1932

Abstract

Natural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male–male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022823-020258
2024-01-25
2024-07-22
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-022823-020258.html?itemId=/content/journals/10.1146/annurev-ento-022823-020258&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alcock J. 2013. Sexual selection and the mating behavior of solitary bees. Adv. Study Behav. 45:1–48
    [Google Scholar]
  2. 2.
    Allen PE, Miller CW. 2017. Novel host plant leads to the loss of sexual dimorphism in a sexually selected male weapon. Proc. Biol. Sci. 284:20171269
    [Google Scholar]
  3. 3.
    Anderson P, Sadek M, Larsson M, Hansson B, Thöming G. 2013. Larval host plant experience modulates both mate finding and oviposition choice in a moth. Anim. Behav. 85:1169–75
    [Google Scholar]
  4. 4.
    Andersson J, Borg-Karlson A-K, Wiklund C. 2004. Sexual conflict and anti-aphrodisiac titre in a polyandrous butterfly: male ejaculate tailoring and absence of female control. Proc. Biol. Sci. 271:1765–70
    [Google Scholar]
  5. 5.
    Andersson M. 1994. Sexual Selection Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  6. 6.
    Andersson M, Iwasa Y. 1996. Sexual selection. Trends Ecol. Evol. 11:53–58
    [Google Scholar]
  7. 7.
    Arbuthnott D, Rundle HD. 2012. Sexual selection is ineffectual or inhibits the purging of deleterious mutations in Drosophila melanogaster. Evolution 66:2127–37
    [Google Scholar]
  8. 8.
    Bachmann GE, Segura DF, Devescovi F, Juárez ML, Ruiz MJ et al. 2015. Male sexual behavior and pheromone emission is enhanced by exposure to guava fruit volatiles in Anastrepha fraterculus. PLOS ONE 10:e0124250
    [Google Scholar]
  9. 9.
    Bakker AC, Roessingh P, Menken SB. 2008. Sympatric speciation in Yponomeuta: no evidence for host plant fidelity. Entomol. Exp. Appl. 128:240–47
    [Google Scholar]
  10. 10.
    Benelli AC, Daane KM, Canale A, Niu C-Y, Messing RH, Vargas RI. 2014. Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for integrated pest management. J. Pest Sci. 87:385–405
    [Google Scholar]
  11. 11.
    Berdan E, Enge S, Nylund GM, Wellenreuther M, Martens GA, Pavia H. 2019. Genetic divergence and phenotypic plasticity contribute to variation in cuticular hydrocarbons in the seaweed fly Coelopa frigida. Ecol. Evol. 9:12156–70
    [Google Scholar]
  12. 12.
    Bezzerides A, Yong T-H, Bezzerides J, Husseini J, Ladau J et al. 2004. Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a parasitoid wasp (Trichogramma ostriniae). PNAS 101:9029–32
    [Google Scholar]
  13. 13.
    Bonduriansky R. 2007. The evolution of condition-dependent sexual dimorphism. Am. Nat. 169:9–19
    [Google Scholar]
  14. 14.
    Bonduriansky R. 2007. Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution 61:838–49
    [Google Scholar]
  15. 15.
    Bonduriansky R, Chenoweth SF. 2009. Intralocus sexual conflict. Trends Ecol. Evol. 24:280–88
    [Google Scholar]
  16. 16.
    Borrero-Echeverry F, Bengtsson M, Nakamuta K, Witzgall P. 2018. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 72:2225–33
    [Google Scholar]
  17. 17.
    Cally JG, Stuart-Fox D, Holman L. 2019. Meta-analytic evidence that sexual selection improves population fitness. Nat. Commun. 10:2017
    [Google Scholar]
  18. 18.
    Candolin U. 2019. Mate choice in a changing world. Biol. Rev. 94:1246–60
    [Google Scholar]
  19. 19.
    Caro TM, Graham CM, Stoner CJ, Flores MM. 2003. Correlates of horn and antler shape in bovids and cervids. Behav. Ecol. Sociobiol. 55:32–41
    [Google Scholar]
  20. 20.
    Chaine AS, Lyon BE. 2008. Adaptive plasticity in female mate choice dampens sexual selection on male ornaments in the lark bunting. Science 319:459–62
    [Google Scholar]
  21. 21.
    Chung H, Loehlin DW, Dufour HD, Vaccarro K, Millar JG, Carroll SB. 2014. A single gene affects both ecological divergence and mate choice in Drosophila. Science 343:1148–51
    [Google Scholar]
  22. 22.
    Cocroft RB, Rodriguez RL. 2005. The behavioral ecology of insect vibrational communication. Bioscience 55:323–34
    [Google Scholar]
  23. 23.
    Connallon T, Cox RM, Calsbeek R. 2010. Fitness consequences of sex-specific selection. Evolution 64:1671–82
    [Google Scholar]
  24. 24.
    Connallon T, Matthews G. 2019. Cross-sex genetic correlations for fitness and fitness components: connecting theoretical predictions to empirical patterns. Evol. Lett. 3:254–62
    [Google Scholar]
  25. 25.
    Conner WE, Boada R, Schroeder FC, González A, Meinwald J, Eisner T. 2000. Chemical defense: bestowal of a nuptial alkaloidal garment by a male moth on its mate. PNAS 97:14406–11
    [Google Scholar]
  26. 26.
    Cook PA, Wedell N. 1996. Ejaculate dynamics in butterflies: a strategy for maximizing fertilization success?. Proc. Biol. Sci. 263:1047–51
    [Google Scholar]
  27. 27.
    Cornwallis CK, Uller T. 2010. Towards an evolutionary ecology of sexual traits. Trends Ecol. Evol. 25:145–52
    [Google Scholar]
  28. 28.
    Cotton S, Fowler K, Pomiankowski A. 2004. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis?. Proc. Biol. Sci. 271:771–83
    [Google Scholar]
  29. 29.
    Cox RM, Calsbeek R. 2009. Sexually antagonistic selection, sexual dimorphism, and the resolution of intralocus sexual conflict. Am. Nat. 173:176–87
    [Google Scholar]
  30. 30.
    Darragh K, Byers KJ, Merrill RM, McMillan WO, Schulz S, Jiggins CD. 2019. Male pheromone composition depends on larval but not adult diet in Heliconius melpomene. . Ecol. Entomol. 44:397–405
    [Google Scholar]
  31. 31.
    Darragh K, Linden TA, Ramírez SR. 2023. Season stability and species specificity of environmentally acquired chemical mating signals in orchid bees. J. Evol. Biol. 36:675–86
    [Google Scholar]
  32. 32.
    David P, Bjorksten T, Fowler K, Pomiankowski A. 2000. Condition-depending signalling of genetic variation in stalk-eyed flies. Nature 406:186–88
    [Google Scholar]
  33. 33.
    De Pasqual C, Groot AT, Mappes J, Burdfield-Steel E. 2021. Evolutionary importance of intraspecific variation in sex pheromones. Trends Ecol. Evol. 36:848–59
    [Google Scholar]
  34. 34.
    del Sol JF, Hongo Y, Boisseau RP, Berman GH, Allen CE, Emlen DJ. 2020. Population differences in the strength of sexual selection match relative weapon size in the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Evolution 75:394–413
    [Google Scholar]
  35. 35.
    Delcourt M, Blows MW, Rundle HD. 2009. Sexually antagonistic genetic variance for fitness in an ancestral and a novel environment. Proc. Biol. Sci. 276:2009–14
    [Google Scholar]
  36. 36.
    Dodson CH, Dressler RL, Hills HG, Adams RM, Williams NH. 1969. Biologically active compounds in orchid fragrances. Science 164:1243–49
    [Google Scholar]
  37. 37.
    Drijfhout FP, Kather R, Martin SJ. 2009. The role of cuticular hydrocarbons in insects. Behavioral and Chemical Ecology W Zhang, H Liu 91–114. Hauppauge, NY: Nova Sci. Publ.
    [Google Scholar]
  38. 38.
    Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T. 1988. Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. PNAS 85:5992–96
    [Google Scholar]
  39. 39.
    Eberhard WG. 1998. Sexual behavior of Acanthocephala declivis guatemalana (Hemiptera: Coreidae) and the allometric scaling of their modified hind legs. Ann. Entomol. Soc. Am. 91:863–71
    [Google Scholar]
  40. 40.
    Egan SP, Hood GR, Feder JL, Ott JR. 2012. Divergent host-plant use promotes reproductive isolation among cynipid gall wasp populations. Biol. Lett. 8:605–8
    [Google Scholar]
  41. 41.
    Eltz T, Zimmermann Y, Pfeiffer C, Pech JR, Twele R et al. 2008. An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr. Biol. 18:1844–48
    [Google Scholar]
  42. 42.
    Emelianov I, Simpson F, Narang P, Mallet J. 2003. Host choice promotes reproductive isolation between host races of the larch budmoth Zeiraphera diniana. J. Evol. Biol. 16:208–18
    [Google Scholar]
  43. 43.
    Emlen DJ. 2008. The evolution of animal weapons. Annu. Rev. Ecol. Evol. Syst. 39:387–413
    [Google Scholar]
  44. 44.
    Emlen DJ, Marangelo J, Ball B, Cunningham CW. 2005. Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution 59:1060–84
    [Google Scholar]
  45. 45.
    Emlen ST, Oring LW. 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197:215–23
    [Google Scholar]
  46. 46.
    Erbilgin N. 2019. Phytochemicals as mediators for host range expansion of a native invasive forest insect herbivore. New Phytol. 221:1268–78
    [Google Scholar]
  47. 47.
    Estrada C, Gilbert LE. 2010. Host plants and immatures as mate-searching cues in Heliconius butterflies. Anim. Behav. 80:231–39
    [Google Scholar]
  48. 48.
    Etges WJ, De Oliveira CC, Ritchie MG, Noor MAF. 2009. Genetics of incipient speciation in Drosophila mojavensis: II. Host plants and mating status influence cuticular hydrocarbon QTL expression and G × E interactions. Evolution 63:1712–30
    [Google Scholar]
  49. 49.
    Etl F, Berger A, Weber A, Schönenberger J, Dötterl S. 2016. Nocturnal plant bugs use cis-jasmone to locate inflorescences of an Araceae as feeding and mating site. J. Chem. Ecol. 42:300–4
    [Google Scholar]
  50. 50.
    Fenner J, Rodriguez-Caro L, Counterman B. 2019. Plasticity and divergence in ultraviolet reflecting structures on Dogface butterfly wings. Arthropod Struct. Dev. 51:14–22
    [Google Scholar]
  51. 51.
    Forister ML, Novotny V, Panorska AK, Baje L, Basset Y et al. 2015. The global distribution of diet breadth in insect herbivores. PNAS 112:442–47
    [Google Scholar]
  52. 52.
    Forister ML, Scholl CF. 2012. Use of an exotic host plant affects mate choice in an insect herbivore. Am. Nat. 179:805–10
    [Google Scholar]
  53. 53.
    Gage M, Cook P. 1994. Sperm size or numbers? Effects of nutritional stress upon eupyrene and apyrene sperm production strategies in the moth Plodia interpunctella (Lepidoptera: Pyralidea). Funct. Ecol. 8:594–99
    [Google Scholar]
  54. 54.
    Geiselhardt S, Otte T, Hilker M. 2012. Looking for a similar partner: Host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol. Lett. 15:971–77
    [Google Scholar]
  55. 55.
    Gibbs M, Lace LA, Jones MJ, Moore AJ. 2006. Multiple host-plant use may arise from gender-specific fitness effects. J. Insect Sci. 6:4
    [Google Scholar]
  56. 56.
    Gillespie SR, Tudor SM, Moore AJ, Miller CW. 2014. Sexual selection is influenced by both developmental and adult environments. Evolution 68:3421–32
    [Google Scholar]
  57. 57.
    Gonzalez A, Rossini C, Eisner M, Eisner T. 1999. Sexually transmitted chemical defense in a moth (Utetheisa ornatrix). PNAS 96:5570–74
    [Google Scholar]
  58. 58.
    González-Rojas M, Darragh K, Robles J, Linares M, Schulz S et al. 2020. Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies. Proc. Biol. Sci. 287:20200587
    [Google Scholar]
  59. 59.
    Grace T, Wisely SM, Brown SJ, Dowell FE, Joern A. 2010. Divergent host plant adaptation drives the evolution of sexual isolation in the grasshopper Hesperotettix viridis (Orthoptera: Acrididae) in the absence of reinforcement. Biol. J. Linn. Soc. 100:866–78
    [Google Scholar]
  60. 60.
    Gripenberg S, Mayhew PJ, Parnell M, Roslin T. 2010. A meta-analysis of preference-performance relationships in phytophagous insects. Ecol. Lett. 13:383–93
    [Google Scholar]
  61. 61.
    Groot AT, Dekker T, Heckel DG. 2016. The genetic basis of pheromone evolution in moths. Annu. Rev. Entomol. 61:99–117
    [Google Scholar]
  62. 62.
    Hardy NB, Kaczvinsky C, Bird G, Normark BB. 2020. What we don't know about diet-breadth evolution in herbivorous insects. Annu. Rev. Ecol. Evol. Syst. 51:103–22
    [Google Scholar]
  63. 63.
    Havens J, Etges W. 2013. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection. J. Evol. Biol. 26:562–76
    [Google Scholar]
  64. 64.
    Henske J, Saleh NW, Chouvenc T, Ramirez SR, Eltz T. 2023. Function of environment-derived male perfumes in orchid bees. Curr. Biol. 33:2075–80.e3
    [Google Scholar]
  65. 65.
    Hippee AC, Elnes ME, Armenta JS, Condon MA, Forbes AA. 2016. Divergence before the host shift? Prezygotic reproductive isolation among three varieties of a specialist fly on a single host plant. Ecol. Entomol. 41:389–99
    [Google Scholar]
  66. 66.
    Hollis B, Fierst JL, Houle D. 2009. Sexual selection accelerates the elimination of a deleterious mutant in Drosophila melanogaster. Evolution 63:324–33
    [Google Scholar]
  67. 67.
    Hollis B, Houle D. 2011. Populations with elevated mutation load do not benefit from the operation of sexual selection. J. Evol. Biol. 24:1918–26
    [Google Scholar]
  68. 68.
    Hood GR, Jennings JH, Bruzzese DJ, Beehler M, Schmitt T et al. 2022. Cuticular hydrocarbon variation among Rhagoletis fruit flies (Diptera: Tephritidae): implications for premating reproductive isolation and ecological speciation. Ecol. Entomol. 47:192–207
    [Google Scholar]
  69. 69.
    Hopkins GW, Thacker JI, Dixon AFG, Waring P, Telfer MG. 2002. Identifying rarity in insects: the importance of host plant range. Biol. Conserv. 105:293–307
    [Google Scholar]
  70. 70.
    Hosoya T, Araya K. 2005. Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from 16S mtrRNA gene sequences, with reference to the evolution of sexual dimorphism of mandibles. Zool. Sci. 22:1305–18
    [Google Scholar]
  71. 71.
    Ingleby FC, Hunt J, Hosken DJ. 2010. The role of genotype-by-environment interactions in sexual selection. J. Evol. Biol. 23:2031–45
    [Google Scholar]
  72. 72.
    Jennions MD, Moller AP, Petrie M. 2001. Sexually selected traits and adult survival: a meta-analysis. Q. Rev. Biol. 76:3–36
    [Google Scholar]
  73. 73.
    Jorge LR, Cordeiro-Estrela P, Klaczko LB, Moreira GR, Freitas AV. 2011. Host-plant dependent wing phenotypic variation in the neotropical butterfly Heliconius erato. Biol. J. Linn. Soc. 102:765–74
    [Google Scholar]
  74. 74.
    Karlsson Green K, Stenberg JA, Lankinen Å. 2020. Making sense of integrated pest management (IPM) in the light of evolution. Evol. Appl. 13:1791–805
    [Google Scholar]
  75. 75.
    Kemp DJ. 2019. Manipulation of natal host modifies adult reproductive behaviour in the butterfly Heliconius charithonia. Proc. Biol. Sci. 286:20191225
    [Google Scholar]
  76. 76.
    Kirkpatrick M, Ryan MJ. 1991. The evolution of mating preferences and the paradox of the lek. Nature 350:33–38
    [Google Scholar]
  77. 77.
    Knüttel H, Fiedler K. 2001. Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. J. Exp. Biol. 204:2447–59
    [Google Scholar]
  78. 78.
    Kokko H, Jennions MD. 2014. The relationship between sexual selection and sexual conflict. Cold Spring Harb. Perspect. Biol. 6:a017517
    [Google Scholar]
  79. 79.
    Kotze J, Venn S, Niemelä J, Spence J. 2011. Effects of urbanization on the ecology and evolution of arthropods. Urban Ecology: Patterns, Processes and Applications J Niemelä, JH Brueste, T Elmqvist, G Guntenspergen, P James, NE McIntyre 159–66. Oxford, UK: Oxford Univ.
    [Google Scholar]
  80. 80.
    Landolt PJ, Phillips TW. 1997. Host plant influences on sex pheromone behavior of phytophagous insects. Annu. Rev. Entomol. 42:371–91
    [Google Scholar]
  81. 81.
    Long TAF, Agrawal AF, Rowe L. 2012. The effect of sexual selection on offspring fitness depends on the nature of genetic variation. Curr. Biol. 22:204–8
    [Google Scholar]
  82. 82.
    Lorch PD, Proulx S, Rowe L, Day T. 2003. Condition-dependent sexual selection can accelerate adaptation. Evol. Ecol. Res. 5:867–81
    [Google Scholar]
  83. 83.
    Lundrigan B. 1996. Morphology of horns and fighting behaviour in the family Bovidae. J. Mammal. 77:462–75
    [Google Scholar]
  84. 84.
    Martinossi-Allibert I, Arnqvist G, Berger D. 2017. Sex-specific selection under environmental stress in seed beetles. J. Evol. Biol. 30:161–73
    [Google Scholar]
  85. 85.
    Matthews G, Hangartner S, Chapple DG, Connallon T. 2019. Quantifying maladaptation during the evolution of sexual dimorphism. Proc. Biol. Sci. 286:20191372
    [Google Scholar]
  86. 86.
    McCullough EL, Tobalske BW, Emlen DJ. 2014. Structural adaptations to diverse fighting styles in sexually selected weapons. PNAS 111:14484–88
    [Google Scholar]
  87. 87.
    McNett GD, Cocroft RB. 2008. Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav. Ecol. 19:650–56
    [Google Scholar]
  88. 88.
    Miller CW. 2008. Seasonal effects on offspring reproductive traits through maternal oviposition behavior. Behav. Ecol. 19:1297–304
    [Google Scholar]
  89. 89.
    Miller CW, Kimball RT, Forthman M. 2023. The evolution of multi-component weapons in the superfamily of leaf-footed bugs. bioRxiv 2023.04.24.538071. https://doi.org/10.1101/2023.04.24.538071
  90. 90.
    Miller CW, McDonald GC, Moore AJ. 2016. The tale of the shrinking weapon: seasonal changes in nutrition affect weapon size and sexual dimorphism, but not contemporary evolution. J. Evol. Biol. 29:2266–75
    [Google Scholar]
  91. 91.
    Miller CW, Moore AJ. 2007. A potential resolution to the lek paradox through indirect genetic effects. Proc. . Biol. Sci. 274:1279–86
    [Google Scholar]
  92. 92.
    Miller CW, Svensson EI. 2014. Sexual selection in complex environments. Annu. Rev. Entomol. 59:427–45
    [Google Scholar]
  93. 93.
    Miyatake T. 1995. Territorial mating aggregation in the bamboo bug, Notobitus meleagris, Fabricius (Heteroptera: Coreidae). J. Ethol. 13:185–89
    [Google Scholar]
  94. 94.
    Miyatake T. 1997. Functional morphology of the hind legs as weapons for male contests in Leptoglossus australis (Heteroptera: Coreidae). J. Insect Behav. 10:727–35
    [Google Scholar]
  95. 95.
    Moayeri HR, Ashouri A, Brødsgaard HF, Enkegaard A. 2007. Males of the predatory mirid bug Macrolophus caliginosus exploit plant volatiles induced by conspecifics as a sexual synomone. Entomol. Exp. Appl. 123:49–55
    [Google Scholar]
  96. 96.
    Morehouse NI, Nakazawa T, Booher CM, Jeyasingh PD, Hall MD. 2010. Sex in a material world: why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit. Oikos 119:766–78
    [Google Scholar]
  97. 97.
    Morehouse NI, Rutowski RL. 2010. In the eyes of the beholders: female choice and avian predation risk associated with an exaggerated male butterfly color. Am. Nat. 176:768–84
    [Google Scholar]
  98. 98.
    Mozuraitis R, Murtazina R, Zurita J, Pei Y, Ilag L et al. 2019. Anti-aphrodisiac pheromone, a renewable signal in adult butterflies. Sci. Rep. 9:14262
    [Google Scholar]
  99. 99.
    Muller K, Arenas L, Thiéry D, Moreau J. 2016. Direct benefits from choosing a virgin male in the European grapevine moth, Lobesia botrana. Anim. Behav. 114:165–72
    [Google Scholar]
  100. 100.
    Muller K, Thiéry D, Moret Y, Moreau J. 2015. Male larval nutrition affects adult reproductive success in wild European grapevine moth (Lobesia botrana). Behav. Ecol. Sociobiol. 69:39–47
    [Google Scholar]
  101. 101.
    Nolen ZJ, Allen PE, Miller CW. 2017. Seasonal resource value and male size influence male aggressive interactions in the leaf footed cactus bug, Narnia femorata. Behav. Proc. 138:1–6
    [Google Scholar]
  102. 102.
    Nosil P. 2012. Ecological Speciation Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  103. 103.
    Ochieng S, Park K, Baker T. 2002. Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J. Comp. Physiol. 188:325–33
    [Google Scholar]
  104. 104.
    Otte T, Hilker M, Geiselhardt S. 2015. The effect of dietary fatty acids on the cuticular hydrocarbon phenotype of an herbivorous insect and consequences for mate recognition. J. Chem. Ecol. 41:32–43
    [Google Scholar]
  105. 105.
    Otte T, Hilker M, Geiselhardt S. 2018. Phenotypic plasticity of cuticular hydrocarbon profiles in insects. J. Chem. Ecol. 44:235–47
    [Google Scholar]
  106. 106.
    Oufiero CE, Garland T Jr. 2017. Evaluating performance costs of sexually selected traits. Funct. Ecol. 21:676–89
    [Google Scholar]
  107. 107.
    Palaoro AV, Peixoto PEC. 2022. The hidden links between animal weapons, fighting style, and their effect on contest success: a meta-analysis. Biol. Rev. 97:1948–66
    [Google Scholar]
  108. 108.
    Pappers SM, van Dommelen H, van der Velde G, Ouborg NJ. 2001. Differences in morphology and reproductive traits of Galerucella nymphaeae from four host plant species. Entomol. Exp. Appl. 99:183–91
    [Google Scholar]
  109. 109.
    Parker GA. 1970. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45:525–67
    [Google Scholar]
  110. 110.
    Peacock L, Worner GP. 2008. Biological and ecological traits that assist establishment of alien invasive insects. N. Z. Plant Prot. 61:1
    [Google Scholar]
  111. 111.
    Perry JC, Rowe L. 2018. Sexual conflict in its ecological setting. Philos. Trans. R. Soc. 373:20170418
    [Google Scholar]
  112. 112.
    Pischedda A, Chippindale AK. 2006. Intralocus sexual conflict diminishes the benefits of sexual selection. PLOS Biol. 4:e356
    [Google Scholar]
  113. 113.
    Poissant J, Wilson AJ, Coltman DW. 2010. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64:97–107
    [Google Scholar]
  114. 114.
    Pokorny T, Hannibal M, Quezada-Euan J, Hedenström E, Sjöberg N et al. 2013. Acquisition of species-specific perfume blends: influence of habitat-dependent compound availability on odour choices of male orchid bees (Euglossa spp). Oecologia 172:417–25
    [Google Scholar]
  115. 115.
    Proulx SR. 1999. Mating systems and the evolution of niche breadth. Am. Nat. 154:89–98
    [Google Scholar]
  116. 116.
    Proulx SR. 2002. Niche shifts and expansion due to sexual selection. Evol. Ecol. Res. 4:351–69
    [Google Scholar]
  117. 117.
    Prudic KL, Jeon C, Cao H, Monteiro A. 2011. Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science 331:73–75
    [Google Scholar]
  118. 118.
    Quental TB, Patten MM, Pierce NE. 2007. Host plant specialization driven by sexual selection. Am. Nat. 169:830–36
    [Google Scholar]
  119. 119.
    Ramirez SR, Eltz T, Fritzsch F, Pemberton R, Pringle EG, Tsutsui ND. 2010. Intraspecific geographic variation of fragrances acquired by orchid bees in native and introduced populations. J. Chem. Ecol. 36:873–84
    [Google Scholar]
  120. 120.
    Rebar D, Rodríguez RL. 2014. Genetic variation in host plants influences the mate preferences of a plant-feeding insect. Am. Nat. 184:489–99
    [Google Scholar]
  121. 121.
    Rebar D, Rodríguez RL. 2014. Trees to treehoppers: Genetic variation in host plants contributes to variation in the mating signals of a plant-feeding insect. Ecol. Lett. 17:203–10
    [Google Scholar]
  122. 122.
    Reinecke A, Ruther J, Hilker M. 2002. The scent of food and defence: green leaf volatiles and toluquinone as sex attractant mediate mate finding in the European cockchafer Melolontha melolontha. Ecol. Lett. 5:257–63
    [Google Scholar]
  123. 123.
    Rodríguez RL, Sullivan LM, Snyder RL, Cocroft RB. 2008. Host shifts and the beginning of signal divergence. Evolution 62:12–20
    [Google Scholar]
  124. 124.
    Rosenthal GG, Ryan MJ. 2022. Sexual selection and the ascent of women: mate choice research since Darwin. Science 375:eabi6308
    [Google Scholar]
  125. 125.
    Rowe L, Arnquist G, Sih A, Krupa JJ. 1994. Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system. Trends Ecol. Evol. 9:289–93
    [Google Scholar]
  126. 126.
    Rowe L, Rundle HD. 2021. The alignment of natural and sexual selection. Annu. Rev. Ecol. Evol. Syst. 52:499–517
    [Google Scholar]
  127. 127.
    Sasson DA, Munoz PR, Gezan SA, Miller CW. 2016. Resource quality affects weapon and testis size and the ability of these traits to respond to selection in the leaf-footed cactus bug, Narnia femorata. Ecol. Evol. 6:2098–108
    [Google Scholar]
  128. 128.
    Schaefer CW, Mitchell PL. 1983. Food plants of the Coreoidea (Hemiptera: Heteroptera). Ann. Entomol. Soc. Am. 76:591–615
    [Google Scholar]
  129. 129.
    Schiestl FP. 2010. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13:643–56
    [Google Scholar]
  130. 130.
    Scordato ES, Symes LB, Mendelson TC, Safran RJ. 2014. The role of ecology in speciation by sexual selection: a systematic empirical review. J. Hered. 105:782–94
    [Google Scholar]
  131. 131.
    Shelly TE. 2018. Larval host plant influences male body size and mating success in a tephritid fruit fly. Entomol. Exp. Appl. 166:41–52
    [Google Scholar]
  132. 132.
    Shelly TE, Edu J, Pahio E. 2007. Condition-dependent mating success in male fruit flies: Ingestion of a pheromone precursor compensates for a low-quality diet. J. Insect Behav. 20:347–65
    [Google Scholar]
  133. 133.
    Shuker DM, Kvarnemo C. 2021. The definition of sexual selection. Behav. Ecol. 32:781–94
    [Google Scholar]
  134. 134.
    Simmons GS, Salazar Sepulveda MC, Fuentes Barrios EA, Idalsoaga Villegas M, Medina Jimenez RE et al. 2021. Development of sterile insect technique for control of the European grapevine moth, Lobesia botrana, in urban areas of Chile. Insects 12:378
    [Google Scholar]
  135. 135.
    Simmons LW. 2002. Sperm Competition and Its Evolutionary Consequences in the Insects Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  136. 136.
    Simmons LW, Lüpold S, Fitzpatrick JL. 2017. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32:964–76
    [Google Scholar]
  137. 137.
    Somjee U, Allen PE, Miller CW. 2015. Different environments lead to a reversal in the expression of weapons and testes in the heliconia bug, Leptoscelis tricolor (Hemiptera: Coreidae). Biol. J. Linn. Soc. 115:802–9
    [Google Scholar]
  138. 138.
    Tatarnic NJ, Spence JR. 2013. Courtship and mating in the crusader bug, Mictis profana (Fabricius). Aust. J. Entomol. 52:151–55
    [Google Scholar]
  139. 139.
    Thöming G, Larsson MC, Hansson BS, Anderson P. 2013. Comparison of plant preference hierarchies of male and female moths and the impact of larval rearing hosts. Ecology 94:1744–52
    [Google Scholar]
  140. 140.
    Tigreros N. 2013. Linking nutrition and sexual selection across life stages in a model butterfly system. Funct. Ecol. 27:145–54
    [Google Scholar]
  141. 141.
    Tinghitella RM, Lackey AC, Durso C, Koop JA, Boughman JW. 2020. The ecological stage changes benefits of mate choice and drives preference divergence. Philos. Trans. R. Soc. 375:20190546
    [Google Scholar]
  142. 142.
    Tomkins JL, Hazel WN, Penrose MA, Radwan JW, LeBas NR. 2011. Habitat complexity drives experimental evolution of a conditionally expressed secondary sexual trait. Curr. Biol. 21:569–73
    [Google Scholar]
  143. 143.
    Tooker JF, Koenig WA, Hanks LM. 2002. Altered host plant volatiles are proxies for sex pheromones in the gall wasp Antistrophus rufus. PNAS 99:15486–91
    [Google Scholar]
  144. 144.
    Turlure C, Van Dyck H. 2009. On the consequences of aggressive male mate-locating behaviour and micro-climate for female host plant use in the butterfly Lycaena hippothoe. Behav. Ecol. Sociobiol. 63:1581–91
    [Google Scholar]
  145. 145.
    Van Doorn GS, Edelaar P, Weissing FJ. 2009. On the origin of species by natural and sexual selection. Science 326:1704–7
    [Google Scholar]
  146. 146.
    Via S, Lande R. 1985. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–22
    [Google Scholar]
  147. 147.
    Wang SQ, Ye J, Meng J, Li C, Costeur L et al. 2022. Sexual selection promotes giraffoid head-neck evolution and ecological adaptation. Science 376:eabl8316
    [Google Scholar]
  148. 148.
    Weber MG, Mitko L, Eltz T, Ramirez SR. 2016. Macroevolution of perfume signalling in orchid bees. Ecol. Lett. 19:1314–23
    [Google Scholar]
  149. 149.
    West-Eberhard MJ. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  150. 150.
    Whitlock MC, Agrawal AF. 2009. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63:569–82
    [Google Scholar]
  151. 151.
    Woodman T, Chen S, Emberts Z, Wilner D, Federle W, Miller CW. 2021. Developmental nutrition affects the structural integrity of a sexually selected weapon. Integr. Comp. Biol. 61:723–35
    [Google Scholar]
  152. 152.
    Xu H, Turlings TC. 2018. Plant volatiles as mate-finding cues for insects. Trends Plant Sci. 23:100–11
    [Google Scholar]
  153. 153.
    Xue H-J, Wei J-N, Magalhães S, Zhang B, Song K-Q et al. 2016. Contact pheromones of 2 sympatric beetles are modified by the host plant and affect mate choice. Behav. Ecol. 27:895–902
    [Google Scholar]
  154. 154.
    Yang Z, Bengtsson M, Witzgall P. 2004. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. J. Chem. Ecol. 30:619–29
    [Google Scholar]
  155. 155.
    Yun L, Chen PJ, Singh A, Agrawal AF, Rundle HD. 2017. The physical environment mediates male harm and its effect on selection in females. Proc. Biol. Sci. 284:20170424
    [Google Scholar]
/content/journals/10.1146/annurev-ento-022823-020258
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error