1932

Abstract

Chelicerata constitutes an ancient, biodiverse, and ecologically significant group of Arthropoda. The study of chelicerate evolution has undergone a renaissance in the past decade, resulting in major changes to our understanding of the higher-level phylogeny and internal relationships of living orders. Included among these conceptual advances are the discoveries of multiple whole-genome duplication events in a subset of chelicerate orders, such as horseshoe crabs, spiders, and scorpions. As a result, longstanding hypotheses and textbook scenarios of chelicerate evolution, such as the monophyly of Arachnida and a single colonization of land by the common ancestor of arachnids, have come into contention. The retention of ancient, duplicated genes across this lineage also offers fertile ground for investigating the role of gene duplication in chelicerate macroevolution. This new frontier of investigation is paralleled by the timely establishment of the first gene editing protocols for arachnid models, facilitating a new generation of experimental approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022024-011250
2025-01-28
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-022024-011250.html?itemId=/content/journals/10.1146/annurev-ento-022024-011250&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aase-Remedios ME, Janssen R, Leite DJ, Summer-Rooney L, McGregor AP. 2023.. Evolution of the spider homeobox gene repertoire by tandem and whole genome duplication. . Mol. Biol. Evol. 40:(12):msad239
    [Crossref] [Google Scholar]
  2. 2.
    Akiyama-Oda Y, Akaiwa T, Oda H. 2022.. Reconstruction of the global polarity of an early spider embryo by single-cell and single-nucleus transcriptome analysis. . Front. Cell Dev. Biol. 10::933220 2. The first application of single-cell RNA sequencing in chelicerates; this work characterized gene expression dynamics in early embryos of the model spider Parasteatoda tepidariorum, leading to the discovery of new genes and gene functions.
    [Crossref] [Google Scholar]
  3. 3.
    Arabi J, Cruaud C, Couloux A, Hassanin A. 2010.. Studying sources of incongruence in arthropod molecular phylogenies: sea spiders (Pycnogonida) as a case study. . C. R. Biol. 333:(5):43853
    [Crossref] [Google Scholar]
  4. 4.
    Arakawa K, Mori M, Kono N, Suzuki T, Gotoh T, Shimano S. 2021.. Proteomic evidence for the silk fibroin genes of spider mites (order Trombidiformes: family Tetranychidae). . J. Proteom. 239::104195
    [Crossref] [Google Scholar]
  5. 5.
    Arango CP. 2002.. Morphological phylogenetics of the sea spiders (Arthropoda: Pycnogonida). . Org. Divers. Evol. 2:(2):10725
    [Crossref] [Google Scholar]
  6. 6.
    Arango CP, Wheeler WC. 2007.. Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. . Cladistics 23:(3):25593
    [Crossref] [Google Scholar]
  7. 7.
    Arlian LG, Morgan MS. 2017.. A review of Sarcoptes scabiei: past, present and future. . Parasites Vectors 10:(1):297
    [Crossref] [Google Scholar]
  8. 8.
    Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, et al. 2022.. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. . Mol. Biol. Evol. 39:(2):msac021 8. The broadest taxon coverage yet for the higher-level phylogenomics of chelicerates, including total evidence matrices spanning over 500 species; this work suggested that neither molecular nor morphological data support arachnid monophyly.
    [Crossref] [Google Scholar]
  9. 9.
    Ballesteros JA, Santibáñez-López CE, Kováč Ĺ, Gavish-Regev E, Sharma PP. 2019.. Ordered phylogenomic subsampling enables diagnosis of systematic errors in the placement of the enigmatic arachnid order Palpigradi. . Proc. R. Soc. B 286:(1917):20192426
    [Crossref] [Google Scholar]
  10. 10.
    Ballesteros JA, Setton EVW, Santibáñez-López CE, Arango CP, Brenneis G, et al. 2021.. Phylogenomic resolution of sea spider diversification through integration of multiple data classes. . Mol. Biol. Evol. 38:(2):686701
    [Crossref] [Google Scholar]
  11. 11.
    Ballesteros JA, Sharma PP. 2019.. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. . Syst. Biol. 68:(6):896917 11. A deep interrogation of phylogenetic signal and systematic bias that postulated the nonmonophyly of Arachnida due to the nested placement of Xiphosura.
    [Crossref] [Google Scholar]
  12. 12.
    Ban X, Shao Z, Wu L, Sun J, Xue X. 2022.. Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. . Cladistics 38:(4):45264
    [Crossref] [Google Scholar]
  13. 13.
    Barnett AA, Thomas RH. 2013.. Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus. . EvoDevo 4:(1):23
    [Crossref] [Google Scholar]
  14. 14.
    Benavides LR, Cosgrove JG, Harvey MS, Giribet G. 2019.. Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones tree of life. . Mol. Phylogenet. Evol. 139::106509
    [Crossref] [Google Scholar]
  15. 15.
    Bergström J, Stürmer W, Winter G. 1980.. Palaeoisopus, Palaeopantopus and Palaeothea, pycnogonid arthropods from the Lower Devonian Hunsrück Slate, West Germany. . Paläontol. Z. 54:(1–2):754
    [Crossref] [Google Scholar]
  16. 16.
    Bicknell RDC, Lustri L, Brougham T. 2019.. Revision of “Bellinuruscarteri (Chelicerata: Xiphosura) from the Late Devonian of Pennsylvania, USA. . C. R. Palevol 18:(8):96776
    [Crossref] [Google Scholar]
  17. 17.
    Bolton SJ. 2022.. Proteonematalycus wagneri Kethley reveals where the opisthosoma begins in acariform mites. . PLOS ONE 17:(2):e0264358
    [Crossref] [Google Scholar]
  18. 18.
    Bolton SJ, Chetverikov PE, Ochoa R, Klimov PB. 2023.. Where Eriophyoidea (Acariformes) belong in the tree of life. . Insects 14:(6):527
    [Crossref] [Google Scholar]
  19. 19.
    Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T. 2014.. A transcriptome approach to ecdysozoan phylogeny. . Mol. Phylogenet. Evol. 80::7987
    [Crossref] [Google Scholar]
  20. 20.
    Brenneis G. 2022.. The visual pathway in sea spiders (Pycnogonida) displays a simple serial layout with similarities to the median eye pathway in horseshoe crabs. . BMC Biol. 20::27
    [Crossref] [Google Scholar]
  21. 21.
    Brenneis G, Bogomolova EV, Arango CP, Krapp F. 2017.. From egg to “no-body”: an overview and revision of developmental pathways in the ancient arthropod lineage Pycnogonida. . Front. Zool. 14::6
    [Crossref] [Google Scholar]
  22. 22.
    Cabezas-Cruz A, Valdés JJ. 2014.. Are ticks venomous animals?. Front. Zool. 11::47
    [Crossref] [Google Scholar]
  23. 23.
    Chapin KJ, Hebets EA. 2016.. The behavioral ecology of amblypygids. . J. Arachnol. 44:(1):114
    [Crossref] [Google Scholar]
  24. 24.
    Chaw RC, Clarke TH, Arensburger P, Ayoub NA, Hayashi CY. 2021.. Gene expression profiling reveals candidate genes for defining spider silk gland types. . Insect Biochem. Mol. Biol. 135::103594
    [Crossref] [Google Scholar]
  25. 25.
    Chetverikov PE, Desnitskiy AG. 2015.. A study of embryonic development in eriophyoid mites (Acariformes, Eriophyoidea) with the use of the fluorochrome DAPI and confocal microscopy. . Exp. Appl. Acarol. 68:(1):97111
    [Crossref] [Google Scholar]
  26. 26.
    Clarke TH, Garb JE, Hayashi CY, Arensburger P, Ayoub NA. 2015.. Spider transcriptomes identify ancient large-scale gene duplication event potentially important in silk gland evolution. . Genome Biol. Evol. 7:(7):185670
    [Crossref] [Google Scholar]
  27. 27.
    Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, et al. 2014.. Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. . BMC Genom. 15::365
    [Crossref] [Google Scholar]
  28. 28.
    Clouse RM, Branstetter MG, Buenavente P, Crowley LM, Czekanski-Moir J, et al. 2017.. First global molecular phylogeny and biogeographical analysis of two arachnid orders (Schizomida and Uropygi) supports a tropical Pangean origin and mid-Cretaceous diversification. . J. Biogeogr. 44:(11):266072
    [Crossref] [Google Scholar]
  29. 29.
    Coddington JA, Giribet G, Harvey MS, Prendini L, Walter DE. 2004.. Arachnida. . In Assembling the Tree of Life, ed. J Cracraft, MJ Donoghue , pp. 296318. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  30. 30.
    Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J. 2010.. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. . Mol. Phylogenet. Evol. 56:(1):22241
    [Crossref] [Google Scholar]
  31. 31.
    Damen WGM. 2007.. Evolutionary conservation and divergence of the segmentation process in arthropods. . Dev. Dyn. 236:(6):137991
    [Crossref] [Google Scholar]
  32. 32.
    De Miranda GS, Giupponi APL, Scharff N, Prendini L. 2022.. Phylogeny and biogeography of the pantropical whip spider family Charinidae (Arachnida: Amblypygi). . Zool. J. Linn. Soc. 194:(1):13680
    [Crossref] [Google Scholar]
  33. 33.
    De Miranda GS, Kulkarni SS, Tagliatela J, Baker CM, Giupponi APL, et al. 2024.. The rediscovery of a relict unlocks the first global phylogeny of whip spiders (Amblypygi). . Syst. Biol. 11::syae021
    [Google Scholar]
  34. 34.
    De Rouck S, Mocchetti A, Dermauw W, Van Leeuwen T. 2024.. SYNCAS: efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods. . Insect Biochem. Mol. Biol. 165::104068
    [Crossref] [Google Scholar]
  35. 35.
    Derkarabetian S, Lord A, Angier K, Frigyik E, Giribet G. 2023.. An Opiliones-specific ultraconserved element probe set with a near-complete family-level phylogeny. . Mol. Phylogenet. Evol. 187::107887
    [Crossref] [Google Scholar]
  36. 36.
    Dermauw W, Jonckheere W, Riga M, Livadaras I, Vontas J, Leeuwen TV. 2020.. Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae. . Insect Biochem. Mol. Biol. 120::103347 36. The first application of CRISPR-mediated gene editing in chelicerates, using the acariform mite model Tetranychus urticae.
    [Crossref] [Google Scholar]
  37. 37.
    Dimitriou AC, Taiti S, Sfenthourakis S. 2019.. Genetic evidence against monophyly of Oniscidea implies a need to revise scenarios for the origin of terrestrial isopods. . Sci. Rep. 9::18508
    [Crossref] [Google Scholar]
  38. 38.
    Dömel JS, Dietz L, Macher T-H, Rozenberg A, Mayer C, et al. 2020.. Analyzing drivers of speciation in the Southern Ocean using the sea spider species complex Colossendeis megalonyx as a test case. . Polar Biol. 43:(4):31942
    [Crossref] [Google Scholar]
  39. 39.
    Dömel JS, Macher T-H, Dietz L, Duncan S, Mayer C, et al. 2019.. Combining morphological and genomic evidence to resolve species diversity and study speciation processes of the Pallenopsis patagonica (Pycnogonida) species complex. . Front. Zool. 16::36
    [Crossref] [Google Scholar]
  40. 40.
    Dunlop J. 1998.. The origins of tetrapulmonate book lungs and their significance for chelicerate phylogeny. . In Proceedings of the 17th European Colloquium of Arachnology, pp. 916. N.p.:: Br. Arachnol. Soc.
    [Google Scholar]
  41. 41.
    Dunlop JA. 2010.. Geological history and phylogeny of Chelicerata. . Arthropod Struct. Dev. 39:(2–3):12442
    [Crossref] [Google Scholar]
  42. 42.
    Dunlop JA. 2018.. Miniaturisation in Chelicerata. . Arthropod Struct. Dev. 48::2034
    [Crossref] [Google Scholar]
  43. 43.
    Dunlop JA, Krüger J, Alberti G. 2012.. The sejugal furrow in camel spiders and acariform mites. . Arachnol. Mitt. 43::2936
    [Google Scholar]
  44. 44.
    Dunlop JA, Lamsdell JC. 2016.. Segmentation and tagmosis in Chelicerata. . Arthropod Struct. Dev. 46:(3):395418
    [Crossref] [Google Scholar]
  45. 45.
    Fan Z, Yuan T, Liu P, Wang L-Y, Jin J-F, et al. 2021.. A chromosome-level genome of the spider Trichonephila antipodiana reveals the genetic basis of its polyphagy and evidence of an ancient whole-genome duplication event. . GigaScience 10:(3):giab016
    [Crossref] [Google Scholar]
  46. 46.
    Fernández R, Giribet G. 2015.. Unnoticed in the tropics: phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida). . R. Soc. Open Sci. 2:(6):150065
    [Crossref] [Google Scholar]
  47. 47.
    Fernández R, Sharma PP, Tourinho AL, Giribet G. 2017.. The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. . Proc. R. Soc. B 284:(1849):20162340
    [Crossref] [Google Scholar]
  48. 48.
    Gainett G, González VL, Ballesteros JA, Setton EVW, Baker CM, et al. 2021.. The genome of a daddy-long-legs (Opiliones) illuminates the evolution of arachnid appendages. . Proc. R. Soc. B 288:(1956):20211168
    [Crossref] [Google Scholar]
  49. 49.
    Gainett G, Klementz BC, Blaszczyk PO, Bruce HS, Patel NH, Sharma PP. 2023.. Dual functions of labial resolve the Hox logic of Chelicerate head segments. . Mol. Biol. Evol. 40:(3):msad037
    [Crossref] [Google Scholar]
  50. 50.
    Gainett G, Klementz BC, Blaszczyk PO, Setton EVW, Murayama G, et al. 2024.. Vestigial organs alter fossil placements in an ancient group of terrestrial chelicerates. . Curr. Biol. 34::125870 50. A report on the discovery of vestigial eye pairs in Opiliones and their impact on phylogenetic placement of fossils; this work underscored the plesiomorphic nature of harvestman neuroanatomy and the impact of subtle morphological traits on evolutionary inference.
    [Crossref] [Google Scholar]
  51. 51.
    Gainett G, Klementz BC, Setton EVW, Simian C, Iuri HA, et al. 2023.. A plurality of morphological characters need not equate with phylogenetic accuracy: a rare genomic change refutes the placement of Solifugae and Pseudoscorpiones in Haplocnemata. . Evol. Dev. 26::e12467
    [Crossref] [Google Scholar]
  52. 52.
    Gainett G, Sharma PP. 2020.. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. . EvoDevo 11:(1):18
    [Crossref] [Google Scholar]
  53. 53.
    Garwood RJ, Dunlop J. 2014.. Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders. . PeerJ 2:(2):e641
    [Crossref] [Google Scholar]
  54. 54.
    Garwood RJ, Dunlop JA. 2023.. Consensus and conflict in studies of chelicerate fossils and phylogeny. . Arachnol. Mitt. 66:(1):216 54. A modern look at the chelicerate fossil record and the first realignment of paleontological data to accord with phylogenomic data sets.
    [Google Scholar]
  55. 55.
    Garwood RJ, Edgecombe GD. 2011.. Early terrestrial animals, evolution, and uncertainty. . Evol. Educ. Outreach 4:(3):489501
    [Crossref] [Google Scholar]
  56. 56.
    Giribet G, Edgecombe GD. 2012.. Reevaluating the arthropod tree of life. . Annu. Rev. Entomol. 57::16786
    [Crossref] [Google Scholar]
  57. 57.
    Giribet G, Edgecombe GD, Wheeler W. 2001.. Arthropod phylogeny based on eight molecular loci and morphology. . Nature 413:(6852):15761
    [Crossref] [Google Scholar]
  58. 58.
    Giribet G, McIntyre E, Christian E, Espinasa L, Ferreira RL, et al. 2014.. The first phylogenetic analysis of Palpigradi (Arachnida)—the most enigmatic arthropod order. . Invertebr. Syst. 28:(4):35060
    [Crossref] [Google Scholar]
  59. 59.
    Giribet G, Vogt L, González AP, Sharma P, Kury AB. 2010.. A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. . Cladistics 26:(4):40837
    [Crossref] [Google Scholar]
  60. 60.
    Grbić M, Leeuwen TV, Clark RM, Rombauts S, Rouzé P, et al. 2011.. The genome of Tetranychus urticae reveals herbivorous pest adaptations. . Nature 479:(7374):48792
    [Crossref] [Google Scholar]
  61. 61.
    Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, et al. 2016.. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. . Nat. Commun. 7::10507
    [Crossref] [Google Scholar]
  62. 62.
    Haney RA, Matte T, Forsyth FS, Garb JE. 2019.. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. . Front. Ecol. Evol. 7::85
    [Crossref] [Google Scholar]
  63. 63.
    Harper A, Gonzalez LB, Schönauer A, Janssen R, Seiter M, et al. 2021.. Widespread retention of ohnologs in key developmental gene families following whole-genome duplication in arachnopulmonates. . G3 Genes Genom. Genet. 11:(12):jkab299
    [Crossref] [Google Scholar]
  64. 64.
    He Y, Zhao R, Di Z, Li Z, Xu X, et al. 2013.. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. . J. Proteom. 89::114
    [Crossref] [Google Scholar]
  65. 65.
    Hilbrant M, Damen WGM. 2015.. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei. . Arthropod Struct. Dev. 44:(3):28088
    [Crossref] [Google Scholar]
  66. 66.
    Howard RJ, Puttick MN, Edgecombe GD, Lozano-Fernandez J. 2020.. Arachnid monophyly: morphological, palaeontological and molecular support for a single terrestrialization within Chelicerata. . Arthropod Struct. Dev. 59::100997
    [Crossref] [Google Scholar]
  67. 67.
    Hughes CL, Kaufman TC. 2002.. Hox genes and the evolution of the arthropod body plan. . Evol. Dev. 4:(6):45999
    [Crossref] [Google Scholar]
  68. 68.
    Hunt S. 1973.. Ultrastructure and composition of pseudoscorpion silk. . Biochem. Soc. Trans. 1:(1):21819
    [Crossref] [Google Scholar]
  69. 69.
    Janeschik M, Schacht MI, Platten F, Turetzek N. 2022.. It takes two: Discovery of spider Pax2 duplicates indicates prominent role in chelicerate central nervous system, eye, as well as external sense organ precursor formation and diversification after neo- and subfunctionalization. . Front. Ecol. Evol. 10::810077
    [Crossref] [Google Scholar]
  70. 70.
    Jin P, Zhu B, Jia Y, Zhang Y, Wang W, et al. 2023.. Single-cell transcriptomics reveals the brain evolution of web-building spiders. . Nat. Ecol. Evol. 7:(12):212542
    [Crossref] [Google Scholar]
  71. 71.
    Johri P, Gout J-F, Doak TG, Lynch M. 2022.. A population-genetic lens into the process of gene loss following whole-genome duplication. . Mol. Biol. Evol. 39:(6):msac118
    [Crossref] [Google Scholar]
  72. 72.
    Kallal RJ, Kulkarni SS, Dimitrov D, Benavides LR, Arnedo MA, et al. 2021.. Converging on the orb: Denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web. . Cladistics 37:(3):298316
    [Crossref] [Google Scholar]
  73. 73.
    Kanayama M, Akiyama-Oda Y, Oda H. 2010.. Early embryonic development in the spider Achaearanea tepidariorum: Microinjection verifies that cellularization is complete before the blastoderm stage. . Arthropod Struct. Dev. 39:(6):43645
    [Crossref] [Google Scholar]
  74. 74.
    Klimov PB, OConnor BM, Chetverikov PE, Bolton SJ, Pepato AR, et al. 2018.. Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. . Mol. Phylogenet. Evol. 119::10517
    [Crossref] [Google Scholar]
  75. 75.
    Klompen H, Lekveishvili M, Black WC IV. 2007.. Phylogeny of parasitiform mites (Acari) based on rRNA. . Mol. Phylogenet. Evol. 43:(3):93651
    [Crossref] [Google Scholar]
  76. 76.
    Kuhn-Nentwig L, Langenegger N, Heller M, Koua D, Nentwig W. 2019.. The dual prey-inactivation strategy of spiders—in-depth venomic analysis of Cupiennius salei. . Toxins 11:(3):167
    [Crossref] [Google Scholar]
  77. 77.
    Kulkarni S, Wood HM, Hormiga G. 2023.. Advances in the reconstruction of the spider tree of life: a roadmap for spider systematics and comparative studies. . Cladistics 39:(6):479532 77. A comprehensive review of spider phylogeny in the genomic era.
    [Crossref] [Google Scholar]
  78. 78.
    Kulkarni SS, Steiner HG, Garcia EL, Iuri H, Jones RR, et al. 2023.. Neglected no longer: phylogenomic resolution of higher-level relationships in Solifugae. . iScience 26:(9):107684
    [Crossref] [Google Scholar]
  79. 79.
    Kulkarni SS, Yamasaki T, Thi Hong Phung L, Karuaera N, Daniels SR, et al. 2024.. Phylogenomic data reveal three new families of poorly studied Solifugae (camel spiders). . Mol. Phylogenet. Evol. 191::107989
    [Crossref] [Google Scholar]
  80. 80.
    Lamsdell JC. 2016.. Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation. . Palaeontology 59:(2):18194
    [Crossref] [Google Scholar]
  81. 81.
    Lamsdell JC, McCoy VE, Perron-Feller OA, Hopkins MJ. 2020.. Air breathing in an exceptionally preserved 340-million-year-old sea scorpion. . Curr. Biol. 30:(21):431621.e2
    [Crossref] [Google Scholar]
  82. 82.
    Leite DJ, Baudouin-Gonzalez L, Iwasaki-Yokozawa S, Lozano-Fernandez J, Turetzek N, et al. 2018.. Homeobox gene duplication and divergence in arachnids. . Mol. Biol. Evol. 35:(9):224053
    [Crossref] [Google Scholar]
  83. 83.
    Lozano-Fernandez J, Tanner AR, Giacomelli M, Carton R, Vinther J, et al. 2019.. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. . Nat. Commun. 10::2295
    [Crossref] [Google Scholar]
  84. 84.
    Lozano-Fernandez J, Tanner AR, Puttick MN, Vinther J, Edgecombe GD, Pisani D. 2020.. A Cambrian–Ordovician terrestrialization of arachnids. . Front. Genet. 11::182
    [Crossref] [Google Scholar]
  85. 85.
    Lozano-Pérez AA, Pagán A, Zhurov V, Hudson SD, Hutter JL, et al. 2020.. The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials. . Sci. Rep. 10::18471
    [Crossref] [Google Scholar]
  86. 86.
    Marc P, Canard A. 1997.. Maintaining spider biodiversity in agroecosystems as a tool in pest control. . Agric. Ecosyst. Environ. 62:(2–3):22935
    [Crossref] [Google Scholar]
  87. 87.
    Martínez-Redondo GI, Simón Guerrero C, Aristide L, Balart-García P, Tonzo V, Fernández R. 2023.. Parallel duplication and loss of aquaporin-coding genes during the “out of the sea” transition as potential key drivers of animal terrestrialization. . Mol. Ecol. 32:(8):202240
    [Crossref] [Google Scholar]
  88. 88.
    Medina-Jiménez BI, Budd GE, Janssen R. 2024.. Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development. . BMC Genom. 25::150
    [Crossref] [Google Scholar]
  89. 89.
    Meusemann K, Reumont BMV, Simon S, Roeding F, Strauss S, et al. 2010.. A phylogenomic approach to resolve the arthropod tree of life. . Mol. Biol. Evol. 27:(11):245164
    [Crossref] [Google Scholar]
  90. 90.
    Mi J, Zhou Y, Ma S, Zhou X, Xu S, et al. 2023.. High-strength and ultra-tough whole spider silk fibers spun from transgenic silkworms. . Matter 6:(10):366183
    [Crossref] [Google Scholar]
  91. 91.
    Miller J, Zimin AV, Gordus A. 2023.. Chromosome-level genome and the identification of sex chromosomes in Uloborus diversus. . GigaScience 12::giad002
    [Crossref] [Google Scholar]
  92. 92.
    Murienne J, Harvey MS, Giribet G. 2008.. First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). . Mol. Phylogenet. Evol. 49:(1):17084
    [Crossref] [Google Scholar]
  93. 93.
    Noah KE, Hao J, Li L, Sun X, Foley B, et al. 2020.. Major revisions in arthropod phylogeny through improved supermatrix, with support for two possible waves of land invasion by chelicerates. . Evol. Bioinform. Online 16::117693432090373
    [Crossref] [Google Scholar]
  94. 94.
    Nong W, Qu Z, Li Y, Barton-Owen T, Wong AYP, et al. 2021.. Horseshoe crab genomes reveal the evolution of genes and microRNAs after three rounds of whole genome duplication. . Commun. Biol. 4::83
    [Crossref] [Google Scholar]
  95. 95.
    Ontano AZ, Gainett G, Aharon S, Ballesteros JA, Benavides LR, et al. 2021.. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. . Mol. Biol. Evol. 38:(6):244667 95. Applied whole genome duplication as a rare genomic change to place the fast-evolving pseudoscorpions within Arachnopulmonata; this work underscored the importance of taxonomic sampling over model selection for phylogenetic accuracy.
    [Crossref] [Google Scholar]
  96. 96.
    Ontano AZ, Steiner HG, Sharma PP. 2022.. How many long branch orders occur in Chelicerata? Opposing effects of Palpigradi and Opilioacariformes on phylogenetic stability. . Mol. Phylogenet. Evol. 168::107378
    [Crossref] [Google Scholar]
  97. 97.
    Pepato AR, da Rocha CEF, Dunlop JA. 2010.. Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. . BMC Evol. Biol. 10::235
    [Crossref] [Google Scholar]
  98. 98.
    Pepato AR, dos Santos Costa SG, Harvey MS, Klimov PB. 2022.. One-way ticket to the blue: a large-scale, dated phylogeny revealed asymmetric land-to-water transitions in acariform mites (Acari: Acariformes). . Mol. Phylogenet. Evol. 177::107626
    [Crossref] [Google Scholar]
  99. 99.
    Poschmann M, Dunlop JA. 2006.. A new sea spider (Arthropoda : Pycnogonida) with a flagelliform telson from the lower Devonian Hunsruck Slate, Germany. . Palaeontology 49:(5):98389
    [Crossref] [Google Scholar]
  100. 100.
    Regier JC, Shultz JW, Kambic RE. 2005.. Pancrustacean phylogeny: Hexapods are terrestrial crustaceans and maxillopods are not monophyletic. . Proc. R. Soc. B 272:(1561):395401
    [Crossref] [Google Scholar]
  101. 101.
    Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, et al. 2010.. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. . Nature 463:(7284):107983
    [Crossref] [Google Scholar]
  102. 102.
    Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, et al. 2005.. Spider silk proteins—mechanical property and gene sequence. . Zool. Sci. 22:(3):27381
    [Crossref] [Google Scholar]
  103. 103.
    Rix MG, Huey JA, Main BY, Waldock JM, Harrison SE, et al. 2016.. Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. . Austral Entomol. 56:(1):1422
    [Crossref] [Google Scholar]
  104. 104.
    Rochlin I, Toledo A. 2020.. Emerging tick-borne pathogens of public health importance: a mini-review. . J. Med. Microbiol. 69:(6):78191
    [Crossref] [Google Scholar]
  105. 105.
    Roeding F, Borner J, Kube M, Klages S, Reinhardt R, Burmester T. 2009.. A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). . Mol. Phylogenet. Evol. 53:(3):82634
    [Crossref] [Google Scholar]
  106. 106.
    Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, et al. 2011.. A congruent solution to arthropod phylogeny: Phylogenomics, microRNAs and morphology support monophyletic Mandibulata. . Proc. Biol. Sci. 278:(1703):298306
    [Google Scholar]
  107. 107.
    Rudkin DM, Cuggy MB, Young GA, Thompson DP. 2015.. An Ordovician pycnogonid (sea spider) with serially subdivided ‘head’ region. . J. Paleontol. 87:(03):395405
    [Crossref] [Google Scholar]
  108. 108.
    Sabroux R, Corbari L, Hassanin A. 2023.. Phylogeny of sea spiders (Arthropoda: Pycnogonida) inferred from mitochondrial genome and 18S ribosomal RNA gene sequences. . Mol. Phylogenet. Evol. 182::107726
    [Crossref] [Google Scholar]
  109. 109.
    Samu F, Szita É, Botos E, Simon J, Gallé-Szpisjak N, Gallé R. 2023.. Agricultural spider decline: long-term trends under constant management conditions. . Sci. Rep. 13::2305
    [Crossref] [Google Scholar]
  110. 110.
    Santibáñez-López CE, Aharon S, Ballesteros JA, Gainett G, Baker CM, et al. 2022.. Phylogenomics of scorpions reveal contemporaneous diversification of scorpion mammalian predators and mammal-active sodium channel toxins. . Syst. Biol. 71:(6):128189
    [Crossref] [Google Scholar]
  111. 111.
    Santibáñez-López CE, González-Santillán E, Monod L, Sharma PP. 2019.. Phylogenomics facilitates stable scorpion systematics: reassessing the relationships of Vaejovidae and a new higher-level classification of Scorpiones (Arachnida). . Mol. Phylogenet. Evol. 135::2230
    [Crossref] [Google Scholar]
  112. 112.
    Santibáñez-López CE, Kriebel R, Ballesteros JA, Rush N, Witter Z, et al. 2018.. Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions. . PeerJ 6:(18):e5902
    [Crossref] [Google Scholar]
  113. 113.
    Santibáñez-López CE, Ojanguren-Affilastro AA, Sharma PP. 2020.. Another one bites the dust: Taxonomic sampling of a key genus in phylogenomic datasets reveals more non-monophyletic groups in traditional scorpion classification. . Invertebr. Syst. 34:(2):13311
    [Crossref] [Google Scholar]
  114. 114.
    Santibáñez-López CE, Ontano A, Harvey MS, Sharma P. 2018.. Transcriptomic analysis of pseudoscorpion venom reveals a unique cocktail dominated by enzymes and protease inhibitors. . Toxins 10:(5):20712
    [Crossref] [Google Scholar]
  115. 115.
    Sato S, Derkarabetian S, Valdez-Mondragón A, Pérez-González A, Benavides LR, et al. 2024.. Under the hood: Phylogenomics of hooded tick spiders (Arachnida, Ricinulei) uncovers discordance between morphology and molecules. . Mol. Phylogenet. Evol. 193::108026
    [Crossref] [Google Scholar]
  116. 116.
    Scholtz G, Kamenz C. 2006.. The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. . Zoology 109:(1):213
    [Crossref] [Google Scholar]
  117. 117.
    Schomburg C, Turetzek N, Schacht MI, Schneider J, Kirfel P, et al. 2015.. Molecular characterization and embryonic origin of the eyes in the common house spider Parasteatoda tepidariorum. . EvoDevo 6::15
    [Crossref] [Google Scholar]
  118. 118.
    Schultz DT, Haddock SHD, Bredeson JV, Green RE, Simakov O, Rokhsar DS. 2023.. Ancient gene linkages support ctenophores as sister to other animals. . Nature 618:(7963):11017
    [Crossref] [Google Scholar]
  119. 119.
    Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, et al. 2017.. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. . BMC Biol. 15::62 119. Postulated the presence of an ancient genome duplication uniting spiders and scorpions based on an early generation of higher-quality genome assemblies.
    [Crossref] [Google Scholar]
  120. 120.
    Setton EVW, Sharma PP. 2018.. Cooption of an appendage-patterning gene cassette in the head segmentation of arachnids. . PNAS 115:(15):E3491500
    [Crossref] [Google Scholar]
  121. 121.
    Sharma A, Pham MN, Reyes JB, Chana R, Yim WC, et al. 2022.. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. . iScience 25:(3):103781
    [Crossref] [Google Scholar]
  122. 122.
    Sharma PP. 2017.. Chelicerates and the conquest of land: a view of arachnid origins through an evo-devo spyglass. . Integr. Org. Biol. 57:(3):51022
    [Crossref] [Google Scholar]
  123. 123.
    Sharma PP. 2018.. Chelicerates. . Curr. Biol. 28:(14):R77478
    [Crossref] [Google Scholar]
  124. 124.
    Sharma PP. 2023.. The impact of whole genome duplication on the evolution of the arachnids. . Integr. Org. Biol. 63:(3):82542
    [Crossref] [Google Scholar]
  125. 125.
    Sharma PP, Ballesteros JA, Santibáñez-López CE. 2021.. What is an “arachnid”? Consensus, consilience, and confirmation bias in the phylogenetics of Chelicerata. . Diversity 13:(11):568
    [Crossref] [Google Scholar]
  126. 126.
    Sharma PP, Fernández R, Esposito LA, González-Santillán E, Monod L. 2015.. Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. . Proc. R. Soc. B 282:(1804):20142953
    [Crossref] [Google Scholar]
  127. 127.
    Sharma PP, Kaluziak ST, Perez-Porro AR, Gonzalez VL, Hormiga G, et al. 2014.. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. . Mol. Biol. Evol. 31:(11):296384
    [Crossref] [Google Scholar]
  128. 128.
    Sharma PP, Schwager EE, Extavour CG, Wheeler WC. 2014.. Hox gene duplications correlate with posterior heteronomy in scorpions. . Proc. R. Soc. B 281:(1792):20140661
    [Crossref] [Google Scholar]
  129. 129.
    Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG. 2013.. Distal-less and dachshund pattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestman Phalangium opilio (Opiliones). . Evol. Dev. 15:(4):22842
    [Crossref] [Google Scholar]
  130. 130.
    Sharma PP, Tarazona OA, Lopez DH, Schwager EE, Cohn MJ, et al. 2015.. A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids. . Proc. R. Soc. B 282:(1808):20150698
    [Crossref] [Google Scholar]
  131. 131.
    Shingate P, Ravi V, Prasad A, Tay B-H, Garg KM, et al. 2020.. Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution. . Nat. Commun. 11::2322 131. The first chromosomal-level genome for a horseshoe crab, revealing the impact of multiple rounds of whole genome duplication in this lineage.
    [Crossref] [Google Scholar]
  132. 132.
    Shultz JW. 1990.. Evolutionary morphology and phylogeny of Arachnida. . Cladistics 6:(1):138
    [Crossref] [Google Scholar]
  133. 133.
    Shultz JW. 2007.. A phylogenetic analysis of the arachnid orders based on morphological characters. . Zool. J. Linn. Soc. 150:(2):22165
    [Crossref] [Google Scholar]
  134. 134.
    Simon S, Hadrys H. 2013.. A comparative analysis of complete mitochondrial genomes among Hexapoda. . Mol. Phylogenet. Evol. 69:(2):393403
    [Crossref] [Google Scholar]
  135. 135.
    Siveter DJ, Sutton MD, Briggs DEG, Siveter DJ. 2004.. A Silurian sea spider. . Nature 431:(7011):97880
    [Crossref] [Google Scholar]
  136. 136.
    Spiess K, Lammel A, Scheibel T. 2010.. Recombinant spider silk proteins for applications in biomaterials. . Macromol. Biosci. 10:(9):9981007
    [Crossref] [Google Scholar]
  137. 137.
    Sponner A, Vater W, Monajembashi S, Unger E, Grosse F, Weisshart K. 2007.. Composition and hierarchical organisation of a spider silk. . PLOS ONE 2:(10):e998
    [Crossref] [Google Scholar]
  138. 138.
    Stollewerk A, Schoppmeier M, Damen WGM. 2003.. Involvement of Notch and Delta genes in spider segmentation. . Nature 423:(6942):86365
    [Crossref] [Google Scholar]
  139. 139.
    Swanson BO, Blackledge TA, Beltrán J, Hayashi CY. 2006.. Variation in the material properties of spider dragline silk across species. . Appl. Phys. A 82:(2):21318
    [Crossref] [Google Scholar]
  140. 140.
    Talavera G, Vila R. 2011.. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. . BMC Evol. Biol. 11::315
    [Crossref] [Google Scholar]
  141. 141.
    Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, et al. 2020.. Gene content evolution in the arthropods. . Genome Biol. 21:(1):15
    [Crossref] [Google Scholar]
  142. 142.
    Tihelka E, Howard RJ, Cai C, Lozano-Fernandez J. 2022.. Was there a Cambrian explosion on land? The case of arthropod terrestrialization. . Biology 11:(10):1516
    [Crossref] [Google Scholar]
  143. 143.
    Turetzek N, Pechmann M, Schomburg C, Schneider J, Prpic N-M. 2015.. Neofunctionalization of a duplicate dachshund gene underlies the evolution of a novel leg segment in arachnids. . Mol. Biol. Evol. 33:(1):10921
    [Crossref] [Google Scholar]
  144. 144.
    Waddington J, Rudkin DM, Dunlop JA. 2015.. A new mid-Silurian aquatic scorpion—one step closer to land?. Biol. Lett. 11:(1):20140815
    [Crossref] [Google Scholar]
  145. 145.
    Waloszek D, Dunlop JA. 2002.. A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘orsten’ of Sweden, and the phylogenetic position of pycnogonids. . Palaeontology 45:(3):42146
    [Crossref] [Google Scholar]
  146. 146.
    Watson-Zink VM. 2021.. Making the grade: physiological adaptations to terrestrial environments in decapod crabs. . Arthropod Struct. Dev. 64::101089
    [Crossref] [Google Scholar]
  147. 147.
    Weygoldt P, Paulus HF. 1979.. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata II. Cladogramme und die Entfaltung der Chelicerata. . J. Zool. Syst. Evol. Res. 17:(3):177200
    [Crossref] [Google Scholar]
  148. 148.
    Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, et al. 2017.. The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. . Cladistics 33:(6):574616
    [Crossref] [Google Scholar]
  149. 149.
    Wheeler WC, Hayashi C. 1998.. The phylogeny of the extant chelicerate orders. . Cladistics 14::17392
    [Crossref] [Google Scholar]
  150. 150.
    Woods HA, Lane SJ, Shishido C, Tobalske BW, Arango CP, Moran AL. 2017.. Respiratory gut peristalsis by sea spiders. . Curr. Biol. 27:(13):R63839
    [Crossref] [Google Scholar]
  151. 151.
    Zehnpfennig JR, Varney RM, Halanych KM, Mahon AR. 2022.. Mitochondrial genomes provide insight into interfamilial relationships within Pycnogonida. . Polar Biol. 45:(9):151322
    [Crossref] [Google Scholar]
  152. 152.
    Zhang Z-Q. 2013.. Phylum Arthropoda. . Zootaxa 3703::1726
    [Google Scholar]
/content/journals/10.1146/annurev-ento-022024-011250
Loading
/content/journals/10.1146/annurev-ento-022024-011250
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error