1932

Abstract

Thrips (Thysanoptera) are small insects that can cause huge problems in agriculture, horticulture, and forestry through feeding and the transmission of plant viruses. They produce a rich chemical diversity of pheromones and allomones and also respond to a broad range of semiochemicals from plants. These semiochemicals offer many opportunities to develop new approaches to pest management. Aggregation pheromones and plant-derived semiochemicals are already available in commercial products. We review these semiochemicals and consider how we can move away from using them mainly for monitoring to using them for control. We still know very little about the behavioral responses of thrips to semiochemicals, and we show that research in this area is needed to improve the use of semiochemicals in pest management. We also propose that thrips should be used as a model system for semiochemically mediated behaviors of small insects that have limited ability to fly upwind.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022020-081531
2021-01-07
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/en/66/1/annurev-ento-022020-081531.html?itemId=/content/journals/10.1146/annurev-ento-022020-081531&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdullah ZS, Ficken KJ, Greenfield PJB, Butt T 2014. Innate responses to putative ancestral hosts: Is the attraction of western flower thrips to pine pollen a result of relict olfactory receptors. J. Chem. Ecol. 40:534–40
    [Google Scholar]
  2. 2. 
    Abtew A, Subramanian S, Cheseto X, Kreiter S, Garzia GT et al. 2015. Repellency of plant extracts against the legume flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). Insects 6:608–25
    [Google Scholar]
  3. 3. 
    Akella SVS, Kirk WDJ, Lu Y-B, Murai T, Walters KFA et al. 2014. Identification of the aggregation pheromone of the melon thrips. Thrips palmi. PLOS ONE 9:8e103315
    [Google Scholar]
  4. 4. 
    Akinyemi AO, Kirk WDJ. 2019. Experienced males recognise and avoid mating with non-virgin females in the western flower thrips. PLOS ONE 14:10e0224115
    [Google Scholar]
  5. 5. 
    Allsopp E, Prinsloo GJ, Smart LE, Dewhirst SY 2014. Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on plum blossoms. Arthropod-Plant Interact 8:421–27
    [Google Scholar]
  6. 6. 
    Andrews HE. 2011. Monitoring and management of thrips populations in vegetables, row crops, and greenhouse crops in Virginia MSc thesis, Va. Polytech. Inst. State Univ. Blacksburg:
    [Google Scholar]
  7. 7. 
    Avellaneda J, Díaz M, Coy-Barrera E, Rodríguez D, Osorio C 2019. Rose volatile compounds allow the design of new control strategies for the western flower thrips (Frankliniella occidentalis). J. Pest Sci. https://doi.org/10.1007/s10340-019-01131-7
    [Crossref] [Google Scholar]
  8. 8. 
    Bakker FM, Sabelis MW. 1989. How larvae of Thrips tabaci reduce the attack success of phytoseiid predators. Entomol. Exp. Appl. 50:47–52
    [Google Scholar]
  9. 9. 
    Ben-Mahmoud S, Smeda JR, Chappell TM, Stafford-Banks C, Kaplinsky CH et al. 2018. Acylsugar amount and fatty acid profile differentially suppress oviposition by western flower thrips, Frankliniella occidentalis, on tomato and interspecific hybrid flowers. PLOS ONE 13:7e0201583
    [Google Scholar]
  10. 10. 
    Berry N, Butler RC, Teulon DAJ 2006. Responses of New Zealand flower thrips (Thrips obscuratus) to synthetic and natural stimuli (odour and colour) in a wind tunnel. N.Z. J. Crop Hortic. Sci. 34:121–29
    [Google Scholar]
  11. 11. 
    Binyameen M, Ejaz M, Shad SA, Razaq M, Shah RM et al. 2018. Eugenol, a plant volatile, synergizes the effect of the thrips attractant, ethyl iso-nicotinate. Environ. Entomol. 47:1560–64
    [Google Scholar]
  12. 12. 
    Blum MS. 1991. Chemical ecology of the Thysanoptera. Towards Understanding Thysanoptera: Proceedings of the International Conference on Thrips, 1989, Burlington, Vermont, USA. General technical report NE-147 BL Parker, M Skinner, T Lewis 95–112 Washington, DC: U.S. Dept. Agric.
    [Google Scholar]
  13. 13. 
    Blum MS, Foottit R, Fales HM 1992. Defensive chemistry and function of the anal exudate of the thrips Haplothrips leucanthemi. Comp. Biochem. Physiol. C 102:209–11
    [Google Scholar]
  14. 14. 
    Broughton S, Cousins DA, Rahman T 2015. Evaluation of semiochemicals for their potential application in mass trapping of Frankliniella occidentalis (Pergande) in roses. Crop Prot 67:130–35
    [Google Scholar]
  15. 15. 
    Cao Y, Zhi J, Cong C, Margolies DC 2014. Olfactory cues used in host selection by Frankliniella occidentalis (Thysanoptera: Thripidae) in relation to host suitability. J. Insect Behav. 27:41–56
    [Google Scholar]
  16. 16. 
    Cardé RT. 2016. Moth navigation along pheromone plumes. Pheromone Communication in Moths: Evolution, Behavior and Application JD Allison, RT Cardé 173–89 Berkeley, CA: Univ. Calif. Press
    [Google Scholar]
  17. 17. 
    ChemSpider 2020. Lavandulyl acetate (CSID:28088) ChemSpider, R. Soc Chem., Lond: https://www.chemspider.com/Chemical-Structure.28088.html
    [Google Scholar]
  18. 18. 
    ChemSpider 2020. Neryl 2-methylbutyrate (CSID:4934411) ChemSpider, R. Soc Chem., Lond: https://www.chemspider.com/Chemical-Structure.4934411.html
    [Google Scholar]
  19. 19. 
    Cheng D, Kirk H, Vrieling K, Mulder PPJ, Klinkhamer PGL 2011. The relationship between structurally different pyrrolizidine alkaloids and western flower thrips resistance in F2 hybrids of Jacobaea vulgaris and Jacobaea aquatica. J. Chem. Ecol 37:1071–80
    [Google Scholar]
  20. 20. 
    Cook DF, Dadour IR, Bailey WJ 2002. Addition of alarm pheromone to insecticides and the possible improvement of the control of the western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Int. J. Pest Manag. 48:287–90
    [Google Scholar]
  21. 21. 
    Davidson MM, Butler RC, Teulon DAJ 2006. Starvation period and age affect the response of female Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) to odor and visual cues. J. Insect Physiol. 52:729–36
    [Google Scholar]
  22. 22. 
    Davidson MM, Butler RC, Teulon DAJ 2009. Pyridine compounds increase thrips (Thysanoptera: Thripidae) trap capture in an onion crop. J. Econ. Entomol. 102:1468–71
    [Google Scholar]
  23. 23. 
    Davidson MM, Butler RC, Winkler S, Teulon DAJ 2007. Pyridine compounds increase trap capture of Frankliniella occidentalis (Pergande) in a covered crop. N.Z. Plant Prot. 60:56–60
    [Google Scholar]
  24. 24. 
    Davidson MM, Nielsen M-C, Butler RC, Castañé C, Alomar O et al. 2015. Can semiochemicals attract both western flower thrips and their anthocorid predators. Entomol. Exp. Appl. 155:54–63
    [Google Scholar]
  25. 25. 
    Davidson MM, Perry NB, Larsen L, Green VC, Butler RC et al. 2008. 4-pyridyl carbonyl compounds as thrips lures: effectiveness for western flower thrips in Y-tube bioassays. J. Agric. Food Chem. 56:6554–61
    [Google Scholar]
  26. 26. 
    de Bruijn PJA, Egas M, Janssen A, Sabelis MW 2006. Pheromone-induced priming of a defensive response in western flower thrips. J. Chem. Ecol. 32:1599–603
    [Google Scholar]
  27. 27. 
    de Bruijn PJA, Egas M, Sabelis MW, Groot AT 2016. Context-dependent alarm signalling in an insect. J. Evol. Biol. 29:665–71
    [Google Scholar]
  28. 28. 
    de Kogel WJ, Koschier EH, Broughton S, Castañé C, Davidson MM et al. 2015. Semiochemicals for sustainable thrips management. Bodenkultur 66:17–25
    [Google Scholar]
  29. 29. 
    de Kogel WJ, van Deventer P 2003. Intraspecific attraction in the western flower thrips, Frankliniella occidentalis; indications for a male sex pheromone. Entomol. Exp. Appl. 107:87–89
    [Google Scholar]
  30. 30. 
    Deletre E, Schatz B, Bourguet D, Chandre F, Williams L et al. 2016. Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26:127–42
    [Google Scholar]
  31. 31. 
    Dethier VG, Barton Browne L, Smith CL 1960. The designation of chemicals in terms of the responses they elicit from insects. J. Econ. Entomol. 53:134–36
    [Google Scholar]
  32. 32. 
    Diabate S, Deletre E, Murungi LK, Fiaboe KKM, Subramanian S et al. 2019. Behavioural responses of bean flower thrips (Megalurothrips sjostedti) to vegetative and floral volatiles from different cowpea cultivars. Chemoecology 29:73–88
    [Google Scholar]
  33. 33. 
    Diabate S, Martin T, Murungi LK, Fiaboe KKM, Subramanian S et al. 2019. Repellent activity of Cymbopogon citratus and Tagetes minuta and their specific volatiles against Megalurothrips sjostedti. J. Appl. Entomol 143:855–66
    [Google Scholar]
  34. 34. 
    Diaz-Montano J, Fuchs M, Nault BA, Fail J, Shelton AM 2011. Onion thrips (Thysanoptera: Thripidae): a global pest of increasing concern in onion. J. Econ. Entomol. 104:1–13
    [Google Scholar]
  35. 35. 
    Egger B, Koschier EH. 2014. Behavioural responses of Frankliniella occidentalis Pergande larvae to methyl jasmonate and cis-jasmone. J. Pest Sci. 87:53–59
    [Google Scholar]
  36. 36. 
    Egger B, Spangl B, Koschier EH 2014. Habituation in Frankliniella occidentalis to deterrent plant compounds and their blends. Entomol. Exp. Appl. 151:231–38
    [Google Scholar]
  37. 37. 
    Egger B, Spangl B, Koschier EH 2016. Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis. Entomol. Exp. Appl 158:78–86
    [Google Scholar]
  38. 38. 
    El-Ghariani IM, Kirk WDJ. 2008. The structure of the male sternal glands of the western flower thrips, Frankliniella occidentalis (Pergande). Acta Phytopathol. Entomol. Hung. 43:257–66
    [Google Scholar]
  39. 39. 
    El-Sayed AM, Mitchell VJ, McLaren GF, Manning LM, Bunn B et al. 2009. Attraction of New Zealand flower thrips, Thrips obscuratus, to cis-jasmone, a volatile identified from Japanese honeysuckle flowers. J. Chem. Ecol. 35:656–63
    [Google Scholar]
  40. 40. 
    El-Sayed AM, Mitchell VJ, Suckling DM 2014. 6-Pentyl-2H-pyran-2-one: a potent peach-derived kairomone for New Zealand flower thrips. Thrips obscuratus. J. Chem. Ecol. 40:50–55
    [Google Scholar]
  41. 41. 
    Escobar-Bravo R, Klinkhamer PGL, Leiss KA 2017. Induction of jasmonic acid-associated defenses by thrips alters host suitability for conspecifics and correlates with increased trichome densities in tomato. Plant Cell Physiol 58:622–34
    [Google Scholar]
  42. 42. 
    Gao YL, Lei ZR, Reitz SR 2012. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag. Sci. 68:1111–21
    [Google Scholar]
  43. 43. 
    Gehlsen U, Lindemann P, Rettig W, Moritz G, Tschuch G 2009. Terminal double bonds in the alkenes and acetates of defensive secretion from the thrips Suocerathrips linguis Mound & Marullo, 1994 (Thysanoptera: Phlaeothripidae). Chemoecology 19:97–102
    [Google Scholar]
  44. 44. 
    Gómez M, García F, GreatRex R, Lorca M, Serna A 2006. Preliminary field trials with the synthetic sexual aggregation pheromone of Frankliniella occidentalis on protected pepper and tomato crops in south-east Spain. IOBC/WPRS Bull 29:153–58
    [Google Scholar]
  45. 45. 
    GreatRex R. 2009. 30% better control of WFT using Dynamec with Thripline. Fargro Croptalk Summer 5
    [Google Scholar]
  46. 46. 
    Hamilton JGC, Hall DR, Kirk WDJ 2005. Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol 31:1369–79
    [Google Scholar]
  47. 47. 
    Holtmann H. 1963. Untersuchungen zur Biologie der Getreide-Thysanopteren. Teil II. Z. Angew. Entomol. 51:285–99
    [Google Scholar]
  48. 48. 
    Howard DF, Blum MS, Fales HM 1983. Defense in thrips: forbidding fruitiness of a lactone. Science 220:335–36
    [Google Scholar]
  49. 49. 
    Howard DF, Blum MS, Jones TH, Fales HM, Tomalski MD 1987. Defensive function and chemistry of the anal exudate of the Cuban laurel thrips Gynaikothrips ficorum (Marchal). Phytophaga 1:163–70
    [Google Scholar]
  50. 50. 
    Imai T, Maekawa M, Murai T 2001. Attractiveness of methyl anthranilate and its related compounds to the flower thrips, Thrips hawaiiensis (Morgan), T. coloratus Schmutz, T. flavus Schrank and Megalurothrips distalis (Karny) (Thysanoptera: Thripidae). Appl. Entomol. Zool 36:475–78
    [Google Scholar]
  51. 51. 
    James DG. 2005. Further field evaluation of synthetic herbivore induced plant volatiles as attractants for beneficial insects. J. Chem. Ecol. 31:481–95
    [Google Scholar]
  52. 52. 
    Jones LC, Rafter MA, Walter GH 2018. Colonisation of primary and secondary host plant species by Frankliniella schultzei thrips: a balance between attraction and repulsion. Arthropod-Plant Interact 12:321–28
    [Google Scholar]
  53. 53. 
    Kiester AR, Strates E. 1984. Social behaviour in a thrips from Panama. J. Nat. Hist. 18:303–14
    [Google Scholar]
  54. 54. 
    Kirk WDJ. 1985. Aggregation and mating of thrips in flowers of Calystegia sepium. Ecol. Entomol 10:433–40
    [Google Scholar]
  55. 55. 
    Kirk WDJ. 1985. Effect of some floral scents on host finding by thrips (Insecta: Thysanoptera). J. Chem. Ecol. 11:35–44
    [Google Scholar]
  56. 56. 
    Kirk WDJ. 2017. The aggregation pheromones of thrips (Thysanoptera) and their potential for pest management. Int. J. Trop. Insect Sci. 37:41–49
    [Google Scholar]
  57. 57. 
    Kirk WDJ, Hamilton JGC. 2004. Evidence for a male-produced sex pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol 30:167–74
    [Google Scholar]
  58. 58. 
    Kirk WDJ, Terry LI. 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric. For. Entomol. 5:301–10
    [Google Scholar]
  59. 59. 
    Knudsen JT, Tollsten L, Bergström LG 1993. Floral scents: a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253–80
    [Google Scholar]
  60. 60. 
    Koschier EH. 2008. Essential oil compounds for thrips control: a review. Nat. Prod. Comm. 3:1171–82
    [Google Scholar]
  61. 61. 
    Koschier EH, de Kogel WJ, Visser JH 2000. Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis. J. Chem. Ecol 26:2643–55
    [Google Scholar]
  62. 62. 
    Koschier EH, Nielsen MC, Spangl B, Davidson MM, Teulon DAJ 2017. The effect of background plant odours on the behavioural responses of Frankliniella occidentalis to attractive or repellent compounds in a Y-tube olfactometer. Entomol. Exp. Appl. 163:160–69
    [Google Scholar]
  63. 63. 
    Koschier EH, Riefler J, Sedy KA 2007. Bioactive plant compounds for control of Thrips tabaci. IOBC/WPRS Bull 30:1–8
    [Google Scholar]
  64. 64. 
    Koschier EH, Sedy KA. 2003. Labiate essential oils affecting host selection and acceptance of Thrips tabaci Lindeman. Crop Prot 22:929–34
    [Google Scholar]
  65. 65. 
    Koschier EH, Sedy KA, Novak J 2002. Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci. Crop Prot 21:419–25
    [Google Scholar]
  66. 66. 
    Krueger S, Moritz G, Lindemann P, Radisch D, Tschuch G 2016. Male pheromones influence the mating behavior of Echinothrips americanus. J. Chem. Ecol 42:294–99
    [Google Scholar]
  67. 67. 
    Krueger S, Subramanian S, Niassy S, Moritz GB 2015. Sternal gland structures in males of bean flower thrips, Megalurothrips sjostedti, and poinsettia thrips, Echinothrips americanus, in comparison with those of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Arthropod Struct. Dev 44:455–67
    [Google Scholar]
  68. 68. 
    Krueger S, Wilfer A, Tschuch G, Lindemann P, Moritz G 2019. First detection of a female-specific volatile substance in thrips. Prog. Abstr. Entomol. 2019:108
    [Google Scholar]
  69. 69. 
    Leckie BM, D'Ambrosio DA, Chappell TM, Halitschke R, De Jong DM et al. 2016. Differential and synergistic functionality of acylsugars in suppressing oviposition by insect herbivores. PLOS ONE 11:4e0153345
    [Google Scholar]
  70. 70. 
    Leiss KA, Choi YH, Abdel-Farid IB, Verpoorte R, Klinkhamer PGL 2009. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids. J. Chem. Ecol. 35:219–29
    [Google Scholar]
  71. 71. 
    Leiss KA, Cristofori G, van Steenis R, Verpoorte R, Klinkhamer PGL 2013. An eco-metabolomic study of host plant resistance to Western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry 93:63–70
    [Google Scholar]
  72. 72. 
    Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL 2009. Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150:1567–75
    [Google Scholar]
  73. 73. 
    Lewis T. 1997. Thrips as Crop Pests Wallingford, UK: CAB Int.
    [Google Scholar]
  74. 74. 
    Li X, Geng S, Zhang Z, Zhang J, Li W et al. 2018. Species-specific aggregation pheromones contribute to coexistence in two closely related thrips species. Bull. Entomol. Res. 109:119–26
    [Google Scholar]
  75. 75. 
    Li X-W, Luo X-J, Wang L-K, Zhang J-M, Zhang Z-J et al. 2019. Isolation and identification of the aggregation pheromone in Megalurothrips usitatus (Thysanoptera: Thripidae). Acta Entomol. Sin. 62:1017–27
    [Google Scholar]
  76. 76. 
    Li X-W, Sun R-R, Zhang J-M, Zhang Z-J, Lu Y-B 2017. Mating behavior and aggregation pheromone release rhythm of Frankliniella occidentalis (Thysanoptera Thripidae) adults during photophase. Acta Entomol. Sin. 60:1439–46
    [Google Scholar]
  77. 77. 
    Lucas Espadas L. 2013. Posibilidades del control tecnológico de trips en uva de mesa. Experiencias en la Región de Murcia. Phytoma Esp 254:51
    [Google Scholar]
  78. 78. 
    MacDonald KM. 2002. The alarm pheromone of the western flower thrips PhD diss., Keele Univ. Newcastle-under-Lyme, UK:
    [Google Scholar]
  79. 79. 
    MacDonald KM, Hamilton JGC, Jacobson R, Kirk WDJ 2002. Effects of alarm pheromone on landing and take-off by adult western flower thrips. Entomol. Exp. Appl. 103:279–82
    [Google Scholar]
  80. 80. 
    MacDonald KM, Hamilton JGC, Jacobson R, Kirk WDJ 2003. Analysis of anal droplets of the western flower thrips Frankliniella occidentalis. J. Chem. Ecol 29:2385–89
    [Google Scholar]
  81. 81. 
    Manjunatha M, Pickett JA, Wadhams LJ, Nazzi F 1998. Response of western flower thrips, Frankliniella occidentalis and its predator Amblyseius cucumeris to chrysanthemum volatiles in olfactometer and greenhouse trials. Insect Sci. Appl. 18:139–44
    [Google Scholar]
  82. 82. 
    McKellar RC, McGarvey BD, Tsao R, Lu XW, Knight KP 2005. Application of the electronic nose to the classification of resistance to western flower thrips in chrysanthemums. J. Chem. Ecol. 31:2439–50
    [Google Scholar]
  83. 83. 
    Mfuti DK, Niassy S, Subramanian S, du Plessis H, Ekesi S et al. 2017. Lure and infect strategy for application of entomopathogenic fungus for the control of bean flower thrips in cowpea. Biol. Control 107:70–76
    [Google Scholar]
  84. 84. 
    Mfuti DK, Subramanian S, van Tol RWHM, Wiegers GL, de Kogel WJ et al. 2016. Spatial separation of semiochemical Lurem-TR and entomopathogenic fungi to enhance their compatibility and infectivity in an autoinoculation system for thrips management. Pest Manag. Sci. 72:131–39
    [Google Scholar]
  85. 85. 
    Miller JR, Siegert PY, Amimo FA, Walker ED 2009. Designation of chemicals in terms of the locomotor responses they elicit from insects: an update of Dethier et al. (1960). J. Econ. Entomol. 102:2056–60
    [Google Scholar]
  86. 86. 
    Milne M, Walter GH, Milne JR 2002. Mating aggregations and mating success in the flower thrips, Frankliniella schultzei (Thysanoptera: Thripidae), and a possible role for pheromones. J. Insect Behav. 15:351–68
    [Google Scholar]
  87. 87. 
    Moritz G. 1997. Structure, growth and development. Thrips as Crop Pests T Lewis 15–63 Wallingford, UK: CAB Int.
    [Google Scholar]
  88. 88. 
    Mound LA. 2009. Sternal pore plates (glandular areas) of male Thripidae (Thysanoptera). Zootaxa 2129:29–46
    [Google Scholar]
  89. 89. 
    Muvea AM, Meyhoefer R, Maniania NK, Poehling H-M, Ekesi S et al. 2015. Behavioral responses of Thrips tabaci Lindeman to endophyte-inoculated onion plants. J. Pest Sci. 88:555–62
    [Google Scholar]
  90. 90. 
    Muvea AM, Waiganjo MM, Kutima HL, Osiemo Z, Nyasani JO et al. 2014. Attraction of pest thrips (Thysanoptera: Thripidae) infesting French beans to coloured sticky traps with Lurem-TR and its utility for monitoring thrips populations. Int. J. Trop. Insect Sci. 34:197–206
    [Google Scholar]
  91. 91. 
    Niassy S, Ekesi S, Maniania NK, Orindi B, Moritz GB et al. 2016. Active aggregation among sexes in bean flower thrips (Megalurothrips sjostedti) on cowpea (Vigna unguiculata). Entomol. Exp. Appl. 158:17–24
    [Google Scholar]
  92. 92. 
    Niassy S, Maniania NK, Subramanian S, Gitonga LM, Ekesi S 2012. Performance of a semiochemical-baited autoinoculation device treated with Metarhizium anisopliae for control of Frankliniella occidentalis on French bean in field cages. Entomol. Exp. Appl. 142:97–103
    [Google Scholar]
  93. 93. 
    Niassy S, Tamiru A, Hamilton JGC, Kirk WDJ, Mumm R et al. 2019. Characterization of male-produced aggregation pheromone of the bean flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). J. Chem. Ecol. 45:348–55
    [Google Scholar]
  94. 94. 
    Nielsen MC, Sansom CE, Larsen L, Worner SP, Rostas M et al. 2019. Volatile compounds as insect lures: factors affecting release from passive dispenser systems. N.Z. J. Crop Hortic. Sci. 47:208–23
    [Google Scholar]
  95. 95. 
    Olaniran OA. 2012. The roles of pheromones of adult western flower thrips PhD diss., Keele Univ. Newcastle-under-Lyme, UK:
    [Google Scholar]
  96. 96. 
    Olaniran OA, Sudhakar AVS, Drijfhout FP, Dublon IAN, Hall DR et al. 2013. A male-predominant cuticular hydrocarbon, 7-methyltricosane, is used as a contact pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol 39:559–68
    [Google Scholar]
  97. 97. 
    Pearsall IA, Hogue EJ. 2000. Use of azadirachtin as a larvicide or feeding deterrent for control of western flower thrips in orchard systems. Phytoparasitica 28:219–28
    [Google Scholar]
  98. 98. 
    Penman DR, Osborne GO, Worner SP, Chapman RB, McLaren GF 1982. Ethyl nicotinate: a chemical attractant for Thrips obscuratus (Thysanoptera: Thripidae) in stonefruit in New Zealand. J. Chem. Ecol. 8:1299–304
    [Google Scholar]
  99. 99. 
    Picard I, Hollingsworth RG, Salmieri S, Lacroix M 2012. Repellency of essential oils to Frankliniella occidentalis (Thysanoptera: Thripidae) as affected by type of oil and polymer release. J. Econ. Entomol. 105:1238–47
    [Google Scholar]
  100. 100. 
    Pow EM, Hooper AM, Luszniak MC, Pickett PA, Wadhams LJ 1998. Novel strategies for improving biological control of western flower thrips on protected ornamentals: attraction of western flower thrips to verbena plants. Proceedings of the Brighton Crop Protection Conference on Pests and Disease417–22 Surrey, UK: Br. Crop Prot. Counc.
    [Google Scholar]
  101. 101. 
    Reitz SR, Gao Y, Kirk WDJ, Hoddle MS, Leiss KA et al. 2020. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 65:17–37
    [Google Scholar]
  102. 102. 
    Reitz SR, Maiorino G, Olson S, Sprenkel R, Crescenzi A et al. 2008. Integrating plant essential oils and kaolin for the sustainable management of thrips and tomato spotted wilt on tomato. Plant Dis 92:878–86
    [Google Scholar]
  103. 103. 
    Renwick JAA. 1990. Oviposition stimulants and deterrents. CRC Handbook of Natural Pesticides, Attractants and Repellents ED Morgan, NB Mandava 151–53 Boca Raton, FL: CRC Press
    [Google Scholar]
  104. 104. 
    Riefler J, Koschier EH. 2009. Behaviour-modifying activity of eugenol on Thrips tabaci Lindeman. J. Pest Sci. 82:115–21
    [Google Scholar]
  105. 105. 
    Rotenberg D, Whitfield AE. 2018. Molecular interactions between tospoviruses and thrips vectors. Curr. Opin. Virol. 33:191–97
    [Google Scholar]
  106. 106. 
    Russell HM. 1912. The Bean Thrips Washington, DC: U.S. Dept. Agric.
    [Google Scholar]
  107. 107. 
    Sampson C. 2014. Management of the western flower thrips on strawberry PhD diss., Keele Univ. Newcastle-under-Lyme, UK:
    [Google Scholar]
  108. 108. 
    Sampson C, Hamilton JGC, Kirk WDJ 2012. The effect of trap colour and aggregation pheromone on trap catch of Frankliniella occidentalis and associated predators in protected pepper in Spain. IOBC/WPRS Bull 80:313–18
    [Google Scholar]
  109. 109. 
    Sampson C, Kirk WDJ. 2013. Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLOS ONE 8:11e80787
    [Google Scholar]
  110. 110. 
    Schütz I, Moritz GB, Roos W 2014. Alkaloid metabolism in thrips-Papaveraceae interaction: recognition and mutual response. J. Plant Physiol. 171:119–26
    [Google Scholar]
  111. 111. 
    Scott-Brown AS, Arnold SEJ, Kite GC, Farrell IW, Farman DI et al. 2019. Mechanisms in mutualisms: a chemically mediated thrips pollination strategy in common elder. Planta 250:367–79
    [Google Scholar]
  112. 112. 
    Shitatani S, Tsutsumi T. 2006. Ultrastructure of sternal glands in Hydatothrips (Hydatothrips) abdominalis (Kurosawa) and H. (Neohydatothrips) gracilicornis (Williams) (Thysanoptera: Terebrantia). Proc. Arthropod. Embryol. Soc. Jpn. 41:59–65
    [Google Scholar]
  113. 113. 
    Smits PH, van Deventer P, de Kogel WJ 2000. Western flower thrips: reactions to odours and colours. Proc. Exp. Appl. Entomol. 11:175–80
    [Google Scholar]
  114. 114. 
    Steenbergen M, Abd-el-Haliem A, Bleeker P, Dicke M, Escobar-Bravo R et al. 2018. Thrips advisor: exploiting thrips-induced defences to combat pests on crops. J. Exp. Bot. 69:1837–48
    [Google Scholar]
  115. 115. 
    Suzuki T, Haga K, Kataoka M, Tsutsumi T, Nakano Y et al. 1995. Secretion of thrips VIII. Secretions of the two Ponticulothrips species (Thysanoptera: Phlaeothripidae). Appl. Entomol. Zool. 30:509–19
    [Google Scholar]
  116. 116. 
    Suzuki T, Haga K, Kodama S, Watanabe K, Kuwahara Y 1988. Secretion of thrips. II. Secretions of three gall-inhabiting thrips (Thysanoptera: Phlaeothripidae). Appl. Entomol. Zool. 23:291–97
    [Google Scholar]
  117. 117. 
    Suzuki T, Haga K, Tsutsumi T, Matsuyama S 2000. Chemical analysis and comparison of acid components of anal secretions of idolothripine thrips. J. Chem. Ecol. 26:2449–58
    [Google Scholar]
  118. 118. 
    Suzuki T, Haga K, Tsutsumi T, Matsuyama S 2004. Analysis of anal secretions from phlaeothripine thrips. J. Chem. Ecol. 30:409–23
    [Google Scholar]
  119. 119. 
    Teerling CR, Gillespie DR, Borden JH 1993. Utilization of western flower thrips alarm pheromone as a prey-finding kairomone by predators. Can. Entomol. 125:431–37
    [Google Scholar]
  120. 120. 
    Teerling CR, Pierce HD, Borden JH, Gillespie DR 1993. Identification and bioactivity of alarm pheromone in the western flower thrips. Frankliniella occidentalis. J. Chem. Ecol. 19:681–97
    [Google Scholar]
  121. 121. 
    Terry I, Walter GH, Moore C, Roemer R, Hull C 2007. Odor-mediated push-pull pollination in cycads. Science 318:70
    [Google Scholar]
  122. 122. 
    Terry LI, Gardner D. 1990. Male mating swarms in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). J. Insect Behav. 3:133–41
    [Google Scholar]
  123. 123. 
    Teulon DAJ, Butler RC, James DE, Davidson MM 2007. Odour-baited traps influence thrips capture in proximal unbaited traps in the field. Entomol. Exp. Appl. 123:253–62
    [Google Scholar]
  124. 124. 
    Teulon DAJ, Castañé C, Nielsen M-C, El-Sayed AM, Davidson MM et al. 2014. Evaluation of new volatile compounds as lures for western flower thrips and onion thrips in New Zealand and Spain. N.Z. Plant Prot. 67:175–83
    [Google Scholar]
  125. 125. 
    Teulon DAJ, Davidson MM, Butler RC, Nielsen M-C 2014. Effect of release rate and odour cross-contamination for semiochemical baited traps used in thrips pest management. IOBC/WPRS Bull 102:205–10
    [Google Scholar]
  126. 126. 
    Teulon DAJ, Davidson MM, Hedderley DI, James DE, Fletcher CD et al. 2007. 4-pyridyl carbonyl and related compounds as thrips lures: effectiveness for onion thrips and New Zealand flower thrips in field experiments. J. Agric. Food Chem. 55:6198–205
    [Google Scholar]
  127. 127. 
    Teulon DAJ, Davidson MM, Nielsen M, Butler R, Bosch D et al. 2018. Efficacy of a non-pheromone semiochemical for trapping of western flower thrips in the presence of competing plant volatiles in a nectarine orchard. Span. J. Agric. Res. 16:e10SC01
    [Google Scholar]
  128. 128. 
    Teulon DAJ, Davidson MM, Nielsen M-C, Perry NB, van Tol RWHM et al. 2008. The potential use of lures for thrips biocontrol in greenhouses: practice and theory. Proceedings of the 3rd International Symposium on Biological Control of Arthropods PG Mason, DR Gillespie, C Vincent 301–8 Morgantown, WV: U.S. Dept. Agric.
    [Google Scholar]
  129. 129. 
    Teulon DAJ, Davidson MM, Perry NB, Nielsen M-C, Castañé C et al. 2017. Methyl isonicotinate—a non-pheromone thrips semiochemical—and its potential for pest management. Int. J. Trop. Insect Sci. 37:50–56
    [Google Scholar]
  130. 130. 
    Teulon DAJ, Hollister B, Butler RC, Cameron EA 1999. Colour and odour responses of flying western flower thrips: wind tunnel and greenhouse experiments. Entomol. Exp. Appl. 93:9–19
    [Google Scholar]
  131. 131. 
    Teulon DAJ, Nielsen MC, James DE, Winkler S, McLachlan ARG et al. 2007. Combination of two odour chemical lures does not increase thrips capture in field bioassays. N.Z. Plant Prot. 60:61–66
    [Google Scholar]
  132. 132. 
    Teulon DAJ, Nielsen MC, Jones S, Leskey TC 2016. A new lure for Frankliniella tritici (Thysanoptera: Thripidae). Proceedings of the First Annual Meeting of the Northeastern Plant, Pest and Soils Conference 2016 AE Gover 58 Annapolis, MD: Entomol. Soc. Am.
    [Google Scholar]
  133. 133. 
    Teulon DAJ, Penman DR, Ramakers PMJ 1993. Volatile chemicals for thrips (Thysanoptera: Thripidae) host-finding and applications for thrips pest management. J. Econ. Entomol. 86:1405–15
    [Google Scholar]
  134. 134. 
    Tschuch G, Lindemann P, Niesen A, Csuk R, Moritz G 2005. A novel long-chained acetate in the defensive secretion of thrips. J. Chem. Ecol. 31:1555–65
    [Google Scholar]
  135. 135. 
    Vaello T, Casas JL, Pineda A, de Alfonso I, Marcos-García MA 2017. Olfactory response of the predatory bug Orius laevigatus (Hemiptera: Anthocoridae) to the aggregation pheromone of its prey, Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 46:1115–19
    [Google Scholar]
  136. 136. 
    van Tol RWHM, de Bruin A, Butler RC, Davidson MM, Teulon DAJ et al. 2012. Methyl isonicotinate induces increased walking and take-off behaviour in western flower thrips. Frankliniella occidentalis. Entomol. Exp. Appl. 142:181–90
    [Google Scholar]
  137. 137. 
    van Tol RWHM, James DE, de Kogel WJ, Teulon DAJ 2007. Plant odours with potential for a push–pull strategy to control the onion thrips. Thrips tabaci. Entomol. Exp. Appl. 122:69–76
    [Google Scholar]
  138. 138. 
    Vierbergen G. 1995. International movement, detection and quarantine of Thysanoptera pests. Thrips Biology and Management BL Parker, M Skinner, T Lewis 119–32 New York: Plenum Press
    [Google Scholar]
  139. 139. 
    Waite MO. 2012. New strategies to improve the efficiency of the biological control agent, Orius insidiosus (Say), in greenhouse ornamental crops MSc thesis, Univ Guelph, Can:.
    [Google Scholar]
  140. 140. 
    Webster KW, Cooper P, Mound LA 2006. Studies on Kelly's citrus thrips, Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae): sex attractants, host associations and country of origin. Aust. J. Entomol. 45:67–74
    [Google Scholar]
  141. 141. 
    Wogin MJ, Butler RC, Teulon DAJ, Davidson MM 2010. Field response of onion thrips and New Zealand flower thrips to single and binary blends of thrips lures. Can. Entomol. 142:75–79
    [Google Scholar]
  142. 142. 
    Yang T, Stoopen G, Thoen M, Wiegers G, Jongsma MA 2013. Chrysanthemum expressing a linalool synthase gene “smells good”, but “tastes bad” to western flower thrips. Plant Biotechnol. J. 11:875–82
    [Google Scholar]
  143. 143. 
    Yang T, Stoopen G, Wiegers G, Mao J, Wang C et al. 2012. Pyrethrins protect pyrethrum leaves against attack by western flower thrips. Frankliniella occidentalis. J. Chem. Ecol. 38:370–77
    [Google Scholar]
  144. 144. 
    Zhang P-J, Zhu X-Y, Lu Y-B 2011. Behavioural and chemical evidence of a male-produced aggregation pheromone in the flower thrips Frankliniella intonsa. Physiol. Entomol 36:317–20
    [Google Scholar]
  145. 145. 
    Zhu X-Y, Zhang P-J, Lu Y-B 2012. Isolation and identification of the aggregation pheromone released by male adults of Frankliniella intonsa (Thysanoptera: Thripidae). Acta Entomol. Sin. 55:376–85
    [Google Scholar]
/content/journals/10.1146/annurev-ento-022020-081531
Loading
/content/journals/10.1146/annurev-ento-022020-081531
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error