1932

Abstract

Atmospheric gases, such as carbon dioxide (CO) and ozone (O), influence plant–insect interactions, with variable effects. The few studies that have investigated the direct effects of elevated CO (eCO; 750–900 ppm) or elevated O (eO; 60–200 ppb) on insects have shown mixed results. Instead, most research has focused on the indirect effects through changes in the host plant. In general, the lower nitrogen levels in C3 brassicaceous plants grown at eCO negatively affect insects and may result in compensatory feeding. Phytohormones involved in plant resistance may be altered by eCO or eO. For example, stress-related jasmonate levels, which lead to induced resistance against chewing herbivores, are weakened at eCO. In general, eCO does not affect herbivore-induced plant volatiles, which remain attractive to natural enemies. However, floral volatiles and herbivore-induced plant volatiles may be degraded by O, affecting pollination and foraging natural enemy behavior. Thus, eCO and eO alter plant–insect interactions; however, many aspects remain poorly understood.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022024-015159
2025-01-28
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-022024-015159.html?itemId=/content/journals/10.1146/annurev-ento-022024-015159&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abrell L, Guerenstein PG, Mechaber WL, Stange G, Christensen TA, et al. 2005.. Effect of elevated atmospheric CO2 on oviposition behavior in Manduca sexta moths. . Glob. Change Biol. 11::127282
    [Crossref] [Google Scholar]
  2. 2.
    Agathokleous E, Feng Z, Oksanen E, Sicard P, Wang Q, et al. 2020.. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. . Sci. Adv. 6::eabc1176
    [Crossref] [Google Scholar]
  3. 3.
    Ahn JJ, Choi KS. 2023.. Population parameters and growth of Myzus persicae Sulzer (Hemiptera: Aphididae) under elevated CO2 concentrations in the air. . Entomol. Res. 53::17589
    [Crossref] [Google Scholar]
  4. 4.
    Akbar SM, Pavani T, Nagaraja T, Sharma HC. 2016.. Influence of CO2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera). . Environ. Entomol. 45::22936
    [Crossref] [Google Scholar]
  5. 5.
    Alotaibi MO, Khamis G, AbdElgawad H, Mohammed AE, Sheteiwy MS, et al. 2021.. Lepidium sativum sprouts grown under elevated CO2 hyperaccumulate glucosinolates and antioxidants and exhibit enhanced biological and reduced antinutritional properties. . Biomolecules 11::1174
    [Crossref] [Google Scholar]
  6. 6.
    Amiri-Jami AR, Sadeghi H, Shoor M. 2012.. The performance of Brevicoryne brassicae on ornamental cabbages grown in CO2-enriched atmospheres. . J. Asia-Pac. Entomol. 15::24953
    [Crossref] [Google Scholar]
  7. 7.
    Badenes-Perez FR, Gershenzon J, Heckel DG. 2020.. Plant glucosinolate content increases susceptibility to diamondback moth (Lepidoptera: Plutellidae) regardless of its diet. . J. Insect Sci. 93::491506
    [Google Scholar]
  8. 8.
    Bae H, Sicher R. 2004.. Changes of soluble protein expression and leaf metabolite levels in Arabidopsis thaliana grown in elevated atmospheric carbon dioxide. . Field Crops Res. 90::6173
    [Crossref] [Google Scholar]
  9. 9.
    Barie K, Levin E, Amsalem E. 2022.. CO2 narcosis induces a metabolic shift mediated via juvenile hormone in Bombus impatiens gynes. . Insect Biochem. Mol. Biol. 149::103831
    [Crossref] [Google Scholar]
  10. 10.
    Bazinet Q, Tang L, Bede JC. 2022.. Impact of future elevated carbon dioxide on C3 plant resistance to biotic stresses. . Mol. Plant-Microbe Interact. 35::52739
    [Crossref] [Google Scholar]
  11. 11.
    Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, et al. 2008.. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. . PLOS ONE 3::e2068
    [Crossref] [Google Scholar]
  12. 12.
    Behmer ST. 2009.. Insect herbivore nutrient regulation. . Annu. Rev. Entomol. 54::16787
    [Crossref] [Google Scholar]
  13. 13.
    Bernklau EG, Bjostad LB. 1998.. Reinvestigation of host location by Western corn rootworm larvae (Coleoptera: Chrysomelidae): CO2 is the only volatile attractant. . J. Econ. Entomol. 91::133140
    [Crossref] [Google Scholar]
  14. 14.
    Bezemer TM, Knight KJ, Newington JE, Jones TH. 1999.. How general are aphid responses to elevated CO2?. Ann. Entomol. Soc. Am. 92::72430
    [Crossref] [Google Scholar]
  15. 15.
    Bidart-Bouzat MG, Mithen R, Berenbaum MR. 2005.. Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. . Oecologia 145::41524
    [Crossref] [Google Scholar]
  16. 16.
    Blande JD, Holopainen JK, Niinemets Ü. 2014.. Plant volatiles in polluted atmospheres: stress responses and signal degradation. . Plant Cell Environ. 37::1892904
    [Crossref] [Google Scholar]
  17. 17.
    Boullis A, Blanchard S, Francis F, Verheggen F. 2018.. Elevated CO2 concentrations impact the semiochemistry of aphid honeydew without having a cascade effect on an aphid predator. . Insects 9::47
    [Crossref] [Google Scholar]
  18. 18.
    Boullis A, Detrain C, Francis F, Verheggen FJ. 2016.. Will climate change affect insect pheromonal communication?. Curr. Opin. Insect Sci. 17::8791
    [Crossref] [Google Scholar]
  19. 19.
    Boullis A, Fassotte B, Sarles L, Lognay G, Heuskin S, et al. 2017.. Elevated carbon dioxide concentration reduces alarm signaling in aphids. . J. Chem. Ecol. 43::16471
    [Crossref] [Google Scholar]
  20. 20.
    Boullis A, Francis F, Verheggen FJ. 2015.. Climate change and tritrophic interactions: Will modifications to greenhouse gas emissions increase the vulnerability of herbivorous insects to natural enemies?. Environ. Entomol. 44::27786
    [Crossref] [Google Scholar]
  21. 21.
    Brosset A, Saunier A, Kivimäenpää M, Blande JD. 2020.. Does ozone exposure affect herbivore-induced plant volatile emissions differently in wild and cultivated plants?. Environ. Sci. Pollut. Res. 27::3044859
    [Crossref] [Google Scholar]
  22. 22.
    Brosset A, Saunier A, Mofikoya AO, Kivimäenpää M, Blande JD. 2020.. The effects of ozone on herbivore-induced volatile emissions of cultivated and wild Brassica rapa. . Atmosphere 11::1213
    [Crossref] [Google Scholar]
  23. 23.
    Bruce TJA, Pickett JA. 2011.. Perception of plant volatile blends by herbivorous insects—finding the right mix. . Phytochemistry 72::160511
    [Crossref] [Google Scholar]
  24. 24.
    Burke R. 2022.. Molecular physiology of copper in Drosophila melanogaster. . Curr. Opin. Insect Sci. 51::100892
    [Crossref] [Google Scholar]
  25. 25.
    Burmester T, Hankeln T. 2007.. The respiratory proteins of insects. . J. Insect Physiol. 53::28594
    [Crossref] [Google Scholar]
  26. 26.
    Burow M, Halkier BA. 2017.. How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as a case study. . Curr. Opin. Plant Biol. 38::14247
    [Crossref] [Google Scholar]
  27. 27.
    Busch FA. 2020.. Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism. . Plant J. 101::91939
    [Crossref] [Google Scholar]
  28. 28.
    Cardoso-Jaime V, Broderick NA, Maya-Maldonado K. 2023.. Metal ions in insect reproduction: a crosstalk between reproductive physiology and immunity. . Curr. Opin. Insect Sci. 52::100924
    [Crossref] [Google Scholar]
  29. 29.
    Chen F, Ge F, Parajulee MN. 2005.. Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. . Environ. Entomol. 34::3746
    [Crossref] [Google Scholar]
  30. 30.
    Chen Y, Olson DM, Ruberson JR. 2010.. Effects of nitrogen fertilization on tritrophic interactions. . Arthropod-Plant Interact. 4::8194
    [Crossref] [Google Scholar]
  31. 31.
    Chesnais Q, Couty A, Catterou M, Ameline A. 2016.. Cascading effects of N input on tritrophic (plant-aphid-parasitoid) interactions. . Ecol. Evol. 6::788291
    [Crossref] [Google Scholar]
  32. 32.
    Cibils-Stewart X, Kliebenstein DJ, Li B, Giles K, McCormack BP, Nechols J. 2022.. Aphid species and feeding location on canola influences the impact of glucosinolates on a native lady beetle predator. . Environ. Entomol. 51::5262
    [Crossref] [Google Scholar]
  33. 33.
    Coll M, Hughes L. 2008.. Effects of elevated CO2 on an insect omnivore: a test for nutritional effects mediated by host plants and prey. . Agric. Ecosyst. Environ. 123::27179
    [Crossref] [Google Scholar]
  34. 34.
    Crowley LM, Sadler JP, Pritchard J, Hayward SAL. 2021.. Elevated CO2 impacts on plant–pollinator interactions: a systematic review and air carbon enrichment field study. . Insects 12::51226
    [Crossref] [Google Scholar]
  35. 35.
    Dadd RH, Mittler TE. 1965.. Studies on the artificial feeding of the aphid Myzus persicae (Sulzer). III. Some major nutritional requirements. . J. Insect Physiol. 11::71743
    [Crossref] [Google Scholar]
  36. 36.
    Dadd RH, Krieger DL. 1968.. Dietary amino acid requirements of the aphid, Myzus persicae. . J. Insect Physiol. 14::74164
    [Crossref] [Google Scholar]
  37. 37.
    Davey K. 2007.. From insect ovaries to sheep red blood cells: a tale of two hormones. . J. Insect Physiol. 53::110
    [Crossref] [Google Scholar]
  38. 38.
    Deans CA, Behmer ST, Tessnow AE, Tamez-Guerra P, Pusztai-Carey M, Sword GA. 2017.. Nutrition affects insect susceptibility to Bt toxins. . Sci. Rep. 7::39705
    [Crossref] [Google Scholar]
  39. 39.
    Démares F, Gibert L, Creusot P, Lapeyre B, Proffit M. 2022.. Acute ozone exposure impairs detection of floral odor, learning, and memory of honey bees, through olfactory generalization. . Sci. Total Environ. 827::154342
    [Crossref] [Google Scholar]
  40. 40.
    Démares F, Gibert L, Lapeyre B, Creusot P, Renault D, Proffit M. 2024.. Ozone exposure induces metabolic stress and olfactory memory disturbance in honey bees. . Chemosphere 346::140647
    [Crossref] [Google Scholar]
  41. 41.
    Dötterl S, Vater M, Rupp T, Held A. 2016.. Ozone differentially affects perception of plant volatiles in western honey bees. . J. Chem. Ecol. 42::48689
    [Crossref] [Google Scholar]
  42. 42.
    Douglas AE. 1998.. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. . Annu. Rev. Entomol. 43::1737
    [Crossref] [Google Scholar]
  43. 43.
    Duque L, Poelman EH, Steffan-Dewenter I. 2021.. Plant age at the time of ozone exposure affects flowering patterns, biotic interactions and reproduction of wild mustard. . Sci. Rep. 11::23448
    [Crossref] [Google Scholar]
  44. 44.
    Dyer LA, Richards LA, Short SA, Dodsom CD. 2013.. Effects of CO2 and temperature on tritrophic interactions. . PLOS ONE 8::e62528
    [Crossref] [Google Scholar]
  45. 45.
    Ekman Å, Bülow L, Stymne S. 2007.. Elevated atmospheric CO2 concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. . New Phytol. 174::59199
    [Crossref] [Google Scholar]
  46. 46.
    Farré-Armengol G, Peñuelas J, Li T, Yli-Pirilä P, Filella Cubells I, et al. 2016.. Ozone degrades floral scent and reduces pollinator attraction to flowers. . New Phytol. 209::15260
    [Crossref] [Google Scholar]
  47. 47.
    Florian A, Timm S, Nikoloski Z, Tohge T, Hermann B, et al. 2014.. Analysis of metabolic alterations in Arabidopsis following changes in the carbon dioxide and oxygen partial pressures. . J. Integr. Plant Biol. 56::94159
    [Crossref] [Google Scholar]
  48. 48.
    Ghosh E, Tafesh-Edwards GSY, Eleftherianos I, Goldin SL, Ode PJ. 2023.. The plant taoxin 4-methylsulfinylbutyl isothiocyanate decreases herbivore performance and modulates cellular and humoral immunity. . PLOS ONE 18::20289205
    [Google Scholar]
  49. 49.
    Gilbert N. 1984.. Control of fecundity in Pieris rapae. I. The problem. . J. Anim. Ecol. 1::58188
    [Crossref] [Google Scholar]
  50. 50.
    Gillespie JP, Kanost MR, Trenczek T. 1997.. Biological mediators of insect immunity. . Annu. Rev. Entomol. 42::61143
    [Crossref] [Google Scholar]
  51. 51.
    Glenny WR, Runyon JB, Burkle LA. 2018.. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation. . New Phytol. 220::78598
    [Crossref] [Google Scholar]
  52. 52.
    Gogon A, Cassan O, Bach L, Lejay L, Martin A. 2023.. The decline of plant mineral nutrition under rising CO2: physiological and molecular aspects of a bad deal. . Trends Plant Sci. 28::18598
    [Crossref] [Google Scholar]
  53. 53.
    Guerenstein PG, Christensen TA, Hildebrand JG. 2004.. Sensory processing of ambient CO2 information in the brain of the moth Manduca sexta. . J. Comp. Physiol. A 190::70725
    [Crossref] [Google Scholar]
  54. 54.
    Guerenstein PG, Hildebrand JG. 2008.. Roles and effects of environmental carbon dioxide in insect life. . Annu. Rev. Entomol. 53::16178
    [Crossref] [Google Scholar]
  55. 55.
    Guerenstein PG, Yepez EA, van Haren J, Williams DG, Hildebrand JG. 2004.. Floral CO2 emission may indicate food abundance to nectar-feeding moths. . Naturwissenschaften 91::32933
    [Crossref] [Google Scholar]
  56. 56.
    Guo H, Sun Y, Yan H, Li C, Ge F. 2020.. O3-induced priming defense associated with the abscisic acid signaling pathway enhances plant resistance to Bemisia tabaci. . Front. Plant Sci. 11::93
    [Crossref] [Google Scholar]
  57. 57.
    Han YJ, Beck W, Mewis I, Förster N, Ulrichs C. 2023.. Effect of ozone stresses on growth and secondary plant metabolism of Brassica campestris L. ssp. chinensis. . Horticulturae 9::966
    [Crossref] [Google Scholar]
  58. 58.
    Han YJ, Gharibeshghi A, Mewis I, Förster N, Beck W, Ulrichs C. 2020.. Plant responses to ozone: effects of different ozone exposure durations on plant growth and biochemical quality of Brassica campestris L. ssp. chinensis. . Sci. Hortic. 262::108921
    [Crossref] [Google Scholar]
  59. 59.
    Han YJ, Gharibeshghi A, Mewis I, Förster N, Beck W, Ulrichs C. 2021.. Effect of different durations of moderate ozone exposure on secondary metabolites of Brassica campestris L. ssp. chinensis. . J. Hortic. Sci. Biotechnol. 96::11020
    [Crossref] [Google Scholar]
  60. 60.
    Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. 2007.. Plant structural traits and their role in anti-herbivore defence. . Perspect. Plant Ecol. Evol. Syst. 8::15778
    [Crossref] [Google Scholar]
  61. 61.
    Haripriya K, Kennedy JS, Geethalakshmi V, Rajabaskar D. 2024.. Effect of elevated carbon dioxide on the fitness traits of Plutella xylostella (L.) (Lepidoptera: Plutellidae). . Int. J. Pest Manag. 70::1422
    [Crossref] [Google Scholar]
  62. 62.
    Harvey JA, Bezemer TM, Elzinga JA, Strand MR. 2004.. Development of the solitary endoparasitoid Microplitis demolitor: Host quality does not increase with host age and size. . Ecol. Entomol. 29::3543
    [Crossref] [Google Scholar]
  63. 63.
    Haverkamp A, Smid HM. 2020.. A neuronal arms race: the role of learning in parasitoid–host interactions. . Curr. Opin. Insect Sci. 42::4754
    [Crossref] [Google Scholar]
  64. 64.
    Henri DC, van Veen FJF. 2011.. Body size, life history and the structure of host-parasitoid networks. . Adv. Ecol. Res. 45::13580
    [Crossref] [Google Scholar]
  65. 65.
    Himanen SJ, Nerg AM, Nissinen A, Pinto DM, Stewart CN Jr., et al. 2009.. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). . New Phytol. 181::17486
    [Crossref] [Google Scholar]
  66. 66.
    Himanen SJ, Nissinen A, Dong WX, Nerg AM, Stewart CN Jr., et al. 2008.. Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate?. Glob. Change Biol. 14::143754
    [Crossref] [Google Scholar]
  67. 67.
    Hopkins RJ, van Dam NM, van Loon JJA. 2009.. Role of glucosinolates in insect-plant relationships and multitrophic interactions. . Annu. Rev. Entomol. 54::5783
    [Crossref] [Google Scholar]
  68. 68.
    Howe GA, Major IT, Koo AJ. 2018.. Modularity in jasmonate signaling for multistress resilience. . Annu. Rev. Plant Biol. 69::387415
    [Crossref] [Google Scholar]
  69. 69.
    Jahangir M, Abdel-Farid IB, Choi YH, Verpoorte R. 2008.. Metal ion–inducing metabolite accumulation in Brassica rapa. . J. Plant Physiol. 165::142937
    [Crossref] [Google Scholar]
  70. 70.
    Jauregui I, Aparicio-Tejo PM, Avila C, Cañas R, Sakalauskiene S, Aranjuelo I. 2016.. Root–shoot interactions explain the reduction of leaf mineral content in Arabidopsis plants grown under elevated [CO2] conditions. . Physiol. Planta 158::6579
    [Crossref] [Google Scholar]
  71. 71.
    Jauregui I, Aparicio-Tejo PM, Avila C, Rueda-López M, Aranjuelo I. 2015.. Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: a physiologic, metabolic and transcriptomic response. . J. Plant Physiol. 189::6576
    [Crossref] [Google Scholar]
  72. 72.
    Jeschke V, Kearney EE, Schramm K, Kunert G, Shekhov A, et al. 2017.. How glucosinolates affect generalist lepidopteran larvae: growth, development and glucosinolate metabolism. . Front. Plant Sci. 8::1995
    [Crossref] [Google Scholar]
  73. 73.
    Jeschke V, Zalucki JM, Raguschke B, Gershenzon J, Heckel DG, et al. 2021.. So much for glucosinolates: A generalist does survive and develop on brassicas, but at what cost?. Plants 10::962
    [Crossref] [Google Scholar]
  74. 74.
    Jiang N-J, Chang H, Weißflog J, Ebert F, Veit D, et al. 2023.. Ozone exposure disrupts insect sexual communication. . Nat. Commun. 14::1186
    [Crossref] [Google Scholar]
  75. 75.
    Jiang N-J, Dong X, Veit D, Hansson BS, Knaden M. 2024.. Elevated ozone disrupts mating boundaries in drosophilid flies. . Nat. Commun. 15::2872
    [Crossref] [Google Scholar]
  76. 76.
    Jing X, Behmer ST. 2020.. Insect sterol nutrition: physiological mechanisms, ecology, and applications. . Annu. Rev. Entomol. 65::25171
    [Crossref] [Google Scholar]
  77. 77.
    Joachim C, Hatano E, David A, Kunert M, Linse C, Weisser WW. 2013.. Modulation of aphid alarm pheromone emission of pea aphid prey by predators. . J. Chem. Ecol. 39::77382
    [Crossref] [Google Scholar]
  78. 78.
    Juarez EK, Petersen MR. 2022.. A comparison of machine learning methods to forecast tropospheric ozone levels in Delhi. . Atmosphere 13::46
    [Crossref] [Google Scholar]
  79. 79.
    Karowe DN, Grubb C. 2011.. Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). . J. Chem. Ecol. 37::133240
    [Crossref] [Google Scholar]
  80. 80.
    Keil TA. 1996.. Sensilla on the maxillary palps of Helicoverpa armigera caterpillars: in search of the CO2 receptor. . Tissue Cell 28::70317
    [Crossref] [Google Scholar]
  81. 81.
    Kerr ED, Phelan C, Woods HA. 2013.. Subtle direct effects of rising atmospheric CO2 on insect eggs. . Physiol. Entomol. 38::3025
    [Crossref] [Google Scholar]
  82. 82.
    Khaling E, Li T, Holopainen JK, Blande JD. 2016.. Elevated ozone modulates herbivore-induced volatile emissions of Brassica nigra and alters a tritrophic interaction. . J. Chem. Ecol. 42::36881
    [Crossref] [Google Scholar]
  83. 83.
    Khaling E, Papazian S, Poelman EH, Holopainen JK, Albrectsen BR, Blande JD. 2015.. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. . Environ. Pollut. 199::11929
    [Crossref] [Google Scholar]
  84. 84.
    Kim JH, Jander G. 2007.. Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. . Plant J. 49::100819
    [Crossref] [Google Scholar]
  85. 85.
    Kim JH, Lee BW, Schroeder FC, Jander G. 2008.. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). . Plant J. 54::101526
    [Crossref] [Google Scholar]
  86. 86.
    Klaiber J, Dorn S, Najar-Rodriguez AJ. 2013.. Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds. . J. Chem. Ecol. 39::65365
    [Crossref] [Google Scholar]
  87. 87.
    Klaiber J, Najar-Rodriguez AJ, Dialer E, Dorn S. 2013.. Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. . Biol. Control 66::4955
    [Crossref] [Google Scholar]
  88. 88.
    Klaiber J, Najar-Rodriguez AJ, Piskorski R, Dorn S. 2013.. Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insects. . Planta 237::2942
    [Crossref] [Google Scholar]
  89. 89.
    Kos M, Kabouw P, Nordam R, Hendriks K, Vet LEM, et al. 2011.. Prey-mediated effects of glucosinolates on aphid predators. . Ecol. Entomol. 36::37788
    [Crossref] [Google Scholar]
  90. 90.
    Košt'ál V. 1992.. Orientation behavior of newly hatched larvae of the cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), to volatile plant metabolites. . J. Insect Behav. 5::6170
    [Crossref] [Google Scholar]
  91. 91.
    Krumbein A, Kläring HP, Schonhof I, Schreiner M. 2010.. Atmospheric carbon dioxide changes photochemical activity, soluble sugars and volatile levels in broccoli (Brassica oleracea var. italica). . J. Agric. Food Chem. 58::374752
    [Crossref] [Google Scholar]
  92. 92.
    La GX, Fang P, Teng YB, Li YJ, Lin XY. 2009.. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.). . J. Zhejiang Univ. Sci. B 10::45464
    [Crossref] [Google Scholar]
  93. 93.
    Lamy FC, Poinsot D, Cortesero AM, Dugravot S. 2017.. Artificially applied plant volatile organic compounds modify the behavior of a pest with no adverse effect on its natural enemies in the field: improving the push–pull strategy against a major Brassicaceae pest. . J. Pestic. Sci. 90::61121
    [Crossref] [Google Scholar]
  94. 94.
    Landosky JM, Karowe DN. 2014.. Will chemical defenses become more effective against specialist herbivores under elevated CO2?. Glob. Change Biol. 20::315976
    [Crossref] [Google Scholar]
  95. 95.
    Lee H, Calvin K, Dasgupta D, Krinner G, Mukherji A, et al. (Core Writ. Team). 2023.. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the 6th Assessment Report of the Intergovernmental Panel on Climate Change Change, pp. 35115. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  96. 96.
    Lee JK, Woo SY, Kwak MJ, Park SH, Kim HD, et al. 2020.. Effects of elevated temperature and ozone in Brassica juncea L.: growth, physiology, and ROS accumulation. . Forests 11::68
    [Crossref] [Google Scholar]
  97. 97.
    Lee KP, Cory JS, Wilson K, Raubenheimer D, Simpson SJ. 2005.. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. . Proc. R. Soc. B 273::82329
    [Crossref] [Google Scholar]
  98. 98.
    Lee KP, Simpson SJ, Wilson K. 2008.. Dietary protein-quality influences melanization and immune function in an insect. . Funct. Ecol. 22::105261
    [Crossref] [Google Scholar]
  99. 99.
    Li P, Ainsworth EA, Leakey AD, Ulanov A, Lozovaya V, et al. 2008.. Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. . Plant Cell Environ. 31::167387
    [Crossref] [Google Scholar]
  100. 100.
    Lin PA, Chen Y, Ponce G, Acevedo FE, Lynch JP, et al. 2022.. Stomata-mediated interactions between plants, herbivores, and the environment. . Trends Plant Sci. 27::287300
    [Crossref] [Google Scholar]
  101. 101.
    Liu J, Huang W, Chi H, Wang C, Hua H, Wu G. 2017.. Effects of elevated CO2 on the fitness and potential population damage of Helicoverpa armigera based on two-sex life table. . Sci. Rep. 7::1119
    [Crossref] [Google Scholar]
  102. 102.
    Liu Y-H, Kang Z-W, Guo Y, Zhu G-S, Shah MMR, et al. 2016.. Nitrogen hurdle of plant alternation for a polyphagous aphid and the associated changes of endosymbionts. . Sci. Rep. 6::24781
    [Crossref] [Google Scholar]
  103. 103.
    Long SP, Ainsworth EA, Rogers A, Ort DR. 2004.. Rising atmospheric carbon dioxide: Plants FACE the future. . Annu. Rev. Plant Biol. 55::591628
    [Crossref] [Google Scholar]
  104. 104.
    Lu A, Zhang Q, Zhang J, Yang B, Wu K, et al. 2014.. Insect prophenoloxidase: the view beyond immunity. . Front. Physiol. 5::252
    [Google Scholar]
  105. 105.
    Martinez Henao J, Demers LE, Grosser K, Schedl A, Van Dam NM, Bede JC. 2020.. Fertilizer rate-associated increase in foliar jasmonate burst observed in wounded Arabidopsis thaliana leaves is attenuated at eCO2. Front. . Plant Sci. 10::1636
    [Google Scholar]
  106. 106.
    Mattson WJ Jr. 1980.. Herbivory in relation to plant nitrogen content. . Annu. Rev. Ecol. Syst. 11::11961
    [Crossref] [Google Scholar]
  107. 107.
    Mattson WJ Jr., Scriber JM. 1987.. Nutritional ecology of insect folivores of woody plants: nitrogen, water, fiber and mineral considerations. . In Nutritional Ecology of Insects, Mites and Spiders, ed. F Slansky Jr., JG Rodriguez , pp. 10546. New York:: Wiley
    [Google Scholar]
  108. 108.
    Meikle WG, Barg A, Weiss M. 2022.. Honey bee colonies maintain CO2 and temperature regimes in spite of change in hive ventilation characteristics. . Apidologie 53::51
    [Crossref] [Google Scholar]
  109. 109.
    Mhamdi A, Noctor G. 2016.. High CO2 primes plant biotic stress defences through redox-linked pathways. . Plant Physiol. 172::92942
    [Google Scholar]
  110. 110.
    Müller R, de Vos M, Sun JY, Sønderby IE, Halkier BA, et al. 2010.. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. . J. Chem. Ecol. 36::90513
    [Crossref] [Google Scholar]
  111. 111.
    Nault LR, Styer WE. 1972.. Effects of sinigrin on host selection by aphids. . Entomol. Exp. Appl. 15::42337
    [Crossref] [Google Scholar]
  112. 112.
    Nentwig W, Wissel C. 1986.. A comparison of prey lengths among spiders. . Oecologia 68::595600
    [Crossref] [Google Scholar]
  113. 113.
    Nicolas G, Sillans D. 1989.. Immediate and latent effects of carbon dioxide on insects. . Annu. Rev. Entomol. 34::97116
    [Crossref] [Google Scholar]
  114. 114.
    Ninkovic V, Markovic D, Rensing M. 2021.. Plant volatiles as cues and signals in plant communication. . Plant Cell Environ. 44::103043
    [Crossref] [Google Scholar]
  115. 115.
    Noctor G, Mhamdi A. 2017.. Climate change, CO2, and defense: the metabolic, redox, and signaling perspectives. . Trends Plant Sci. 22::85770
    [Crossref] [Google Scholar]
  116. 116.
    Noguchi K, Watanabe CK, Terashima I. 2015.. Effects of elevated atmospheric CO2 on primary metabolite levels in Arabidopsis thaliana Col-0 leaves: an examination of metabolome data. . Plant Cell Physiol. 56::206978
    [Google Scholar]
  117. 117.
    Oehme V, Högy P, Franzaring J, Zebitz CP, Fangmeier A. 2011.. Response of spring crops and associated aphids to elevated atmospheric CO2 concentrations. . J. Appl. Bot. Food Q. 84::15157
    [Google Scholar]
  118. 118.
    Oehme V, Högy P, Zebitz CP, Fangmeier A. 2013.. Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. . J. Plant Interact. 8::7484
    [Crossref] [Google Scholar]
  119. 119.
    Paudel JR, Amirizian A, Krosse S, Giddings J, Ismail SA, et al. 2016.. Effect of atmospheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants. . BMC Plant Biol. 16::68
    [Crossref] [Google Scholar]
  120. 120.
    Pellegrini E, Trivellini A, Cotrozzi L, Vernieri P, Nali C. 2016.. Involvement of phytohormones in plant responses to ozone. . In Plant Hormones Under Challenging Environmental Conditions, ed. GJ Ahammed, JQ Yu , pp. 21545. Berlin:: Springer
    [Google Scholar]
  121. 121.
    Pervez A, Gupta AK, Omkar. 2006.. Larval cannibalism in aphidophagous ladybirds: influencing factors, benefits and costs. . Biol. Control 38::30713
    [Crossref] [Google Scholar]
  122. 122.
    Pinto DM, Blande JD, Nykänen R, Dong W-X, Nerg A-M, Holopainen JK. 2007.. Ozone degrades common herbivore-induced plant volatiles: Does this affect herbivore prey location by predators and parasitoids?. J. Chem. Ecol. 33::68394
    [Crossref] [Google Scholar]
  123. 123.
    Powell G, Tosh CR, Hardie J. 2006.. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. . Annu. Rev. Entomol. 51::30930
    [Crossref] [Google Scholar]
  124. 124.
    Pratt C, Pope TW, Powell G, Rossiter JT. 2008.. Accumulation of glucosinolates by the cabbage aphid Brevicoryne brassicae as a defense against two coccinellid species. . J. Chem. Ecol. 34::32329
    [Crossref] [Google Scholar]
  125. 125.
    Prywes N, Phillips NR, Tuck OT, Valentin-Alvarado LE, Savage DF. 2023.. Rubisco function, evolution, and engineering. . Annu. Rev. Biochem. 92::385410
    [Crossref] [Google Scholar]
  126. 126.
    Ramya A, Dhevagi P, Poornima R, Avudainayagam S, Watanabe M, Agathokleous E. 2023.. Effect of ozone stress on crop productivity: a threat to food security. . Environ. Res. 236::116816
    [Crossref] [Google Scholar]
  127. 127.
    Rasch C, Rembold H. 1994.. Carbon-dioxide—highly attractive signal for larvae of Helicoverpa armigera. . Naturwissenschaften 81::22829
    [Google Scholar]
  128. 128.
    Reddy GV, Tossavainen P, Nerg AM, Holopainen JK. 2004.. Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, Spodoptera littoralis. . J. Agric. Food Chem. 52::418591
    [Crossref] [Google Scholar]
  129. 129.
    Ren Q, Sun Y, Guo H, Wang C, Li C, Ge F. 2015.. Elevated ozone induces jasmonic acid defense in tomato plants and reduces midgut proteinase activity in Helicoverpa armigera. . Entomol. Exp. Appl. 154::18898
    [Crossref] [Google Scholar]
  130. 130.
    Rode M, Lemoine NP, Smith MD. 2017.. Prospective evidence for independent nitrogen and phosphorous limitation of grasshopper (Chorthippus curtipennis) growth in a tallgrass prairie. . PLOS ONE 12::e0177754
    [Crossref] [Google Scholar]
  131. 131.
    Rodríguez-Hernández MD, Moreno DA, Carvajal M, Martínez-Ballesta MD. 2014.. Genotype influences sulfur metabolism in broccoli (Brassica oleracea L.) under elevated CO2 and NaCl stress. . Plant Cell Physiol. 55::204759
    [Crossref] [Google Scholar]
  132. 132.
    Rozpądek P, Ślesak I, Cebula S, Waligórski P, Dziurka M, et al. 2013.. Ozone fumigation results in accelerated growth and persistent changes in the antioxidant system of Brassicaoleracea L. var. capitata f. alba. . J. Plant Physiol. 170::125966
    [Crossref] [Google Scholar]
  133. 133.
    Ruiz LM, Libedinsky A, Elorza AA. 2021.. Role of copper on mitochondrial function and metabolism. . Front. Mol. Biosci. 8::711227
    [Crossref] [Google Scholar]
  134. 134.
    Ryalls JMW, Bromfield LM, Bell L, Jasper J, Mullinger NJ, et al. 2022.. Concurrent anthropogenic air pollutants enhance recruitment of a specialist parasitoid. . Proc. R. Soc. B 289::20221692
    [Crossref] [Google Scholar]
  135. 135.
    Ryalls JMW, Langford B, Mullinger NJ, Bromfield LM, Nemitz E, et al. 2022.. Anthropogenic air pollutants reduce insect-mediated pollination services. . Environ. Pollut. 297::118847
    [Crossref] [Google Scholar]
  136. 136.
    Sadeghi-Namaghi H, Amiri-Jami A, Shoor M. 2018.. Aphid suitability for the predatory hoverfly Episyrphus balteatus altered with elevating atmospheric CO2 and sinigrin. . Entomol. Sci. 21::1221
    [Crossref] [Google Scholar]
  137. 137.
    Saleesha FMA, Kennedy JS, Rajabaskar D, Geethalakshmi V. 2021.. Elevated carbon dioxide influences the fitness of Myzus persicae Sulzer in cauliflower. . Indian J. Entomol. 83::35559
    [Crossref] [Google Scholar]
  138. 138.
    Sandström J, Moran N. 2003.. How nutritionally imbalanced is phloem sap for aphids. . Entomol. Exp. Appl. 91::20310
    [Crossref] [Google Scholar]
  139. 139.
    Saunier A, Blande JD. 2019.. The effect of elevated ozone on floral chemistry of Brassicaceae species. . Environ. Pollut. 255::113257
    [Crossref] [Google Scholar]
  140. 140.
    Saunier A, Grof-Tisza P, Blande JD. 2023.. Effect of ozone exposure on the foraging behaviour of Bombus terrestris. . Environ. Pollut. 316::120573
    [Crossref] [Google Scholar]
  141. 141.
    Schonhof I, Kläring HP, Krumbein A, Schreiner M. 2007.. Interaction between atmospheric CO2 and glucosinolates in broccoli. . J. Chem. Ecol. 33::10514
    [Crossref] [Google Scholar]
  142. 142.
    Shields VDC, Mitchell BK. 1995.. Sinigrin as a feeding deterrent in two crucifer-feeding, polyphagous lepidopterous species and the effects of feeding stimulant mixtures on deterrency. . Philos. Trans. R. Soc. B 347::43946
    [Crossref] [Google Scholar]
  143. 143.
    Sicard P. 2021.. Ground-level ozone over time: an observation-based global overview. . Curr. Opin. Environ. Sci. Health 19::100226
    [Crossref] [Google Scholar]
  144. 144.
    Singer MS, Mason PA, Smilanich AM. 2014.. Ecological immunology mediated by diet in herbivorous insects. . Integr. Comp. Biol. 54::913921
    [Crossref] [Google Scholar]
  145. 145.
    Singh S, Bhatia A, Tomer R, Kumar V, Singh B, Singh SD. 2013.. Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern). . Environ. Monit. Assess. 185::651729
    [Crossref] [Google Scholar]
  146. 146.
    Slansky F Jr., Wheeler GS. 1992.. Caterpillars’ compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. . Entomol. Exp. Appl. 65::17186
    [Crossref] [Google Scholar]
  147. 147.
    Stacey DA, Fellowes MD. 2002.. Influence of elevated CO2 on interspecific interactions at higher trophic levels. . Glob. Change Biol. 8::66878
    [Crossref] [Google Scholar]
  148. 148.
    Stange G, Monro J, Stowe S, Osmond CB. 1995.. The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta. . Oecologia 102::34152
    [Crossref] [Google Scholar]
  149. 149.
    Stange G, Stowe S. 1999.. Carbon-dioxide sensing structures in terrestrial arthropods. . Microsc. Res. Tech. 47::41627
    [Crossref] [Google Scholar]
  150. 150.
    Sun R, Gols R, Harvey JA, Reichelt M, Gershenzon J, et al. 2020.. Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. . Mol. Ecol. 29::401431
    [Crossref] [Google Scholar]
  151. 151.
    Sun R, Jiang X, Reichelt M, Gershenzon J, Vassão DG. 2021.. The selective sequestration of glucosinolates by the cabbage aphid severely impacts a predatory lacewing. . J. Pest Sci. 94::114760
    [Crossref] [Google Scholar]
  152. 152.
    Sun Y, Guo H, Yuan L, Wei J, Zhang W, Ge F. 2015.. Plant stomatal closure improves aphid feeding under elevated CO2. . Glob. Change Biol. 21::273948
    [Crossref] [Google Scholar]
  153. 153.
    Sun Y, Guo H, Zhu-Salzman K, Ge F. 2013.. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. . Plant Sci. 210::12840
    [Crossref] [Google Scholar]
  154. 154.
    Sun Y, Su J, Ge F. 2010.. Elevated CO2 reduces the response of Sitobion avenae (Homoptera: Aphididae) to alarm pheromone. . Agric. Ecol. Environ. 135::14047
    [Crossref] [Google Scholar]
  155. 155.
    Takatani N, Ito T, Kiba T, Mori M, Miyamoto T, et al. 2014.. Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. . Plant Cell Physiol. 55::28192
    [Crossref] [Google Scholar]
  156. 156.
    Taub DR, Wang X. 2008.. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. . J. Integr. Plant Biol. 50::136574
    [Crossref] [Google Scholar]
  157. 157.
    Teawkul P, Hwang SY. 2019.. Carbon dioxide– and temperature-mediated changes in plant defensive compounds alter food utilization of herbivores. . J. Appl. Entomol. 143::28998
    [Crossref] [Google Scholar]
  158. 158.
    Telang A, Booton V, Chapman RF, Wheeler DE. 2001.. How female caterpillars accumulate their nutrient reserves. . J. Insect Physiol. 47::105564
    [Crossref] [Google Scholar]
  159. 159.
    Telesnicki MC, Martinez-Ghersa MA, Arneodo JD, Ghersa CM. 2015.. Direct effect of ozone pollution on aphids: revisiting the evidence at individual and population scales. . Entomol. Exp. Appl. 155::7179
    [Crossref] [Google Scholar]
  160. 160.
    Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J. 2006.. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. . New Phytol. 172::92103
    [Crossref] [Google Scholar]
  161. 161.
    Toft S. 2013.. Nutritional aspects of spider feeding. . In Spider Ecophysiology, ed. W Nentwig , pp. 37384. Berlin:: Springer
    [Google Scholar]
  162. 162.
    Twayana M, Girija AM, Mohan V, Shah J. 2022.. Phloem: at the center of action in plant defense against aphids. . J. Plant Physiol. 273::153695
    [Crossref] [Google Scholar]
  163. 163.
    van Emden HF. 1995.. Host plant–Aphidophaga interactions. . Agric. Ecosyst. Environ. 52::311
    [Crossref] [Google Scholar]
  164. 164.
    Vandermeiren K, De Bock M, Horemans N, Guisez Y, Ceulemans R, De Temmerman L. 2012.. Ozone effects on yield quality of spring oilseed rape and broccoli. . Atmos. Environ. 47::7683
    [Crossref] [Google Scholar]
  165. 165.
    Vanderplanck M, Lapeyre B, Brondani M, Opsommer M, Dufay M, et al. 2021.. Ozone pollution alters olfaction and behavior of pollinators. . Antioxidants 10::636
    [Crossref] [Google Scholar]
  166. 166.
    Vanderplanck M, Lapeyre B, Lucas S, Proffit M. 2021.. Ozone induces distress behaviors in fig wasps with a reduced chance of recovery. . Insects 12::995
    [Crossref] [Google Scholar]
  167. 167.
    Venkateswaran V, Alali I, Unni AP, Weißflog J, Halitschke R, et al. 2023.. Carbonyl products of ozone oxidation of volatile organic compounds can modulate olfactory choice behavior in insects. . Environ. Pollut. 337::122542
    [Crossref] [Google Scholar]
  168. 168.
    Vuorinen T, Nerg A-M, Ibrahim MA, Reddy GVP, Holopainen JK. 2004.. Emission of Plutella xylostella–induced compounds from cabbages grown at elevated CO2 and orientation behaviour of the natural enemies. . Plant Physiol. 135::198492
    [Crossref] [Google Scholar]
  169. 169.
    Vuorinen T, Reddy GV, Nerg AM, Holopainen JK. 2004.. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. . Atmos. Environ. 38::67582
    [Crossref] [Google Scholar]
  170. 170.
    Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR. 2016.. The costs of photorespiration to food production now and in the future. . Annu. Rev. Plant Biol. 67::10729
    [Crossref] [Google Scholar]
  171. 171.
    Wang P, Vassão DG, Raguschke B, Furlong MJ, Zalucki MP. 2022.. Balancing nutrients in a toxic environment: the challenge of eating. . Insect Sci. 29::289303
    [Crossref] [Google Scholar]
  172. 172.
    Widhalm JR, Jaini R, Morgan JA, Dudareva N. 2015.. Rethinking how volatiles are released from plant cells. . Trends Plant Sci. 20::54550
    [Crossref] [Google Scholar]
  173. 173.
    Wiesner-Reinhold M, Nickel M, Graefe J, Schreiner M, Hanschen FS. 2021.. CO2 treatment increases glucosinolate hydrolysis products in two Arabidopsis thaliana accessions. . J. Appl. Bot. Food Q. 94::1625
    [Google Scholar]
  174. 174.
    Winde I, Wittstock U. 2011.. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. . Phytochemistry 72::156675
    [Crossref] [Google Scholar]
  175. 175.
    Wise DH. 2006.. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. . Annu. Rev. Entomol. 51::44165
    [Crossref] [Google Scholar]
  176. 176.
    Wu J, Lan H, Zhang Z-F, Cao H-H, Liu T-X. 2020.. Performance and transcriptional response of the green peach aphid Myzus persicae to the restriction of dietary amino acids. . Front. Physiol. 11::487
    [Crossref] [Google Scholar]
  177. 177.
    Xie H, Zhao L, Yang Q, Wang Z, He K. 2015.. Direct effects of elevated CO2 levels on the fitness performance of Asian corn borer (Lepidoptera: Crambidae) for multigenerations. . Environ. Entomol. 44::125057
    [Crossref] [Google Scholar]
  178. 178.
    Yaschenko A, Alonso J, Stepanova A. 2024.. Arabidopsis as a model for translational research. . Plant Cell 27::koae065
    [Crossref] [Google Scholar]
  179. 179.
    Yonemura S, Yokozawa M, Shirato Y, Nishimura S, Nouchi I. 2009.. Soil CO2 concentrations and their implications in conventional and no-tillage agricultural fields. . J. Agric. Meteorol. 65::14149
    [Crossref] [Google Scholar]
  180. 180.
    Zinta G, AbdElgawad H, Peshev D, Weedon JT, Van den Ende W, et al. 2018.. Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. . J. Exp. Bot. 69::215970
    [Crossref] [Google Scholar]
  181. 181.
    Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, et al. 2016.. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. . Proc. R. Soc. B 283::20160414
    [Crossref] [Google Scholar]
  182. 182.
    Zou X, Xu H, Zou H, Liu J, Chen S, et al. 2016.. Glutathione-S-transferase SlGSTE1 in Spodoptera litura may be associated with feeding adaptation of host plants. . Insect Biochem. Mol. Biol. 70::3243
    [Crossref] [Google Scholar]
  183. 183.
    Züst T, Agrawal AA. 2016.. Mechanisms and evolution of plant resistance to aphids. . Nat. Plants 2::15206
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-022024-015159
Loading
/content/journals/10.1146/annurev-ento-022024-015159
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error