Schweiz. Entomol. Ges. 55:5–32
    [Google Scholar]
  45. 45.  Hoogstraal H, Kim KC 1985. Ticks and mammal coevolution, with emphasis on Haemaphysalis. Coevolution of Parasitic Arthropods and Mammals. KC Kim505–69 New York: Wiley
    [Google Scholar]
  46. 46.  Houle A 1999. The origin of platyrrhines: an evaluation of the Antarctic scenario and the floating island model. Am. J. Phys. Anthropol. 109:541–559
    [Google Scholar]
  47. 47.  Jeyaprakash A, Hoy MA 2009. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp. Appl. Acarol. 47:1–18
    [Google Scholar]
  48. 48.  Kaufman T 1972. A revision of the genus Aponomma Neumann, 1899 (Acarina: Ixodidae) PhD Thesis, Univ. Md.
    [Google Scholar]
  49. 49.  Keirans JE, Lane RS, Cauble R 2002. A series of larval Amblyomma species (Acari: Ixodidae) from amber deposits in the Dominican Republic. Int. J. Acarol. 28:61–66
    [Google Scholar]
  50. 50.  Klompen H 1992. Comparative morphology of argasid larvae (Acari: Ixodida: Argasidae), with notes on phylogenetic relationships. Ann. Entomol. Soc. Am. 85:541–60
    [Google Scholar]
  51. 51.  Klompen H 2010. Holothyrids and ticks: new insights from larval morphology and DNA sequencing, with the description of a new species of Diplothyrus (Parasitiformes: Neothyridae). Acarologia 50:269–85
    [Google Scholar]
  52. 52.  Klompen H, Dobson SJ, Barker SC 2002. A new subfamily, Bothriocrotoninae n. subfam., for the genus Bothriocroton Keirans, King & Sharrad, 1994 status amend. (Ixodida: Ixodidae), and the synonymy of Aponomma Neumann, 1899 with Amblyomma Koch, 1844. Syst. Parasitol. 53:101–7
    [Google Scholar]
  53. 53.  Klompen H, Grimaldi D 2001. First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae). Ann. Entomol. Soc. Am. 94:10–15
    [Google Scholar]
  54. 54.  Klompen H, Lekveishvili M, Black WC 2007. Phylogeny of parasitiform mites (Acari) based on rRNA. Mol. Phylogenet. Evol. 43:936–51
    [Google Scholar]
  55. 55.  Klompen H, Oliver JH 1993. Systematic relationships in the soft ticks. Syst. Entomol. 18:313–331
    [Google Scholar]
  56. 56.  Klompen J, Black W, Keirans JE, Norris DE 2000. Systematics and biogeography of hard ticks, a total evidence approach. Cladistics 16:79–102
    [Google Scholar]
  57. 57.  Klompen JS, Black WC, Keirans JE, Oliver JH 1996. Evolution of ticks. Annu. Rev. Entomol. 41:141–61
    [Google Scholar]
  58. 58.  Knapp M, Mudaliar R, Havell D, Wagstaff SJ, Lockhart PJ 2007. The drowning of New Zealand and the problem of Agathis. Syst. Biol. 56:862–70
    [Google Scholar]
  59. 59.  Kontschan J, Mahunka S 2004. Caribothyrus barbatus n. gen., n. sp., a new holothyrid mite (Acari: Neothyridae) from Dominican Republic. Int. J. Acarol. 30:343–346
    [Google Scholar]
  60. 60.  Krause DW, Sampson SD, Carrano MT, O'Connor PM 2007. Overview of the history of discovery, taxonomy, phylogeny, and biogeography of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J. Vert. Paleontol. Mem. 27:Suppl. 21–20
    [Google Scholar]
  61. 61.  Krenz JG, Naylor GJP, Shaffer HB, Janzen FJ 2005. Molecular phylogenetics and evolution of turtles. Mol. Phylogenet. Evol. 37:178–91
    [Google Scholar]
  62. 62.  Lado P, Nava S, Labruna MB, Szabo MPJ, Durden LA et al. 2016. Amblyomma parvum Aragão, 1908 (Acari: Ixodidae): phylogeography and systematic considerations. Ticks Tick-Borne Dis. 7:817–27
    [Google Scholar]
  63. 63.  Lahille F 1905. Contribution a l'étude des ixodidés de la République argentine. An. Minist. Agr. Zootec. Bacteriol. Vet. Zool. 2:1–166
    [Google Scholar]
  64. 64.  Lane RS, Poinar GO 1986. First fossil tick (Acari: Ixodidae) in New World amber. Int. J. Acarol. 12:75–78
    [Google Scholar]
  65. 65.  Latif AA, Putterill JF, de Klerk DG, Pienaar R, Mans BJ 2012. Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): first description of the male, immature stages and re-description of the female. PLOS ONE 7:e41651
    [Google Scholar]
  66. 66.  Lehtinen P 1991. Phylogeny and zoogeography of the Holothyrida. Modern Acarology F Dusbábek, V Bukva101–13 The Hague: SPB Academic
    [Google Scholar]
  67. 67.  Mangold AJ, Bargues MD, Mas-Coma S 1998. 18S rRNA gene sequences and phylogenetic relationships of European hard-tick species (Acari: Ixodidae). Parasitol. Res. 84:31–7
    [Google Scholar]
  68. 68.  Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P et al. 2016. Ancestral reconstruction of tick lineages. Ticks Tick-Borne Dis. 7:509–35
    [Google Scholar]
  69. 69.  Mans BJ, de Klerk D, Pienaar R, de Castro MH, Latif AA 2012. The mitochondrial genomes of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae) and Argas africolumbae (Ixodoidae: Argasidae): estimation of divergence dates for the major tick lineages and reconstruction of ancestral blood-feeding characters. PLOS ONE 7:e49461
    [Google Scholar]
  70. 70.  Mans BJ, de Klerk D, Pienaar R, de Castro MH, Latif AA 2015. Next-generation sequencing as means to retrieve tick systematic markers, with the focus on Nuttalliella namaqua (Ixodoidea: Nuttalliellidae). Ticks Tick-Borne Dis. 6:450–62
    [Google Scholar]
  71. 71.  Mans BJ, de Klerk D, Pienaar R, Latif AA 2011. Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks. PLOS ONE 6:e23675
    [Google Scholar]
  72. 72.  Mans BJ, de Klerk DG, Pienaar R, Latif AA 2014. The host preferences of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): a generalist approach to surviving multiple host-switches. Exp. Appl. Acarol. 62:233–40
    [Google Scholar]
  73. 73.  Morel P 1969. Contribution à la connaissance de la distribution des tiques (Acariens, Ixodidae et Amblyommidae) en Afrique éthiopienne continentale PhD Thesis, Univ. Paris, Paris
    [Google Scholar]
  74. 74.  Mourer-Chauviré C, Tabuce R, Mahboubi M, Adaci M, Bensalah M 2011. A phrorhacoid bird from the Eocene of Africa. Naturwissenschaften 98:815–823
    [Google Scholar]
  75. 75.  Murrell A, Barker SC 2003. Synonymy of Boophilus Curtice, 1891 with Rhipicephalus Koch, 1844 (Acari: Ixodidae). Syst. Parasitol. 56:169–72
    [Google Scholar]
  76. 76.  Murrell A, Campbell NJ, Barker SC 2001. A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. Mol. Phylogenet. Evol. 21:244–58
    [Google Scholar]
  77. 77.  Murrell A, Dobson S, Walter D, Campbell N, Shao R, Barker SC 2005. Relationships among the three major lineages of the Acari (Arthropoda: Arachnida) inferred from small subunit rRNA: paraphyly of the Parasitiformes with respect to the Opilioacariformes and relative rates of nucleotide substitution. Invert. Syst. 19:383–389
    [Google Scholar]
  78. 78.  Nava S, Guglielmone AA 2013. A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae). Bull. Entomol. Res. 103:216–24
    [Google Scholar]
  79. 79.  Nava S, Guglielmone AA, Mangold AJ 2009. An overview of systematics and evolution of ticks. Front. Biosci. 14:2857–77
    [Google Scholar]
  80. 80.  Nava S, Martínez JG, Arreguez GA, Guglielmone AA 2013. Ticks (Acari: Argasidae, Ixodidae) from Middle and pre-hispanic Late Holocene associated with human activities in northwestern Argentina. Ticks Tick-Borne Dis. 4:167–69
    [Google Scholar]
  81. 81.  Oliver JH 1989. Biology and systematics of ticks (Acari: Ixodida). Annu. Rev. Ecol. Syst. 20:397–430
    [Google Scholar]
  82. 82.  Peñalver E, Arillo A, Delclòs X, Peris D, Grimaldi DA et al. 2017. Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 8:1924
    [Google Scholar]
  83. 83.  Poinar G Jr., Brown AE 2003. A new genus of hard ticks in Cretaceous Burmese amber (Acari: Ixodida: Ixodidae). Syst. Parasitol. 54:199–205
    [Google Scholar]
  84. 84.  Poinar GO 1995. First fossil ticks, Ornithodoros antiquus n. sp. (Acari: Argasidae) in Dominican amber with evidence of their mammalian host. Experientia 51:384–387
    [Google Scholar]
  85. 85.  Poinar GO, Buckley R 2008. Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from lower Cretaceous Burmese amber. Proc. Entomol. Soc. Wash. 110:445–450
    [Google Scholar]
  86. 86.  Pomerantsev BI 1948. Basic directions of evolution in the Ixodoidea. Parasit. Art. Zool. Inst. Acad. Sci. U.S.S.R. 10:5–18
    [Google Scholar]
  87. 87.  Poole I, Cantrill DJ 2006. Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. Geol. Soc. London 258:63–81
    [Google Scholar]
  88. 88.  Pospelova-Shtrom MV 1969. On the system of classification of ticks of the family Argasidae Can., 1890. Acarologia 11:1–22
    [Google Scholar]
  89. 89.  Rich P 1993. Wildlife of Gondwana Sydney: William Heinemann
    [Google Scholar]
  90. 90.  Ronquist F, Huelsenbeck JP 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–74
    [Google Scholar]
  91. 91.  Rougier GW, Wible JR, Novacek MJ 1998. Implications of Deltatheridium specimens for early marsupial history. Nature 396:459–63
    [Google Scholar]
  92. 92.  Sanchez JP, Nava S, Lareschi M, Ortiz PE, Guglielmone AA 2010. Finding of an ixodid tick inside a late Holocene owl pellet from northwestern Argentina. J. Parasitol. 96:820–22
    [Google Scholar]
  93. 93.  Sanmartín I, Ronquist F 2004. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst. Biol. 53:216–43
    [Google Scholar]
  94. 94.  Sassuchin D 1935. Beiträge zum Studium der phylogenetischen Entwicklung der Zecken (Ixodoidea). Zool. Anz. 111:262–64
    [Google Scholar]
  95. 95.  Schettino A, Scotese C 2001. New internet software aids paleomagnetic analysis and plate tectonic reconstructions. Eos Trans. AGU 82:45
    [Google Scholar]
  96. 96.  Schettino A, Scotese C 2005. Apparent polar wander paths for the major continents (200 ma to the present day): a paleomagnetic reference frame for global plate tectonic reconstructions. Geophys. J. Int. 163:727–759
    [Google Scholar]
  97. 97.  Schille F 1916. Entomologie aus der Mammut- und Rhinoceros-Zeit Galiziens. Entomol. Z. 30:42–43
    [Google Scholar]
  98. 98.  Schulze P 1936. Sind Säugetiere die ursprünglichen Zeckenwirte?. Zool. Anz. 114:19–24
    [Google Scholar]
  99. 99.  Schulze P 1936. Trilobita, Xiphosura, Acarina. Eine morphologische Untersuchung über die Plangelichheit zwischen Trilobiten und Spinnentieren. Z. Morph. Ökol. Tiere 32:181–226
    [Google Scholar]
  100. 100.  Scotese C 2001. Atlas of earth history, Vol. 1: Paleogeography PALEOMAP Proj. http://scotese.com
    [Google Scholar]
  101. 101.  Scudder SH 1885. Fossilien Myriapoden, Arachnoiden und Insekten. Handbuch der Paleontologie I. Abteilung, Paleozoologie 2 K Zittel721–831 Munich, Ger.: R. Oldenbourg
    [Google Scholar]
  102. 102.  Seabolt M 2016. Biogeographical patterns in the hard-tick genus Amblyomma Koch 1844 (Acari: Ixodidae) Master's Thesis, Ga. South. Univ.
    [Google Scholar]
  103. 103.  Sereno PC, Wilson JA, Conrad JL 2004. New dinosaurs link southern landmasses in the Mid-Cretaceous. Proc. R. Soc. London B Biol. 271:1325–30
    [Google Scholar]
  104. 104.  Seton M, Müller RD, Zahirovich S, Gaina C, Torsvik T et al. 2012. Global continental and ocean basin reconstructions since 200 ma. Earth Sci. Rev. 113:212–70
    [Google Scholar]
  105. 105.  Shao R, Barker SC, Mitani H, Aoki Y, Fukunaga M 2005. Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with Australasian Ixodes ticks. Mol. Biol. Evol. 22:620–29
    [Google Scholar]
  106. 106.  Smith ND, Makovicky PJ, Agnolin FL, Ezcurra MD, Pais DF, Salisbury SW 2008. A Megaraptor-like theropod (Dinosauria: Tetanurae) in Australia: support for faunal exchange across eastern and western Gondwana in the Mid-Cretaceous. Proc. Biol. Sci. 275:2085–93
    [Google Scholar]
  107. 107.  Sonenshine D, Roe R, eds 2013. Biology of Ticks New York: Oxford Univ. Press. 2nd ed.
    [Google Scholar]
  108. 108.  Sonenshine DE, Mather TN 1994. Ecological Dynamics of Tick-Borne Zoonoses New York: Oxford Univ. Press
    [Google Scholar]
  109. 109.  Swofford DL 2002. PAUP*: Phylogenetic analysis using parsimony (and other methods*) 4.0 beta Sinauer Associates, Sunderland, MA
    [Google Scholar]
  110. 110.  Wallis GP, Trewick SA 2009. New Zealand phylogeography: evolution on a small continent. Mol. Ecol. 18:3548–80
    [Google Scholar]
  111. 111.  Walter D, Proctor H 1999. Mites: Ecology, Evolution and Behaviour Sydney: Univ. N.S.W. Press
    [Google Scholar]
  112. 112.  Waters JM, Craw D 2006. Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Syst. Biol. 55:351–6
    [Google Scholar]
  113. 113.  Weidner H 1964. Eine Zecke, Ixodes succineus sp. n., in baltischen Bernstein. Veroff. Uberseemus. Bremen 3:143–151
    [Google Scholar]
  114. 114.  Woodburne MO, Case JA 1996. Dispersal, vicariance, and the Late Cretaceous to early tertiary land mammal biogeography from South America to Australia. J. Mamm. Evol. 3:121–161
    [Google Scholar]
  115. 115.  Woodburne MO, Zinsmeister WJ 1982. Fossil land mammals from Antarctica. Science 218:284–86
    [Google Scholar]
  116. 116.  Xu G, Fang QQ, Keirans JE, Durden LA 2003. Molecular phylogenetic analyses indicate that the Ixodes ricinus complex is a paraphyletic group. J. Parasitol. 89:452–57
    [Google Scholar]
  117. 117.  Zeisset I, Beebee TJC 2008. Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity 101:109–19
    [Google Scholar]
  118. 118.  Zhang JX, Maddison WP 2013. Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae). Mol. Phylogenet. Evol. 68:81–92
    [Google Scholar]
  119. 119.  Ziegler A, Eshel G, McAllister Rees P, Rothfus T, Rowley DB, Sunderlin D 2003. Tracing the tropics across land and sea: Permian to present. Lethaia 36:227–54
    [Google Scholar]
  120. 120.  Zumpt F 1951. Phylogenie der Zecken und “natürliches System.”. Z. Parasitenkd. 15:87–101
    [Google Scholar]
/content/journals/10.1146/annurev-ento-020117-043027
Loading
/content/journals/10.1146/annurev-ento-020117-043027
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error