1932

Abstract

Novel traits in the order Lepidoptera include prolegs in the abdomen of larvae, scales, and eyespot and band color patterns in the wings of adults. We review recent work that investigates the developmental origin and diversification of these four traits from a gene-regulatory network (GRN) perspective. While prolegs and eyespots appear to derive from distinct ancestral GRNs co-opted to novel body regions, scales derive from in situ modifications of a sensory bristle GRN. The origin of the basal and central symmetry systems of bands on the wing is associated with the expression of the gene in those regions, whereas the more marginal bands depend on two other genes, and . Finally, several genes have been discovered that play important roles in regulating background wing color, via the regulation of pigmentation GRNs. The identification of shared and novel regulatory elements of genes belonging to these distinct GRNs helps trace the developmental and evolutionary history of these traits. Future work should examine the extent to which ancestral GRNs are co-opted/modified to produce the novel traits and how these GRNs map to specific cell types in ancestral and derived traits.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-021324-020504
2025-01-28
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-021324-020504.html?itemId=/content/journals/10.1146/annurev-ento-021324-020504&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ansari S, Troelenberg N, Dao VA, Richter T, Bucher G, Klingler M. 2018.. Double abdomen in a short-germ insect: zygotic control of axis formation revealed in the beetle Tribolium castaneum. . PNAS 115:(8):181924
    [Crossref] [Google Scholar]
  2. 2.
    Banerjee TD, Monteiro A. 2018.. CRISPR-Cas9 mediated genome editing in Bicyclus anynana butterflies. . Methods Protoc. 1::16
    [Crossref] [Google Scholar]
  3. 3.
    Banerjee TD, Monteiro A. 2020.. Molecular mechanisms underlying simplification of venation patterns in holometabolous insects. . Development 147::196394
    [Crossref] [Google Scholar]
  4. 4.
    Banerjee TD, Monteiro A. 2021.. Reuse of an insect wing venation gene-regulatory subnetwork in patterning the eyespot rings of butterflies. . bioRxiv 2021.05.22.445259. https://doi.org/10.1101/2021.05.22.445259
  5. 5.
    Banerjee TD, Murugesan SN, Connahs H, Monteiro A. 2023.. Spatial and temporal regulation of Wnt signaling pathway members in the development of butterfly wing patterns. . Sci. Adv. 9::eadg3877
    [Crossref] [Google Scholar]
  6. 6.
    Barek H, Veraksa A, Sugumaran M. 2018.. Drosophila melanogaster has the enzymatic machinery to make the melanic component of neuromelanin. . Pigment Cell Melanoma Res. 31::68392
    [Crossref] [Google Scholar]
  7. 7.
    Beldade P, Monteiro A. 2021.. Eco-evo-devo advances with butterfly eyespots. . Curr. Opin. Genet. Dev. 69::613
    [Crossref] [Google Scholar]
  8. 8.
    Beldade P, Peralta CM. 2017.. Developmental and evolutionary mechanisms shaping butterfly eyespots. . Curr. Opin. Insect Sci. 19::2229
    [Crossref] [Google Scholar]
  9. 9.
    Bier E. 2000.. Drawing lines in the Drosophila wing: initiation of wing vein development. . Curr. Opin. Genet. Dev. 10::39398
    [Crossref] [Google Scholar]
  10. 10.
    Bitsch J. 2012.. The controversial origin of the abdominal appendage-like processes in immature insects: Are they true segmental appendages or secondary outgrowths? (Arthropoda Hexapoda). . J. Morphol. 273::91931
    [Crossref] [Google Scholar]
  11. 11.
    Blochlinger K, Bodmer R, Jack J, Jan LY, Jan YN. 1988.. Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila. . Nature 333::62935
    [Crossref] [Google Scholar]
  12. 12.
    Challi RJ, Kumar S, Dasmahapatra KK, Jiggins CD, Blaxter M. 2016.. Lepbase: the lepidopteran genome database. . bioRxiv 056994. https://doi.org/10.1101/056994
  13. 13.
    Concha C, Wallbank RW, Hanly JJ, Fenner J, Livraghi L, et al. 2019.. Interplay between developmental flexibility and determinism in the evolution of mimetic Heliconius wing patterns. . Curr. Biol. 29::39964009.e4
    [Crossref] [Google Scholar]
  14. 14.
    Connahs H, Tlili S, van Creij J, Loo TYJ, Banerjee TD, et al. 2019.. Activation of butterfly eyespots by Distal-less is consistent with a reaction-diffusion process. . Development 146::dev169367
    [Crossref] [Google Scholar]
  15. 15.
    D'Alba L, Wang B, Vanthournout B, Shawkey MD. 2019.. The golden age of arthropods: ancient mechanisms of colour production in body scales. . J. R. Soc. Interface 16::20190366
    [Crossref] [Google Scholar]
  16. 16.
    Darwin Tree of Life Consort. 2022.. Sequence locally, think globally: the Darwin Tree of Life Project. . PNAS 119::e2115642118
    [Crossref] [Google Scholar]
  17. 17.
    Day CR, Hanly JJ, Ren A, Martin A. 2019.. Sub-micrometer insights into the cytoskeletal dynamics and ultrastructural diversity of butterfly wing scales. . Dev. Dyn. 248::65770
    [Crossref] [Google Scholar]
  18. 18.
    DiFrisco J, Love AC, Wagner GP. 2023.. The hierarchical basis of serial homology and evolutionary novelty. . J. Morphol. 284::e21531
    [Crossref] [Google Scholar]
  19. 19.
    Dinwiddie A, Null R, Pizzano M, Chuong L, Krup AL, et al. 2014.. Dynamics of F-actin prefigure the structure of butterfly wing scales. . Dev. Biol. 392::40418
    [Crossref] [Google Scholar]
  20. 20.
    Emerson MJ, Schram FR. 1991.. Remipedia. Part 2: paleontology. . Proc. San Diego Soc. Nat. Hist. 7::152
    [Google Scholar]
  21. 21.
    Fandino RA, Brady NK, Chatterjee M, McDonald JM, Livraghi L, et al. 2024.. The ivory lncRNA regulates seasonal color patterns in buckeye butterflies. . bioRxiv 2024.02.09.579733. https://doi.org/10.1101/2024.02.09.579733
  22. 22.
    Fusari LM, Dantas GPS, Pinho LC. 2018.. Order Diptera. . In Thorp and Covich's Freshwater Invertebrates, Volume 3: Keys to Neotropical Hexapoda, ed. N Hamada, JH Thorp, DC Rogers , pp. 60723. Amsterdam:: Elsevier. , 4th ed..
    [Google Scholar]
  23. 23.
    Galant R, Skeath JB, Paddock S, Lewis DL, Carroll SB. 1998.. Expression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles. . Curr. Biol. 8::80713
    [Crossref] [Google Scholar]
  24. 24.
    Gallant JR, Imhoff VE, Martin A, Savage WK, Chamberlain NL, et al. 2014.. Ancient homology underlies adaptive mimetic diversity across butterflies. . Nat. Commun. 5::4817
    [Crossref] [Google Scholar]
  25. 25.
    Gallicchio L, Griffiths-Jones S, Ronshaugen M. 2021.. Single-cell visualization of mir-9a and Senseless co-expression during Drosophila melanogaster embryonic and larval peripheral nervous system development. . G3 11::jkaa010
    [Crossref] [Google Scholar]
  26. 26.
    Ghiradella H. 1989.. Structure and development of iridescent butterfly scales: lattices and laminae. . J. Morphol. 202::6988
    [Crossref] [Google Scholar]
  27. 27.
    Ghiradella H. 1994.. Structure of butterfly scales: patterning in an insect cuticle. . Microsc. Res. Tech. 27::42938
    [Crossref] [Google Scholar]
  28. 28.
    Giribet G, Edgecombe GD. 2019.. The phylogeny and evolutionary history of arthropods. . Curr. Biol. 29::R592602
    [Crossref] [Google Scholar]
  29. 29.
    Grimaldi D, Engel MS. 2005.. Evolution of the Insects. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  30. 30.
    Hanly JJ, Francescutti CM, Loh LS, Corning OB, Long DJ, et al. 2023.. Genetics of yellow-orange color variation in a pair of sympatric sulfur butterflies. . Cell Rep. 42::112820
    [Crossref] [Google Scholar]
  31. 31.
    Hanotte B, Willink B, Monteiro A. 2024.. Eyespots originated multiple times independently across the Lepidoptera. . bioRxiv 2024.02.07.579046. https://doi.org/10.1101/2024.02.07.579046
  32. 32.
    Hinton HE. 1955.. On the structure, function, and distribution of the prolegs of the Panorpoidea, with a criticism of the Berlese-Imms theory. . Trans. R. Entomol. Soc. London 106::455540
    [Crossref] [Google Scholar]
  33. 33.
    Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, et al. 2011.. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. . Nature 477::2036
    [Crossref] [Google Scholar]
  34. 34.
    Kavaler J, Fu W, Duan H, Noll M, Posakony JW. 1999.. An essential role for the Drosophila Pax2 homolog in the differentiation of adult sensory organs. . Development 126::226172
    [Crossref] [Google Scholar]
  35. 35.
    Kilchoer C, Steiner U, Wilts BD. 2019.. Thin-film structural coloration from simple fused scales in moths. . J. R. Soc. Interface Focus 9::20180044
    [Crossref] [Google Scholar]
  36. 36.
    Klann M, Schacht MI, Benton MA, Stollewerk A. 2021.. Functional analysis of sense organ specification in the Tribolium castaneum larva reveals divergent mechanisms in insects. . BMC Biol. 19::21
    [Crossref] [Google Scholar]
  37. 37.
    Kou L-X, Hua B-Z. 2016.. Comparative embryogenesis of Mecoptera and Lepidoptera with special reference to the abdominal prolegs. . J. Morphol. 277::58593
    [Crossref] [Google Scholar]
  38. 38.
    Labandeira CC, Yang Q, Santiago-Blay JA, Hotton CL, Monteiro A, et al. 2016.. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. . Proc. R. Soc. B 283::20152893
    [Crossref] [Google Scholar]
  39. 39.
    Lewis DL, DeCamillis M, Bennett RL. 2000.. Distinct roles of the homeotic genes Ubx and abd-A in beetle embryonic abdominal appendage development. . PNAS 97::45049
    [Crossref] [Google Scholar]
  40. 40.
    Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Van Belleghem SM, et al. 2019.. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. . PNAS 116::2417483
    [Crossref] [Google Scholar]
  41. 41.
    Li J-J, Shi Y, Wu J-N, Li H, Smagghe G, Liu T-X. 2021.. CRISPR/Cas9 in lepidopteran insects: progress, application and prospects. . J. Insect Physiol. 135::104325
    [Crossref] [Google Scholar]
  42. 42.
    Liu B-P, Hua B-Z. 2024.. Distinct roles of the Hox genes Ultrabithorax and abdominal-A in scorpionfly embryonic proleg development. . Insect Mol. Biol. 33::6980
    [Crossref] [Google Scholar]
  43. 43.
    Liu J, Chen Z, Xiao Y, Asano T, Li S, et al. 2021.. Lepidopteran wing scales contain abundant cross-linked film-forming histidine-rich cuticular proteins. . Commun. Biol. 4::491
    [Crossref] [Google Scholar]
  44. 44.
    Livraghi L, Hanly JJ, Evans E, Wright CJ, Loh LS, et al. 2024.. A long non-coding RNA at the cortex locus controls adaptive colouration in butterflies. . bioRxiv 2024.02.09.579710. https://doi.org/10.1101/2024.02.09.579710
  45. 45.
    Livraghi L, Hanly JJ, Van Bellghem SM, Montejo-Kovacevich G, van der Heijden ESM, et al. 2021.. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. . eLife 10::e68549
    [Crossref] [Google Scholar]
  46. 46.
    Lloyd VJ, Burg SL, Harizanova J, Hill O, Enciso-Romero J, et al. 2023.. The actin cytoskeleton plays multiple roles in structural color formation in butterfly wing scales. . bioRxiv 2023.06.01.542791. https://doi.org/10.1101/2023.06.01.542791
  47. 47.
    Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, et al. 2012.. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. . PNAS 109::1263237
    [Crossref] [Google Scholar]
  48. 48.
    Martin A, Reed RD. 2014.. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. . Dev. Biol. 395::36778
    [Crossref] [Google Scholar]
  49. 49.
    Matsuoka Y, Monteiro A. 2018.. Melanin pathway genes regulate color and morphology of butterfly wing scales. . Cell Rep. 24::5665
    [Crossref] [Google Scholar]
  50. 50.
    Matsuoka Y, Monteiro A. 2022.. Ultrabithorax modifies a regulatory network of genes essential for butterfly eyespot development in a wing sector-specific manner. . Development 149::dev200781
    [Crossref] [Google Scholar]
  51. 51.
    Matsuoka Y, Murugesan SN, Prakash A, Monteiro A. 2023.. Lepidopteran prolegs are novel traits, not leg homologs. . Sci. Adv. 9::eadd9389
    [Crossref] [Google Scholar]
  52. 52.
    Mazo-Vargas A, Concha C, Livraghi L, Massardo D, Wallbank RW, et al. 2017.. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. . PNAS 114::107016
    [Crossref] [Google Scholar]
  53. 53.
    Mazo-Vargas A, Langmüller AM, Wilder A, van der Burg KR, Lewis JJ, et al. 2022.. Deep cis-regulatory homology of the butterfly wing pattern ground plan. . Science 378::3048
    [Crossref] [Google Scholar]
  54. 54.
    Monteiro A. 2015.. Origin, development, and evolution of butterfly eyespots. . Annu. Rev. Entomol. 60::25371
    [Crossref] [Google Scholar]
  55. 55.
    Monteiro A. 2021.. Distinguishing serial homologs from novel traits: experimental limitations and ideas for improvements. . Bioessays 43::2000162
    [Crossref] [Google Scholar]
  56. 56.
    Monteiro A, Das Gupta M. 2016.. Identifying co-opted networks and causative mutations in the origin of novel complex traits. . Curr. Top. Dev. Biol. 119::20526
    [Crossref] [Google Scholar]
  57. 57.
    Monteiro A, Glaser G, Stockslagger S, Glansdorp N, Ramos DM. 2006.. Comparative insights into questions of lepidopteran wing pattern homology. . BMC Dev. Biol. 6::52
    [Crossref] [Google Scholar]
  58. 58.
    Monteiro A, Podlaha O. 2009.. Wings, horns, and butterfly eyespots: How do complex traits evolve?. PLOS Biol. 7::20916
    [Crossref] [Google Scholar]
  59. 59.
    Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, et al. 2019.. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. . Heredity 123::13852
    [Crossref] [Google Scholar]
  60. 60.
    Murugesan SN, Connahs H, Matsuoka Y, Das Gupta M, Tiong GJL, et al. 2022.. Butterfly eyespots evolved via cooption of an ancestral gene-regulatory network that also patterns antennae, legs, and wings. . PNAS 119::e2108661119
    [Crossref] [Google Scholar]
  61. 61.
    Murugesan SN, Monteiro A. 2022.. Evolution of modular and pleiotropic enhancers. . J. Exp. Zool. B Mol. Dev. Evol. 340:(2):10515
    [Crossref] [Google Scholar]
  62. 62.
    Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, et al. 2016.. The gene cortex controls mimicry and crypsis in butterflies and moths. . Nature 534::10610
    [Crossref] [Google Scholar]
  63. 63.
    Nijhout HF. 1990.. A comprehensive model for colour pattern formation in butterflies. . Proc. R. Soc. B 239::81113
    [Google Scholar]
  64. 64.
    Nolo R, Abbott LA, Bellen HJ. 2000.. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. . Cell 102::34962
    [Crossref] [Google Scholar]
  65. 65.
    Oliver JC, Beaulieu JM, Gall LF, Piel WH, Monteiro A. 2014.. Nymphalid eyespot serial homologs originate as a few individualized modules. . Proc. R. Soc. B 281::20133262
    [Crossref] [Google Scholar]
  66. 66.
    Oliver JC, Tong X-L, Gall LF, Piel WH, Monteiro A. 2012.. A single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression. . PLOS Genet. 8::e1002893
    [Crossref] [Google Scholar]
  67. 67.
    Otaki JM. 2012.. Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan. . Zool. Sci. 29::56876
    [Crossref] [Google Scholar]
  68. 68.
    Özsu N, Monteiro A. 2017.. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots. . BMC Genom. 18::788
    [Crossref] [Google Scholar]
  69. 69.
    Piszter G, Kertész K, Bálint Z, Biró LP. 2023.. Wide-gamut structural colours on oakblue butterflies by naturally tuned photonic nanoarchitectures. . R. Soc. Open Sci. 10::221487
    [Crossref] [Google Scholar]
  70. 70.
    Prakash A, Dion E, Monteiro A. 2023.. The molecular basis of macrochaete diversification highlighted by a single-cell atlas of Bicyclus anynana butterfly pupal forewings. . bioRxiv 2023.08.23.554425. https://doi.org/10.1101/2023.08.23.554425
  71. 71.
    Prakash A, Finet C, Banerjee TD, Saranathan V, Monteiro A. 2022.. Antennapedia and optix regulate metallic silver wing scale development and cell shape in Bicyclus anynana butterflies. . Cell Rep. 40::111052
    [Crossref] [Google Scholar]
  72. 72.
    Reed RD, Papa R, Martin A, Hines HM, Counterman BA, et al. 2011.. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. . Science 333::113741
    [Crossref] [Google Scholar]
  73. 73.
    Reed RD, Selegue JE, Zhang L, Brunetti CR. 2020.. Transcription factors underlying wing margin color patterns and pupal cuticle markings in butterflies. . EvoDevo 11::10
    [Crossref] [Google Scholar]
  74. 74.
    Ren A, Day CR, Hanly JJ, Counterman BA, Morehouse NI, Martin A. 2020.. Convergent evolution of broadband reflectors underlies metallic coloration in butterflies. . Front. Ecol. Evol. 8::206
    [Crossref] [Google Scholar]
  75. 75.
    Schachat SR, Brown RL. 2016.. Forewing color pattern in Micropterigidae (Insecta: Lepidoptera): homologies between contrast boundaries, and a revised hypothesis for the origin of symmetry systems. . BMC Evol. Biol. 16::116
    [Crossref] [Google Scholar]
  76. 76.
    Schweisguth F. 2015.. Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. . Wiley Interdiscip. Rev. Dev. Biol. 4::299309
    [Crossref] [Google Scholar]
  77. 77.
    Scoble MJ. 1992.. The Lepidoptera: Form, Function and Diversity. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  78. 78.
    Scourfield DJ. 1926.. On a new type of crustacean from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire)-Lepidocaris rhyniensis gen. et sp. nov. . Philos. Trans. R. Soc. B 214::15387
    [Google Scholar]
  79. 79.
    Seah KS, Saranathan V. 2023.. Hierarchical morphogenesis of swallowtail butterfly wing scale nanostructures. . eLife 12::RP89082
    [Crossref] [Google Scholar]
  80. 80.
    Shirai LT, Saenko SV, Keller RA, Jeronimo MA, Brakefield PM, et al. 2012.. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. . BMC Evol. Biol. 12::21
    [Crossref] [Google Scholar]
  81. 81.
    Simonsen TJ. 2001.. The wing vestiture of the non-ditrysian Lepidoptera (Insecta). Comparative morphology and phylogenetic implications. . Acta Zool. 82::27598
    [Crossref] [Google Scholar]
  82. 82.
    Snodgrass RE. 1931.. Morphology of the insect abdomen. . Smithson. Misc. Collect. 85:(6):1128
    [Google Scholar]
  83. 83.
    Snodgrass RE. 1993.. Principles of Insect Morphology. Ithaca, NY:: Cornell Univ. Press
    [Google Scholar]
  84. 84.
    Sundermann A, Lohse S, Beck L, Haase P. 2007.. Key to the larval stages of aquatic true flies (Diptera), based on the operational taxa list for running waters in Germany. . Proc. Ann. Limnol. 43::6174
    [Crossref] [Google Scholar]
  85. 85.
    Suzuki Y, Palopoli MF. 2001.. Evolution of insect abdominal appendages: Are prolegs homologous or convergent traits?. Dev. Genes Evol. 211::48692
    [Crossref] [Google Scholar]
  86. 86.
    Thayer RC, Patel NH. 2023.. A meta-analysis of butterfly structural colors: their color range, distribution and biological production. . J. Exp. Biol. 226::jeb245940
    [Crossref] [Google Scholar]
  87. 87.
    Thümecke S, Schröder R. 2022.. The odd-skipped related gene drumstick is required for leg development in the beetle Tribolium castaneum. . Dev. Dyn. 251::145671
    [Crossref] [Google Scholar]
  88. 88.
    Tian S, Asano Y, Banerjee TD, Wee JLQ, Lamb A, et al. 2024.. A micro-RNA is the effector gene of a classic evolutionary hotspot locus. . bioRxiv 2024.02.09.579741. https://doi.org/10.1101/2024.02.09.579741
  89. 89.
    True JR, Carroll SB. 2002.. Gene co-option in physiological and morphological evolution. . Annu. Rev. Cell Dev. Biol. 18::5380
    [Crossref] [Google Scholar]
  90. 90.
    Tunström K, Woronik A, Hanly JJ, Rastas P, Chichvarkhin A, et al. 2023.. Evidence for a single, ancient origin of a genus-wide alternative life history strategy. . Sci. Adv. 9::eabq3713
    [Crossref] [Google Scholar]
  91. 91.
    Vachon G, Cohen B, Pfeifle C, McGuffin ME, Botas J, Cohen SM. 1992.. Homeotic genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. . Cell 71::43750
    [Crossref] [Google Scholar]
  92. 92.
    Van Belleghem SM, Rastas P, Papanicolaou A, Martin SH, Arias CF, et al. 2017.. Complex modular architecture around a simple toolkit of wing pattern genes. . Nat. Ecol. Evol. 1::0052
    [Crossref] [Google Scholar]
  93. 93.
    Van Belleghem SM, Ruggieri AA, Concha C, Livraghi L, Hebberecht L, et al. 2023.. High level of novelty under the hood of convergent evolution. . Science 379::104349
    [Crossref] [Google Scholar]
  94. 94.
    van Eldijk TJ, Wappler T, Strother PK, van der Weijst CM, Rajaei H, et al. 2018.. A Triassic-Jurassic window into the evolution of Lepidoptera. . Sci. Adv. 4::e1701568
    [Crossref] [Google Scholar]
  95. 95.
    Vanthournout B, Rousaki A, Parmentier T, Janssens F, Mertens J, et al. 2021.. Springtail coloration at a finer scale: mechanisms behind vibrant collembolan metallic colours. . J. R. Soc. Interface 18::20210188
    [Crossref] [Google Scholar]
  96. 96.
    Wang J, Zhang W, Engel MS, Sheng X, Shih C, Ren D. 2022.. Early evolution of wing scales prior to the rise of moths and butterflies. . Curr. Biol. 32::380814.e2
    [Crossref] [Google Scholar]
  97. 97.
    Warren RW, Nagy L, Selegue J, Gates J, Carroll S. 1994.. Evolution of homeotic gene regulation and function in flies and butterflies. . Nature 372::45861
    [Crossref] [Google Scholar]
  98. 98.
    Wee JLQ, Das Banerjee T, Prakash A, Seah KS, Monteiro A. 2022.. Distal-less and spalt are distal organisers of pierid wing patterns. . EvoDevo 13::12
    [Crossref] [Google Scholar]
  99. 99.
    Westerman EL, VanKuren NW, Massardo D, Tenger-Trolander A, Zhang W, et al. 2018.. Aristaless controls butterfly wing color variation used in mimicry and mate choice. . Curr. Biol. 28::346974.e4
    [Crossref] [Google Scholar]
  100. 100.
    Wilts BD, Apeleo Zubiri B, Klatt MA, Butz B, Fischer MG, et al. 2017.. Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. . Sci. Adv. 3::e1603119
    [Crossref] [Google Scholar]
  101. 101.
    Wilts BD, Otto J, Stavenga DG. 2020.. Ultra-dense, curved, grating optics determines peacock spider coloration. . Nanoscale Adv. 2::112227
    [Crossref] [Google Scholar]
  102. 102.
    Woronik A, Tunström K, Perry MW, Neethiraj R, Stefanescu C, et al. 2019.. A transposable element insertion is associated with an alternative life history strategy. . Nat. Commun. 10::5757
    [Crossref] [Google Scholar]
  103. 103.
    Wright CJ, Stevens L, Mackintosh A, Lawniczak M, Blaxter M. 2024.. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. . Nat. Ecol. Evol. 8:(4):77790
    [Crossref] [Google Scholar]
  104. 104.
    Yue C, Hua B. 2010.. Are abdominal prolegs serially homologous with the thoracic legs in Panorpidae (Insecta: Mecoptera)? Embryological evidence. . J. Morphol. 271::136673
    [Crossref] [Google Scholar]
  105. 105.
    Zhang F, Chen Z, Dong R-R, Deharveng L, Stevens MI, et al. 2014.. Molecular phylogeny reveals independent origins of body scales in Entomobryidae (Hexapoda: Collembola). . Mol. Phylogenet. Evol. 70::23139
    [Crossref] [Google Scholar]
  106. 106.
    Zhang L, Mazo-Vargas A, Reed RD. 2017.. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. . PNAS 114::1070712
    [Crossref] [Google Scholar]
  107. 107.
    Zhang L, Reed RD. 2017.. A practical guide to CRISPR/Cas9 genome editing in Lepidoptera. . In Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach, ed. T Sekimura, HF Nijhout , pp. 15572. Singapore:: Springer
    [Google Scholar]
  108. 108.
    Zhang Q, Mey W, Ansorge J, Starkey TA, McDonald LT, et al. 2018.. Fossil scales illuminate the early evolution of lepidopterans and structural colors. . Sci. Adv. 4::e1700988
    [Crossref] [Google Scholar]
  109. 109.
    Zhao Y-G, Hua B-Z. 2016.. Morphology of the immature stages of Arge pagana (Panzer, 1798) (Hymenoptera: Argidae) with notes on its biology. . J. Asia-Pac. Entomol. 19::9039
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-021324-020504
Loading
/content/journals/10.1146/annurev-ento-021324-020504
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error