1932

Abstract

Structurally diverse queen pheromones and fertility signals regulate the reproductive division of labor of social insects, such as ants, termites, some bees, and some wasps. The independent evolution of sociality in these taxa allows for the exploration of how natural history differences in sender and receiver properties led to the evolution of these complex communication systems. While describing the different effects and the structural diversity of queen pheromones, we identify two major syndromes that mostly separate ants and wasps from bees and termites in their use of different pheromone classes. We compare olfactory receptor evolution among these groups and review physiological and hormonal links to fecundity and pheromone production. We explore the cases in which queen pheromone evolution is conserved, convergent, or parallel and those in which queen pheromone responses are more likely to be learned or innate. More mechanistic information about the pathways linking fecundity to queen pheromone production and perception could help close major knowledge gaps.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022124-124437
2025-01-28
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-022124-124437.html?itemId=/content/journals/10.1146/annurev-ento-022124-124437&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alaux C, Le Conte Y, Adams HA, Rodriguez-Zas S, Grozinger CM, et al. 2009.. Regulation of brain gene expression in honey bees by brood pheromone. . Genes Brain Behav. 8::30919
    [Crossref] [Google Scholar]
  2. 2.
    Amsalem E. 2020.. One problem, many solutions: Female reproduction is regulated by chemically diverse pheromones across insects. . Adv. Insect Physiol. 59::13182
    [Crossref] [Google Scholar]
  3. 3.
    Amsalem E, Hefetz A. 2010.. The appeasement effect of sterility signaling in dominance contests among Bombus terrestris workers. . Behav. Ecol. Sociobiol. 64::168594
    [Crossref] [Google Scholar]
  4. 4.
    Amsalem E, Kiefer J, Schulz S, Hefetz A. 2014.. The effect of caste and reproductive state on the chemistry of the cephalic labial glands secretion of Bombus terrestris. . J. Chem. Ecol. 40::90012
    [Crossref] [Google Scholar]
  5. 5.
    Amsalem E, Malka O, Grozinger C, Hefetz A. 2014.. Exploring the role of juvenile hormone and vitellogenin in reproduction and social behavior in bumble bees. . BMC Evol. Biol. 14::45
    [Crossref] [Google Scholar]
  6. 6.
    Amsalem E, Orlova M, Grozinger CM. 2015.. A conserved class of queen pheromones? Re-evaluating the evidence in bumblebees (Bombus impatiens). . Proc. R. Soc. B 282::20151800
    [Crossref] [Google Scholar]
  7. 7.
    Amsalem E, Shpigler H, Bloch G, Hefetz A. 2013.. Dufour's gland secretion, sterility and foraging behavior: correlated behavior traits in bumblebee workers. . J. Insect Physiol. 59::125055
    [Crossref] [Google Scholar]
  8. 8.
    Amsalem E, Teal P, Grozinger CM, Hefetz A. 2014.. Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters sterility signal production in bumble bee (Bombus terrestris) workers. . J. Exp. Biol. 217::317885
    [Google Scholar]
  9. 9.
    Amsalem E, Twele R, Francke W, Hefetz A. 2009.. Reproductive competition in the bumble-bee Bombus terrestris: Do workers advertise sterility?. Proc. R. Soc. B 276::1295304
    [Crossref] [Google Scholar]
  10. 10.
    Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, et al. 2007.. Queen pheromone modulates brain dopamine function in worker honey bees. . PNAS 104::246064
    [Crossref] [Google Scholar]
  11. 11.
    Berson JD, Simmons LW. 2019.. Female cuticular hydrocarbons can signal indirect fecundity benefits in an insect. . Evolution 73::98289
    [Crossref] [Google Scholar]
  12. 12.
    Blomquist GJ, Bagnerès AG. 2010.. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  13. 13.
    Bolnick DI, Barrett RDH, Oke KB, Rennison DJ, Stuart YE. 2018.. (Non)parallel evolution. . Annu. Rev. Ecol. Evol. Syst. 49::30330
    [Crossref] [Google Scholar]
  14. 14.
    Bos N, Dreier S, Jorgensen CG, Nielsen J, Guerrieri FJ, d'Ettorre P. 2012.. Learning and perceptual similarity among cuticular hydrocarbons in ants. . J. Insect Physiol. 58::13846
    [Crossref] [Google Scholar]
  15. 15.
    Bradbury JW, Vehrencamp SL. 2011.. Principles of Animal Communication. Sunderland, MA:: Sinauer Assoc.
    [Google Scholar]
  16. 16.
    Brandstaetter AS, Rössler W, Kleineidam CJ. 2011.. Friends and foes from an ant brain's point of view—neuronal correlates of colony odors in a social insect. . PLOS ONE 6::e21383
    [Crossref] [Google Scholar]
  17. 17.
    Brent CS, Penick CA, Trobaugh B, Moore D, Liebig J. 2016.. Induction of a reproductive-specific cuticular hydrocarbon profile by a juvenile hormone analog in the termite Zootermopsis nevadensis. . Chemoecology 26::195203
    [Crossref] [Google Scholar]
  18. 18.
    Brockmann A, Dietz D, Spaethe J, Tautz J. 2006.. Beyond 9-ODA: sex pheromone communication in the European honey bee Apis mellifera L. . J. Chem. Ecol. 32::65767
    [Crossref] [Google Scholar]
  19. 19.
    Buchinger TJ, Wang H, Li W, Johnson NS. 2013.. Evidence for a receiver bias underlying female preference for a male mating pheromone in sea lamprey. . Proc. R. Soc. B 280::20131966
    [Crossref] [Google Scholar]
  20. 20.
    Cane JH. 1983.. Chemical evolution and chemosystematics of the Dufour's gland secretions of the lactone-producing bees (Hymenoptera: Colletidae, Halictidae, and Oxaeidae). . Evolution 37::65774
    [Google Scholar]
  21. 21.
    Carcaud J, Otte M, Grünewald B, Haase A, Sandoz JC, Beye M. 2023.. Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee. . PLOS Biol. 21::e3001984
    [Crossref] [Google Scholar]
  22. 22.
    Cardoso-Junior CAM, Ronai I, Hartfelder K, Oldroyd BP. 2020.. Queen pheromone modulates the expression of epigenetic modifier genes in the brain of honeybee workers: epigenetics in honey bee communication. . Biol. Lett. 16::20200440
    [Crossref] [Google Scholar]
  23. 23.
    Chaline N, Sandoz JC, Martin SJ, Ratnieks FLW, Jones GR. 2005.. Learning and discrimination of individual cuticular hydrocarbons by honeybees (Apis mellifera). . Chem. Senses 30::32735
    [Crossref] [Google Scholar]
  24. 24.
    Courrent A, Quennedey A, Nalepa CA, Robert A, Lenz M, Bordereau C. 2008.. The fine structure of colleterial glands in two cockroaches and three termites, including a detailed study of Cryptocercus punctulatus (Blattaria, Cryptocercidae) and Mastotermes darwiniensis (Isoptera, Mastotermitidae). . Arthropod Struct. Dev. 37::5566
    [Crossref] [Google Scholar]
  25. 25.
    Couto A, Marty S, Dawson EH, d'Ettorre P, Sandoz JC, Montgomery SH. 2023.. Evolution of the neuronal substrate for kin recognition in social Hymenoptera. . Biol. Rev. 98::222642
    [Crossref] [Google Scholar]
  26. 26.
    Cuvillier-Hot V, Lenoir A, Peeters C. 2004.. Reproductive monopoly enforced by sterile police workers in a queenless ant. . Behav. Ecol. 15::97075
    [Crossref] [Google Scholar]
  27. 27.
    da Silva RC, do Nascimento FS, Wenseleers T, Oi CA. 2022.. Juvenile hormone modulates hydrocarbon expression and reproduction in the German wasp Vespula germanica. . Front. Ecol. Evol. 10::1024580
    [Crossref] [Google Scholar]
  28. 28.
    Dapporto L, Theodora P, Spacchini C, Pieraccini G, Turillazzi S. 2004.. Rank and epicuticular hydrocarbons in different populations of the paper wasp Polistes dominulus (Christ) (Hymenoptera, Vespidae). . Insectes Soc. 51::27986
    [Crossref] [Google Scholar]
  29. 29.
    Derstine N, Galbraith D, Villar G, Amsalem E. 2023.. Differential gene expression underlying the biosynthesis of Dufour's gland signals in Bombus impatiens. . Curr. Res. Insect Sci. 3::100036
    [Crossref] [Google Scholar]
  30. 30.
    Derstine NT, Villar G, Orlova M, Hefetz A, Millar J, Amsalem E. 2021.. Dufour's gland analysis reveals caste and physiology specific signals in Bombus impatiens. . Sci. Rep. 11::2821
    [Crossref] [Google Scholar]
  31. 31.
    D'Ettorre P, Heinze J. 2005.. Individual recognition in ant queens. . Curr. Biol. 15::217074
    [Crossref] [Google Scholar]
  32. 32.
    D'Ettorre P, Heinze J, Schulz C, Francke W, Ayasse M. 2004.. Does she smell like a queen? Chemoreception of a cuticular hydrocarbon signal in the ant Pachycondyla inversa. . J. Exp. Biol. 207::108591
    [Crossref] [Google Scholar]
  33. 33.
    di Mauro G, Perez M, Lorenzi MC, Guerrieri FJ, Millar JG, d'Ettorre P. 2015.. Ants discriminate between different hydrocarbon concentrations. . Front. Ecol. Evol. 3::00133
    [Crossref] [Google Scholar]
  34. 34.
    Dietemann V, Peeters C, Liebig J, Thivet V, Hölldobler B. 2003.. Cuticular hydrocarbons mediate recognition of queens and reproductive workers in the ant Myrmecia gulosa. . PNAS 100::1034146
    [Crossref] [Google Scholar]
  35. 35.
    Dolejšová K, Křivánek J, Štáfková J, Horáček N, Havlíčková J, et al. 2022.. Identification of a queen primer pheromone in higher termites. . Commun. Biol. 5::1165
    [Crossref] [Google Scholar]
  36. 36.
    Dor R, Katzav-Gozansky T, Hefetz A. 2005.. Dufour's gland pheromone as a reliable fertility signal among honeybee (Apis mellifera) workers. . Behav. Ecol. Sociobiol. 58::27076
    [Crossref] [Google Scholar]
  37. 37.
    Ebie JD, Hölldobler B, Liebig J. 2015.. Larval regulation of worker reproduction in the polydomous ant Novomessor cockerelli. . Sci. Nat. 102::72
    [Crossref] [Google Scholar]
  38. 38.
    Endler A, Hölldobler B, Liebig J. 2007.. Lack of physical policing and fertility cues in egg-laying workers of the ant Camponotus floridanus. . Anim. Behav. 74::117180
    [Crossref] [Google Scholar]
  39. 39.
    Endler A, Liebig J, Hölldobler B. 2006.. Queen fertility, egg marking and colony size in the ant Camponotus floridanus. . Behav. Ecol. Sociobiol. 59::49099
    [Crossref] [Google Scholar]
  40. 40.
    Endler A, Liebig J, Schmitt T, Parker JE, Jones GR, et al. 2004.. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. . PNAS 101::294550
    [Crossref] [Google Scholar]
  41. 41.
    Endler JA, Basolo AL. 1998.. Sensory ecology, receiver biases and sexual selection. . Trends Ecol. Evol. 13::41520
    [Crossref] [Google Scholar]
  42. 42.
    Engel KC, Stökl J, Schweizer R, Vogel H, Ayasse M, et al. 2016.. A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. . Nat. Commun. 7::11035
    [Crossref] [Google Scholar]
  43. 43.
    Everaerts C, Farine JP, Cobb M, Ferveur JF. 2010.. Drosophila cuticular hydrocarbons revisited: Mating status alters cuticular profiles. . PLOS ONE 5::e9607
    [Crossref] [Google Scholar]
  44. 44.
    Fan YL, Zurek L, Dykstra MJ, Schal C. 2003.. Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German cockroach, Blattella germanica. . Naturwissenschaften 90::12126
    [Crossref] [Google Scholar]
  45. 45.
    Ferreira HM, da Silva RC, do Nascimento FS, Wenseleers T, Oi CA. 2022.. Reproduction and fertility signalling under joint juvenile hormone control in primitively eusocial Mischocyttarus wasps. . Chemoecology 32::10516
    [Crossref] [Google Scholar]
  46. 46.
    Funaro CF, Boroczky K, Vargo EL, Schal C. 2018.. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. . PNAS 115::388893
    [Crossref] [Google Scholar]
  47. 47.
    Galizia CG, Sachse S, Rappert A, Menzel R. 1999.. The glomerular code for odor representation is species specific in the honeybee Apis mellifera. . Nat. Neurosci. 2::47378
    [Crossref] [Google Scholar]
  48. 48.
    Ghaninia M, Haight K, Berger SL, Reinberg D, Zwiebel LJ, et al. 2017.. Chemosensory sensitivity reflects reproductive status in the ant Harpegnathos saltator. . Sci. Rep. 7::9
    [Crossref] [Google Scholar]
  49. 49.
    Gomez Ramirez WC, Thomas NK, Muktar IJ, Riabinina O. 2023.. The neuroecology of olfaction in bees. . Curr. Opin. Insect Sci. 56::101018
    [Crossref] [Google Scholar]
  50. 50.
    Groot AT, Dekker T, Heckel DG. 2016.. The genetic basis of pheromone evolution in moths. . Annu. Rev. Entomol. 61::99117
    [Crossref] [Google Scholar]
  51. 51.
    Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE. 2003.. Pheromone-mediated gene expression in the honey bee brain. . PNAS 100::1451925
    [Crossref] [Google Scholar]
  52. 52.
    Hefetz A. 2019.. The critical role of primer pheromones in maintaining insect sociality. . Z. Naturforsch. C J. Biosci. 74::22131
    [Crossref] [Google Scholar]
  53. 53.
    Herzner G, Schmitt T, Linsenmair KE, Strohm E. 2005.. Prey recognition by females of the European beewolf and its potential for a sensory trap. . Anim. Behav. 70::141118
    [Crossref] [Google Scholar]
  54. 54.
    Holman L, Helanterä H, Trontti K, Mikheyev AS. 2019.. Comparative transcriptomics of social insect queen pheromones. . Nat. Commun. 10::1593
    [Crossref] [Google Scholar]
  55. 55.
    Holman L, Jorgensen CG, Nielsen J, d'Ettorre P. 2010.. Identification of an ant queen pheromone regulating worker sterility. . Proc. R. Soc. B 277::3793800
    [Crossref] [Google Scholar]
  56. 56.
    Holman L, Lanfear R, d'Ettorre P. 2013.. The evolution of queen pheromones in the ant genus Lasius. J. . Evol. Biol. 26::154958
    [Crossref] [Google Scholar]
  57. 57.
    Johny J, Diallo S, Lukšan O, Shewale M, Kalinová B, et al. 2023.. Conserved orthology in termite chemosensory gene families. . Front. Ecol. Evol. 10::1065947
    [Crossref] [Google Scholar]
  58. 58.
    Kamruzzaman ASM, Mikani A, Mohamed AA, Elgendy AM, Takeda M. 2020.. Crosstalk among indoleamines, neuropeptides and JH/20E in regulation of reproduction in the American cockroach, Periplaneta americana. . Insects 11::155
    [Crossref] [Google Scholar]
  59. 59.
    Karlson P, Lüscher M. 1959.. “ Pheromones”: a new term for a class of biologically active substances. . Nature 183::5556
    [Crossref] [Google Scholar]
  60. 60.
    Kather R, Martin SJ. 2015.. Evolution of cuticular hydrocarbons in the Hymenoptera: a meta-analysis. . J. Chem. Ecol. 41::87183
    [Crossref] [Google Scholar]
  61. 61.
    Katzav-Gozansky T, Boulay R, Ionescu-Hirsh A, Hefetz A. 2008.. Nest volatiles as modulators of nestmate recognition in the ant Camponotus fellah. . J. Insect Physiol. 54::37885
    [Crossref] [Google Scholar]
  62. 62.
    Katzav-Gozansky T, Soroker V, Francke W, Hefetz A. 2003.. Honeybee egg-laying workers mimic a queen signal. . Insectes Soc. 50::2023
    [Crossref] [Google Scholar]
  63. 63.
    Katzav-Gozansky T, Soroker V, Hefetz A. 2000.. Plasticity in caste-related exocrine secretion biosynthesis in the honey bee (Apis mellifera). . J. Insect Physiol. 46::99398
    [Crossref] [Google Scholar]
  64. 64.
    Katzav-Gozansky T, Soroker V, Ibarra F, Francke W, Hefetz A. 2001.. Dufour's gland secretion of the queen honeybee (Apis mellifera): an egg discriminator pheromone or a queen signal?. Behav. Ecol. Sociobiol. 51::7686
    [Crossref] [Google Scholar]
  65. 65.
    Keller L, Nonacs P. 1993.. The role of queen pheromones in social insects: queen control or queen signal?. Anim. Behav. 45::78794
    [Crossref] [Google Scholar]
  66. 66.
    Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM. 2014.. The role of juvenile hormone in dominance behavior, reproduction and cuticular pheromone signaling in the caste-flexible epiponine wasp, Synoeca surinama. . Front. Zool. 11::78
    [Crossref] [Google Scholar]
  67. 67.
    Kikuta N, Tsuji K. 1999.. Queen and worker policing in the monogynous and monandrous ant, Diacamma sp. . Behav. Ecol. Sociobiol. 46::18089
    [Crossref] [Google Scholar]
  68. 68.
    Kocher SD, Grozinger CM. 2011.. Cooperation, conflict, and the evolution of queen pheromones. . J. Chem. Ecol. 37::126375
    [Crossref] [Google Scholar]
  69. 69.
    Korb J. 2018.. Chemical fertility signaling in termites: idiosyncrasies and commonalities in comparison with ants. . J. Chem. Ecol. 44::81826
    [Crossref] [Google Scholar]
  70. 70.
    Le Conte Y, Hefetz A. 2008.. Primer pheromones in social Hymenoptera. . Annu. Rev. Entomol. 53::52342
    [Crossref] [Google Scholar]
  71. 71.
    Leonhardt SD, Menzel F, Nehring V, Schmitt T. 2016.. Ecology and evolution of communication in social insects. . Cell 164::127787
    [Crossref] [Google Scholar]
  72. 72.
    Liebig J. 2010.. Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology, ed. GJ Blomquist, AG Bagnères , pp. 25481. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  73. 73.
    Liebig J, Monnin T, Turillazzi S. 2005.. Direct assessment of queen quality and lack of worker suppression in a paper wasp. . Proc. R. Soc. B 272::133944
    [Crossref] [Google Scholar]
  74. 74.
    Machara A, Křivánek J, Dolejšová K, Havlíčková J, Bednárová L, et al. 2018.. Identification and enantiodivergent synthesis of (5 Z,9 S)-tetradec-5-en-9-olide, a queen-specific volatile of the termite Silvestritermes minutus. . J. Nat. Prod. 81::226674
    [Crossref] [Google Scholar]
  75. 75.
    Malka O, Katzav-Gozansky T, Hefetz A. 2009.. Uncoupling fertility from fertility-associated pheromones in worker honeybees (Apis mellifera). . J. Insect Physiol. 55::2059
    [Crossref] [Google Scholar]
  76. 76.
    Malka O, Niño EL, Grozinger CM, Hefetz A. 2014.. Genomic analysis of the interactions between social environment and social communication systems in honey bees (Apis mellifera). . Insect Biochem. Mol. Biol. 47::3645
    [Crossref] [Google Scholar]
  77. 77.
    Malka O, Shnieor S, Katzav-Gozansky T, Hefetz A. 2008.. Aggressive reproductive competition among hopelessly queenless honeybee workers triggered by pheromone signaling. . Naturwissenschaften 95::55359
    [Crossref] [Google Scholar]
  78. 78.
    Martin SJ, Chaline N, Oldroyd BP, Jones GR, Ratnieks FLW. 2004.. Egg marking pheromones of anarchistic worker honeybees (Apis mellifera). . Behav. Ecol. 15::83944
    [Crossref] [Google Scholar]
  79. 79.
    Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L. 2010.. Identification of a pheromone regulating caste differentiation in termites. . PNAS 107::1296368
    [Crossref] [Google Scholar]
  80. 80.
    Matsuura K, Tamura T, Kobayashi N, Yashiro T, Tatsumi S. 2007.. The antibacterial protein lysozyme identified as the termite egg recognition pheromone. . PLOS ONE 2::e813
    [Crossref] [Google Scholar]
  81. 81.
    Mattens A, Chan KH, Oi CA. 2023.. The effect of juvenile hormone on the chemical profile and fertility of Lasius niger queens. . Chemoecology 33::17782
    [Crossref] [Google Scholar]
  82. 82.
    Maynard Smith J, Harper D. 2003.. Animal Signals. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  83. 83.
    Mertes M, Carcaud J, Sandoz JC. 2021.. Olfactory coding in the antennal lobe of the bumble bee Bombus terrestris. . Sci. Rep. 11::10947
    [Crossref] [Google Scholar]
  84. 84.
    Mitaka Y, Akino T. 2021.. A review of termite pheromones: multifaceted, context-dependent, and rational chemical communications. . Front. Ecol. Evol. 8::595614
    [Crossref] [Google Scholar]
  85. 85.
    Monnin T. 2006.. Chemical recognition of reproductive status in social insects. . Ann. Zool. Fennici 43::51530
    [Google Scholar]
  86. 86.
    Moore D, Liebig J. 2010.. Mixed messages: fertility signaling interferes with nestmate recognition in the monogynous ant Camponotus floridanus. . Behav. Ecol. Sociobiol. 64::101118
    [Crossref] [Google Scholar]
  87. 87.
    Moore D, Liebig J. 2024.. Innate and learned components of egg recognition in the ant Camponotus floridanus. . R. Soc. Open Sci. 11::231837
    [Crossref] [Google Scholar]
  88. 88.
    Mostafa S, Wang Y, Zeng W, Jin B. 2022.. Floral scents and fruit aromas: functions, compositions, biosynthesis, and regulation. . Front. Plant Sci. 13::860157
    [Crossref] [Google Scholar]
  89. 89.
    Obiero GF, Pauli T, Geuverink E, Veenendaal R, Niehuis O, Große-Wilde E. 2021.. Chemoreceptor diversity in apoid wasps and its reduction during the evolution of the pollen-collecting lifestyle of bees (Hymenoptera: Apoidea). . Genome Biol. Evol. 13::evaa269
    [Crossref] [Google Scholar]
  90. 90.
    Oi CA, Da Silva RC, Stevens I, Ferreira HM, Nascimento FS, Wenseleers T. 2021.. Hormonal modulation of reproduction and fertility signaling in polistine wasps. . Curr. Zool. 67::51930
    [Crossref] [Google Scholar]
  91. 91.
    Oi CA, Millar JG, van Zweden JS, Wenseleers T. 2016.. Conservation of queen pheromones across two species of vespine wasps. . J. Chem. Ecol. 42::117580
    [Crossref] [Google Scholar]
  92. 92.
    Oi CA, Oliveira RC, van Zweden JS, Mateus S, Millar JG, et al. 2019.. Do primitively eusocial wasps use queen pheromones to regulate reproduction? A case study of the paper wasp Polistes satan. . Front. Ecol. Evol. 7::00199
    [Crossref] [Google Scholar]
  93. 93.
    Oi CA, Van Oystaeyen A, Oliveira RC, Millar JG, Verstrepen KJ, et al. 2015.. Dual effect of wasp queen pheromone in regulating insect sociality. . Curr. Biol. 25::163840
    [Crossref] [Google Scholar]
  94. 94.
    Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T. 2015.. The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. . BioEssays 37::80821
    [Crossref] [Google Scholar]
  95. 95.
    Oliveira RC, Oi CA, Do Nascimento MMC, Vollet-Neto A, Alves DA, et al. 2015.. The origin and evolution of queen and fertility signals in Corbiculate bees. . BMC Evol. Biol. 15::254
    [Crossref] [Google Scholar]
  96. 96.
    Oliveira RC, Vollet-Neto A, Oi CA, Van Zweden JS, Nascimento F, et al. 2017.. Hormonal pleiotropy helps maintain queen signal honesty in a highly eusocial wasp. . Sci. Rep. 7::1654
    [Crossref] [Google Scholar]
  97. 97.
    Orlova M, Amsalem E. 2021.. Bumble bee queen pheromones are context-dependent. . Sci. Rep. 11::16931
    [Crossref] [Google Scholar]
  98. 98.
    Orlova M, Starkey J, Amsalem E. 2020.. A small family business: synergistic and additive effects of the queen and the brood on worker reproduction in a primitively eusocial bee. . J. Exp. Biol. 223::jeb217547
    [Crossref] [Google Scholar]
  99. 99.
    Orlova M, Treanore E, Amsalem E. 2021.. Built to change: Dominance strategy changes with life stage in a primitively eusocial bee. . Behav. Ecol. 31::136168
    [Crossref] [Google Scholar]
  100. 100.
    Orlova M, Villar G, Hefetz A, Millar JG, Amsalem E. 2022.. A gland of many uses: A diversity of compounds in the labial glands of the bumble bee Bombus impatiens suggests multiple signaling functions. . J. Chem. Ecol. 48::27082
    [Crossref] [Google Scholar]
  101. 101.
    Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, et al. 2005.. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. . Science 309::31114
    [Crossref] [Google Scholar]
  102. 102.
    Pankiw T, Huang ZY, Winston ML, Robinson GE. 1998.. Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. . J. Insect Physiol. 44::68592
    [Crossref] [Google Scholar]
  103. 103.
    Pask GM, Slone JD, Millar JG, Das P, Moreira JA, et al. 2017.. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. . Nat. Commun. 8::297
    [Crossref] [Google Scholar]
  104. 104.
    Peeters C, Liebig J. 2009.. Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. . In Organization of Insect Societies: From Genome to Socio-Complexity, ed. J Gadau, J Fewell , pp. 22042. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  105. 105.
    Plettner E, Otis GW, Wimalaratne PDC, Winston ML, Slessor KN, et al. 1997.. Species- and caste-determined mandibular gland signals in honeybees (Apis). . J. Chem. Ecol. 23::36377
    [Crossref] [Google Scholar]
  106. 106.
    Plettner E, Slessor KN, Winston ML. 1998.. Biosynthesis of mandibular acids in honey bees (Apis mellifera): de novo synthesis, route of fatty acid hydroxylation and caste selective β-oxidation. . Insect Biochem. Mol. Biol. 28::3142
    [Crossref] [Google Scholar]
  107. 107.
    Polidori C, Giordani I, Wurdack M, Tormos J, Asís JD, Schmitt T. 2017.. Post-mating shift towards longer-chain cuticular hydrocarbons drastically reduces female attractiveness to males in a digger wasp. . J. Insect Physiol. 100::11927
    [Crossref] [Google Scholar]
  108. 108.
    Princen SA, Oliveira RC, Ernst UR, Millar JG, Van Zweden JS, Wenseleers T. 2019.. Honeybees possess a structurally diverse and functionally redundant set of queen pheromones. . Proc. R. Soc. B 286::20190517
    [Crossref] [Google Scholar]
  109. 109.
    Ratnieks FLW. 1995.. Evidence for a queen-produced egg-marking pheromone and its use in worker policing in the honey bee. . J. Apic. Res. 34::3137
    [Crossref] [Google Scholar]
  110. 110.
    Ratnieks FLW, Foster KR, Wenseleers T. 2006.. Conflict resolution in insect societies. . Annu. Rev. Entomol. 51::581608
    [Crossref] [Google Scholar]
  111. 111.
    Ratnieks FLW, Visscher PK. 1989.. Worker policing in the honeybee. . Nature 342::79697
    [Crossref] [Google Scholar]
  112. 112.
    Robertson HM, Baits RL, Walden KKO, Wada-Katsumata A, Schal C. 2018.. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattella germanica. . J. Exp. Zool. B 330::26578
    [Crossref] [Google Scholar]
  113. 113.
    Ronai I, Oldroyd BP, Vergoz V. 2016.. Queen pheromone regulates programmed cell death in the honey bee worker ovary. . Insect Mol. Biol. 25::64652
    [Crossref] [Google Scholar]
  114. 114.
    Ryan MJ. 1998.. Sexual selection, receiver biases, and the evolution of sex differences. . Science 281::19992003
    [Crossref] [Google Scholar]
  115. 115.
    Santos PKF, Galbraith DA, Starkey J, Amsalem E. 2022.. The effect of the brood and the queen on early gene expression in bumble bee workers' brains. . Sci. Rep. 12::3018
    [Crossref] [Google Scholar]
  116. 116.
    Seeley TD. 1985.. Honeybee Ecology: A Study of Adaptation in Social Life. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  117. 117.
    Sharma KR, Enzmann BL, Schmidt Y, Moore D, Jones GR, et al. 2015.. Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. . Cell Rep. 12::126171
    [Crossref] [Google Scholar]
  118. 118.
    Slone JD, Pask GM, Ferguson ST, Millar JG, Berger SL, et al. 2017.. Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. . PNAS 114::858691
    [Crossref] [Google Scholar]
  119. 119.
    Smith A, Hölldobler B, Liebig J. 2009.. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. . Curr. Biol. 19::7881
    [Crossref] [Google Scholar]
  120. 120.
    Smith AA, Liebig J. 2017.. The evolution of cuticular fertility signals in eusocial insects. . Curr. Opin. Insect Sci. 22::7984
    [Crossref] [Google Scholar]
  121. 121.
    Smith AA, Millar JG, Hanks LM, Suarez AV. 2013.. A conserved fertility signal despite population variation in the cuticular chemical profile of the trap-jaw ant Odontomachus brunneus. . J. Exp. Biol. 216::391724
    [Crossref] [Google Scholar]
  122. 122.
    Smith AA, Millar JG, Suarez AV. 2015.. A social insect fertility signal is dependent on chemical context. . Biol. Lett. 11::20140947
    [Crossref] [Google Scholar]
  123. 123.
    Smith AA, Millar JG, Suarez AV. 2016.. Comparative analysis of fertility signals and sex-specific cuticular chemical profiles of Odontomachus trap-jaw ants. . J. Exp. Biol. 219::41930
    [Crossref] [Google Scholar]
  124. 124.
    Starkey J, Brown A, Amsalem E. 2019.. The road to sociality: brood regulation of worker reproduction in the simple eusocial bee Bombus impatiens. . Anim. Behav. 154::5765
    [Crossref] [Google Scholar]
  125. 125.
    Starkey J, Derstine N, Amsalem E. 2019.. Do bumble bees produce brood pheromones?. J. Chem. Ecol. 45::72534
    [Crossref] [Google Scholar]
  126. 126.
    Steiger S, Peschke K, Francke W, Müller JK. 2007.. The smell of parents: Breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. . Proc. R. Soc. B 274::221120
    [Crossref] [Google Scholar]
  127. 127.
    Steiger S, Schmitt T, Schaefer HM. 2011.. The origin and dynamic evolution of chemical information transfer. . Proc. R. Soc. B 278::97079
    [Crossref] [Google Scholar]
  128. 128.
    Steitz I, Ayasse M. 2020.. Macrocyclic lactones act as a queen pheromone in a primitively eusocial sweat bee. . Curr. Biol. 30::113641.e3
    [Crossref] [Google Scholar]
  129. 129.
    Steitz I, Brandt K, Biefel F, Minat Ä, Ayasse M. 2019.. Queen recognition signals in two primitively eusocial halictid bees: evolutionary conservation and caste-specific perception. . Insects 10::416
    [Crossref] [Google Scholar]
  130. 130.
    Stökl J, Steiger S. 2017.. Evolutionary origin of insect pheromones. . Curr. Opin. Insect Sci. 24::3642
    [Crossref] [Google Scholar]
  131. 131.
    Sturgis SJ, Gordon DM. 2012.. Nestmate recognition in ants (Hymenoptera: Formicidae): a review. . Myrmecol. News 16::10110
    [Google Scholar]
  132. 132.
    Symonds MRE, Elgar MA. 2004.. The mode of pheromone evolution: evidence from bark beetles. . Proc. R. Soc. B 271::83946
    [Crossref] [Google Scholar]
  133. 133.
    Symonds MRE, Elgar MA. 2008.. The evolution of pheromone diversity. . Trends Ecol. Evol. 23::22028
    [Crossref] [Google Scholar]
  134. 134.
    Tan K, Liu X, Dong S, Wang C, Oldroyd BP. 2015.. Pheromones affecting ovary activation and ovariole loss in the Asian honey bee Apis cerana. . J. Insect Physiol. 74::2529
    [Crossref] [Google Scholar]
  135. 135.
    Tarpy DR, Talley E, Metz BN. 2020.. Influence of brood pheromone on honey bee colony establishment and queen replacement. . J. Apic. Res. 60::22028
    [Crossref] [Google Scholar]
  136. 136.
    Tibbetts EA, Pardo-Sanchez J, Weise C. 2022.. The establishment and maintenance of dominance hierarchies. . Philos. Trans. R. Soc. B 377::20200450
    [Crossref] [Google Scholar]
  137. 137.
    Ulrich Y, Burns D, Libbrecht R, Kronauer DJC. 2016.. Ant larvae regulate worker foraging behavior and ovarian activity in a dose-dependent manner. . Behav. Ecol. Sociobiol. 70::101118
    [Crossref] [Google Scholar]
  138. 138.
    Van Oystaeyen A, Oliveira RC, Holman L, van Zweden JS, Romero C, et al. 2014.. Conserved class of queen pheromones stops social insect workers from reproducing. . Science 343::28790
    [Crossref] [Google Scholar]
  139. 139.
    van Wilgenburg E, Felden A, Choe DH, Sulc R, Luo J, et al. 2012.. Learning and discrimination of cuticular hydrocarbons in a social insect. . Biol. Lett. 8::1720
    [Crossref] [Google Scholar]
  140. 140.
    van Zweden JS, D'Ettorre P. 2010.. Nestmate recognition in social insects and the role of hydrocarbons. . In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology, ed. GJ Blomquist, AG Bagnères , pp. 22243. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  141. 141.
    van Zweden JS, Heinze J, Boomsma JJ, d'Ettorre P. 2009.. Ant queen egg-marking signals: matching deceptive laboratory simplicity with natural complexity. . PLOS ONE 4::e4718
    [Crossref] [Google Scholar]
  142. 142.
    Vander Meer RK, Alonso LE. 2002.. Queen primer pheromone affects conspecific fire ant (Solenopsis invicta) aggression. . Behav. Ecol. Sociobiol. 51::12230
    [Crossref] [Google Scholar]
  143. 143.
    Villalta I, Abril S, Cerdá X, Boulay R. 2018.. Queen control or queen signal in ants: What remains of the controversy 25 years after Keller and Nonacs’ seminal paper?. J. Chem. Ecol. 44::80517
    [Crossref] [Google Scholar]
  144. 144.
    Wang Z, Receveur JP, Pu J, Cong H, Richards C, et al. 2022.. Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. . eLife 11::80859
    [Crossref] [Google Scholar]
  145. 145.
    Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM. 2007.. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. . PNAS 104::1438388
    [Crossref] [Google Scholar]
  146. 146.
    Wicher D, Miazzi F. 2021.. Functional properties of insect olfactory receptors: ionotropic receptors and odorant receptors. . Cell Tissue Res. 383::719
    [Crossref] [Google Scholar]
  147. 147.
    Wyatt TD. 2010.. Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. . J. Comp. Physiol. A 196::685700
    [Crossref] [Google Scholar]
  148. 148.
    Wyatt TD. 2014.. Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  149. 149.
    Yamamoto Y, Matsuura K. 2011.. Queen pheromone regulates egg production in a termite. . Biol. Lett. 7::72729
    [Crossref] [Google Scholar]
  150. 150.
    Zanette LRS, Miller SDL, Faria CMA, Almond EJ, Huggins TJ, et al. 2012.. Reproductive conflict in bumblebees and the evolution of worker policing. . Evolution 66::376577
    [Crossref] [Google Scholar]
  151. 151.
    Zhou X, Rokas A, Berger SL, Liebig J, Ray A, Zwiebel LJ. 2015.. Chemoreceptor evolution in Hymenoptera and its implications for the evolution of eusociality. . Genome Biol. Evol. 7::240716
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-022124-124437
Loading
/content/journals/10.1146/annurev-ento-022124-124437
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error