1932

Abstract

Animal venoms are a focus of research due to the hazards they represent and to their relationship to evolution and ecology, pharmacology, biodiscovery, and biotechnology. Venoms have evolved multiple times in Lepidoptera, mostly as defensive adaptations that protect the larval life stages. While venoms are always produced in structures derived from cuticle and setae, they are diverse in their composition and bioactivity, reflecting their multiple evolutionary origins. The most common result of envenomation by lepidopterans is pain and inflammation, but envenomation by some species causes fatal hemorrhagic syndromes or chronic inflammatory conditions in humans or veterinary pathologies such as equine amnionitis and fetal loss. The handful of lepidopteran venom toxins that have been characterized includes coagulotoxins from (Saturniidae) and pain-causing cecropin-like peptides from (Limacodidae). However, our knowledge of lepidopteran venoms remains comparatively poor, with further studies required to yield a clear picture of the evolution, composition, and function of venoms produced by Lepidoptera.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022924-014200
2025-01-28
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-022924-014200.html?itemId=/content/journals/10.1146/annurev-ento-022924-014200&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alvarez AM, Alvarez-Flores MP, DeOcesano-Pereira C, Goldfeder MB, Chudzinski-Tavassi AM, et al. 2022.. Losac and Lopap recombinant proteins from Lonomia obliqua bristles positively modulate the myoblast proliferation process. . Front. Mol. Biosci. 9::904737
    [Crossref] [Google Scholar]
  2. 2.
    Alvarez Flores MP, Fritzen M, Reis CV, Chudzinski-Tavassi AM. 2006.. Losac, a factor X activator from Lonomia obliqua bristle extract: its role in the pathophysiological mechanisms and cell survival. . Biochem. Biophys. Res. Commun. 343::121623
    [Crossref] [Google Scholar]
  3. 3.
    Alvarez-Flores MP, Furlin D, Ramos OHP, Balan A, Konno K, Chudzinski-Tavassi AM. 2011.. Losac, the first hemolin that exhibits procoagulant activity through selective factor X proteolytic activation. . J. Biol. Chem. 286::691828
    [Crossref] [Google Scholar]
  4. 4.
    Alvarez-Flores MP, Hébert A, Gouelle C, Geller S, Chudzinski-Tavassi AM, Pellerin L. 2019.. Neuroprotective effect of rLosac on supplement-deprived mouse cultured cortical neurons involves maintenance of monocarboxylate transporter MCT2 protein levels. . J. Neurochem. 148::8096
    [Crossref] [Google Scholar]
  5. 5.
    Ardao MI, Perdomo CS, Pellaton MG. 1966.. Venom of the Megalopyge urens (Berg) caterpillar. . Nature 209::113940
    [Crossref] [Google Scholar]
  6. 6.
    Arocha-Piñango CL, de Bosch NB, Torres A, Goldstein C, Nouel A, et al. 1992.. Six new cases of a caterpillar-induced bleeding syndrome. . Thromb. Haemost. 67::4027
    [Crossref] [Google Scholar]
  7. 7.
    Arocha-Piñango CL, Marval E, Guerrero B. 2000.. Lonomia genus caterpillar toxins: biochemical aspects. . Biochimie 82::93742
    [Crossref] [Google Scholar]
  8. 8.
    Avilán L, Guerrero B, Álvarez E, Rodríguez-Acosta A. 2010.. Description of envenomation by the “gusano-pollo” caterpillar (Megalopyge opercularis) in Venezuela. . Investig. Clin. 51::12732
    [Google Scholar]
  9. 9.
    Balit CR, Geary MJ, Russell RC, Isbister GK. 2003.. Prospective study of definite caterpillar exposures. . Toxicon 42::65762
    [Crossref] [Google Scholar]
  10. 10.
    Barbaro L, Battisti A. 2011.. Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). . Biol. Control 56::10714
    [Crossref] [Google Scholar]
  11. 11.
    Barth R. 1954.. Estudos histológicos das células glandulares dos insetos peçonhentos: I. os órgãos urticantes da largata de Automeris incisa Walker (Lepidoptera, Hemileucidae). . Mem. Inst. Oswaldo Cruz 52::1
    [Crossref] [Google Scholar]
  12. 12.
    Barth R. 1954.. Estudos histológicos nas células glandulares dos insetos peçonhentos: II. os órgãos urtificantes da largata de Megalopyge albicollis superba Edwards (Lepidoptera, Megalopygidae). . Mem. Inst. Oswaldo Cruz 52::12547
    [Crossref] [Google Scholar]
  13. 13.
    Barth R. 1956.. Estudos histológicos das células glandulares dos insetos peçonhentos: IV parte: as cerdas dos espinhos da largata de Sibine nesea. . Mem. Inst. Oswaldo Cruz 54::35972
    [Crossref] [Google Scholar]
  14. 14.
    Battisti A, Holm G, Fagrell B, Larsson S. 2011.. Urticating hairs in arthropods: their nature and medical significance. . Annu. Rev. Entomol. 56::20320
    [Crossref] [Google Scholar]
  15. 15.
    Battisti A, Walker AA, Uemura M, Zalucki MP, Brinquin A-S, et al. 2024.. Look but do not touch: the occurrence of venomous species across Lepidoptera. . Entomol. Gen. 44::2939
    [Crossref] [Google Scholar]
  16. 16.
    Berardi L, Battisti A, Negrisolo E. 2015.. The allergenic protein Tha p 2 of processionary moths of the genus Thaumetopoea (Thaumetopoeinae, Notodontidae, Lepidoptera): characterization and evolution. . Gene 574::31724
    [Crossref] [Google Scholar]
  17. 17.
    Berardi L, Pivato M, Arrigoni G, Mitali E, Trentin AR, et al. 2017.. Proteome analysis of urticating setae from Thaumetopoea pityocampa (Lepidoptera: Notodontidae). . J. Med. Entomol. 54::156066
    [Crossref] [Google Scholar]
  18. 18.
    Blair CP. 1979.. The browntail moth, its caterpillar and their rash. . Clin. Exp. Dermatol. 4::21522
    [Crossref] [Google Scholar]
  19. 19.
    Bleumink E, de Jong MCJM, Kawamoto F, Meyer GT, Kloosterhuis AJ, Slijper-Pal IJ. 1982.. Protease activities in the spicule venom of Euproctis caterpillars. . Toxicon 20::60713
    [Crossref] [Google Scholar]
  20. 20.
    Bonamonte D, Foti C, Vestita M, Angelini G. 2013.. Skin reactions to pine processionary caterpillar Thaumetopoea pityocampa Schiff. . Sci. World J. 2013::867431
    [Crossref] [Google Scholar]
  21. 21.
    Bosch RV, Alvarez-Flores MP, Maria DA, Chudzinski-Tavassi AM. 2016.. Hemolin triggers cell survival on fibroblasts in response to serum deprivation by inhibition of apoptosis. . Biomed. Pharmacother. 82::53746
    [Crossref] [Google Scholar]
  22. 22.
    Braga Dias L, Cordeiro de Azevedo M. 1973.. Pararama, a disease caused by moth larvae: experimental findings. . Bol. Oficina Sanit. Panam. 7::914
    [Google Scholar]
  23. 23.
    Cardoso FC, Walker AA, King GF, Gomez MV. 2023.. Holistic profiling of the venom from the Brazilian wandering spider Phoneutria nigriventer by combining high-throughput ion channel screens with venomics. . Front. Mol. Biosci. 10::1069764
    [Crossref] [Google Scholar]
  24. 24.
    Casafús MG, Gritti MA, González KY, Sánchez MN, Sciani JM, et al. 2022.. Unraveling the distinctive venomous features of the saturniid Hylesia sp.: an integrative approach of a public health concern in Argentina. . Acta Trop. 231::106428
    [Crossref] [Google Scholar]
  25. 25.
    Cawdell-Smith AJ, Todhunter KH, Anderson ST, Perkins NR, Bryden WL. 2012.. Equine amnionitis and fetal loss: mare abortion following experimental exposure to processionary caterpillars (Ochrogaster lunifer). . Equine Vet. J. 44::28288
    [Crossref] [Google Scholar]
  26. 26.
    Cawdell-Smith AJ, Todhunter KH, Perkins NR, Bryden WL. 2009.. Stage of pregancy and foetal loss following exposure of mares to processionary caterpillars. . J. Equine Vet. Sci. 29::33940
    [Crossref] [Google Scholar]
  27. 27.
    Chow CY, Chin YKY, Walker AA, Guo S, Blomster LV, et al. 2019.. Venom peptides with dual modulatory activity on the voltage-gated sodium channel NaV1.1 provide novel leads for development of anti-epileptic drugs. . ACS Pharmacol. Trans. Sci. 3::11934
    [Crossref] [Google Scholar]
  28. 28.
    Chudzinski-Tavassi AM, Schattner M, Fritzen M, Pozner RG, Reis CV, et al. 2002.. Effects of Lopap on human endothelial cells and platelets. . Pathophysiol. Haemost. Thromb. 31::25765
    [Crossref] [Google Scholar]
  29. 29.
    da CB Gouveia AI, da Silveira RB, Nader HB, Dietrich CP, Gremski W, Veiga SS. 2005.. Identification and partial characterisation of hyaluronidases in Lonomia obliqua venom. . Toxicon 45::40310
    [Crossref] [Google Scholar]
  30. 30.
    da Silva GH, Hyslop S, da Cruz-Höfling MA. 2004.. Lonomia obliqua caterpillar venom increases permeability of the blood-brain barrier in rats. . Toxicon 44::62534
    [Crossref] [Google Scholar]
  31. 31.
    De-Long S. 1981.. Mulberry tussock moth dermatitis. A study of an epidemic of unknown origin. . J. Epidemiol. Commun. Health 35::14
    [Crossref] [Google Scholar]
  32. 32.
    Delgado Quiroz A. 1978.. Venoms of Lepidoptera. . In Arthropod Venoms, ed. S Bettini , pp. 555611. Berlin:: Springer
    [Google Scholar]
  33. 33.
    Deml R, Dettner K. 1990.. Chemical defense of Eudia (Saturnia) pavonia caterpillars. . Naturwissenschaften 77::58890
    [Crossref] [Google Scholar]
  34. 34.
    Deml R, Dettner K. 1993.. Biogenic amines and phenolics characterize the defensive secretion of saturniid caterpillars (Lepidoptera: Saturniidae): a comparative study. . J. Comp. Physiol. B 163::12332
    [Crossref] [Google Scholar]
  35. 35.
    Deml R, Dettner K. 1994.. Attacus atlas caterpillars (Lep., Saturniidae) spray an irritant secretion from defensive glands. . J. Chem. Ecol. 20::212738
    [Crossref] [Google Scholar]
  36. 36.
    Dias Da Silva W, Rocha Campos ACM, Goncalves LRC, Sousa-E-Silva MCC, Higashi HG, et al. 1996.. Development of an antivenom against toxins of Lonomia obliqua caterpillars. . Toxicon 34::104549
    [Crossref] [Google Scholar]
  37. 37.
    Donato JL, Moreno RA, Hyslop S, Duarte ASG, Antunes E, et al. 1998.. Lonomia obliqua caterpillar spicules trigger human blood coagulation via activation of factor X and prothrombin. . Thromb. Haemost. 79:(3):53942
    [Crossref] [Google Scholar]
  38. 38.
    Edwards EK Jr., Edwards EK, Kowalczyk AP. 1986.. Contact urticaria and allergic contact dermatitis to the saddleback caterpillar with histologic correlation. . Int. J. Dermatol. 25::467
    [Crossref] [Google Scholar]
  39. 39.
    Foot NC. 1922.. Pathology of the dermatitis caused by Megalopyge opercularis, a Texan caterpillar. . J. Exp. Med. 35::73753
    [Crossref] [Google Scholar]
  40. 40.
    Fritzen M, Flores MPA, Reis CV, Chudzinski-Tavassi AM. 2005.. A prothrombin activator (Lopap) modulating inflammation, coagulation and cell survival mechanisms. . Biochem. Biophys. Res. Commun. 333::51723
    [Crossref] [Google Scholar]
  41. 41.
    Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, et al. 2009.. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. . Annu. Rev. Genom. Hum. Genet. 10::483511
    [Crossref] [Google Scholar]
  42. 42.
    Galicia-Curiel MF, Quintanar JL, Jiménez M, Salinas E. 2014.. Mast cells respond to urticating extract from lepidoptera larva Morpheis ehrenbergii in the rat. . Toxicon 77::12124
    [Crossref] [Google Scholar]
  43. 43.
    Gamborgi GP, Metcalf EB, Barros EJG. 2006.. Acute renal failure provoked by toxin from caterpillars of the species Lonomia obliqua. . Toxicon 47::6874
    [Crossref] [Google Scholar]
  44. 44.
    Gilmer PM. 1925.. A comparative study of the poison apparatus of certain lepidopterous larvae. . Ann. Entomol. Soc. Am. 18::20339
    [Crossref] [Google Scholar]
  45. 45.
    González C, Ballesteros-Mejia L, Díaz-Díaz J, Toro-Vargas DM, Amarillo-Suarez AR, et al. 2023.. Deadly and venomous Lonomia caterpillars are more than the two usual suspects. . PLOS Negl. Trop. Dis. 17::e0011063
    [Crossref] [Google Scholar]
  46. 46.
    Goudarzi MH, Eagles DA, Lim J, Biggs KA, Kotze AC, et al. 2023.. Venom composition and bioactive RF-amide peptide toxins of the saddleback caterpillar, Acharia stimulea (Lepidoptera: Limacodidae). . Biochem. Pharmacol. 213::115598
    [Crossref] [Google Scholar]
  47. 47.
    Greeney HF, Dyer LA, Smilanich AM. 2012.. Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. . Invertebr. Surviv. J. 9::734
    [Google Scholar]
  48. 48.
    Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, et al. 2021.. Applications and evolution of melittin, the quintessential membrane active peptide. . Biochem. Pharmacol. 193::114769
    [Crossref] [Google Scholar]
  49. 49.
    Heinen TE, de Farias CB, Abujamra AL, Mendonça RZ, Roesler R, da Veiga ABG. 2014.. Effects of Lonomia obliqua caterpillar venom upon the proliferation and viability of cell lines. . Cytotechnology 66::6374
    [Crossref] [Google Scholar]
  50. 50.
    Holm G, Andersson M, Ekberg M, Fagrell B, Sjöberg J, et al. 2014.. Setae from larvae of the northern processionary moth (Thaumetopoea pinivora, TP) stimulate proliferation of human blood lymphocytes in vitro. . PLOS ONE 9::e113977
    [Crossref] [Google Scholar]
  51. 51.
    Isbister GK, Whelan PI. 2000.. Envenomation by the billygoat plum stinging caterpillar (Thosea penthima). . Med. J. Aust. 173::65455
    [Crossref] [Google Scholar]
  52. 52.
    Itokawa H, Kano R, Nakajima T, Yasuhara T. 1985.. Examination of the pain producing amines in the venomous hairs or spines of Japanese urticating caterpillars. . Med. Entomol. Zool. 36::8386
    [Crossref] [Google Scholar]
  53. 53.
    Kalender Y, Kalender S, Uzunhisarcikli M, Ogutcu A, Açikgoz F. 2004.. Effects of Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) larvae on the degranulation of dermal mast cells in mice; an electron microscopic study. . Fol. Biol. 52::1317
    [Google Scholar]
  54. 54.
    Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, et al. 2019.. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. . PNAS 116::2265763
    [Crossref] [Google Scholar]
  55. 55.
    Kawamoto F. 1978.. Studies on the venomous spicules and spines of moth caterpillars: II. Pharmacological and biochemical properties of the spicule venom of the Oriental tussock moth caterpillar, Euproctis subflava. . Med. Entomol. Zool. 29::17583
    [Crossref] [Google Scholar]
  56. 56.
    Kawamoto F. 1978.. Studies on the venomous spicules and spines of moth caterpillars: III. Scanning electron microscopic examination of spines and spicules of the slug moth caterpillar, Parasa consocia, and some properties of pain-producing substances in their venoms. . Med. Entomol. Zool. 29::18596
    [Crossref] [Google Scholar]
  57. 57.
    Kawamoto F, Kumada N. 1979.. Kininogenase activity and kinin-like substance in the venomous spicules and spines of lepidopteran larvae. . In KininsII: Biochemistry, Pathophysiology, and Clinical Aspects, ed. S Fujii, H Moriya, T Suzuki , pp. 5155. Boston:: Springer
    [Google Scholar]
  58. 58.
    Kawamoto F, Kumada N. 1984.. Biology and venoms of Lepidoptera. . In Handbook of Natural Toxins, Insect Poisons, Allergens and Other Invertebrate Venoms, ed. AT Tu , pp. 291332. New York:: Dekker
    [Google Scholar]
  59. 59.
    Kawamoto F, Suto C, Kumada N. 1978.. Studies on the venomous spicules and spines of moth caterpillars. I. Fine structure and development of the venomous spicules of the Euproctis caterpillars. . Jpn. J. Med. Sci. Biol. 31::29199
    [Crossref] [Google Scholar]
  60. 60.
    King GF. 2019.. Tying pest insects in knots: the deployment of spider-venom-derived knottins as bioinsecticides. . Pest Manag. Sci. 75::243745
    [Crossref] [Google Scholar]
  61. 61.
    Kowacs PA, Cardoso J, Entres M, Novak EM, Werneck LC. 2006.. Fatal intracerebral hemorrhage secondary to Lonomia obliqua caterpillar envenoming: case report. . Arq. Neuro-Psiquiatr. 64::103032
    [Crossref] [Google Scholar]
  62. 62.
    Lamdin JM, Howell DE, Kocan KM, Murphey DR, Arnold DC, et al. 2000.. The venomous hair structure, venom and life cycle of Lagoa crispata, a puss caterpillar of Oklahoma. . Toxicon 38::116389
    [Crossref] [Google Scholar]
  63. 63.
    Lamy M, Pastureaud M-H, Novak F, Ducombs G, Vincedeau P, et al. 1986.. Thaumetopoein: an urticating protein from the hairs and integument of the pine processionary caterpillar (Thaumetopoea pityocampa Schiff., Lepidoptera, Thaumetopoeidae). . Toxicon 24::34756
    [Crossref] [Google Scholar]
  64. 64.
    Lamy M, Vincendeau P, Ducombs G, Pastureaud MH. 1983.. Irritating substance extracted from the Thaumetopoea pityocampa caterpillar mechanism of action. . Experientia 39::299
    [Crossref] [Google Scholar]
  65. 65.
    Lawson JP, Liu Y-m. 1986.. Pinemoth caterpillar disease. . Skelet. Radiol. 15::42227
    [Crossref] [Google Scholar]
  66. 66.
    Lilla S, Pereira R, Hyslop S, Donato JL, Le Bonniec BF, de Nucci G. 2005.. Purification and initial characterization of a novel protein with factor Xa activity from Lonomia obliqua caterpillar spicules. . J. Mass Spectrom. 40::40512
    [Crossref] [Google Scholar]
  67. 67.
    Lin Y-C, Lin R-J, Braby MF, Hsu Y-F. 2019.. Evolution and losses of spines in slug caterpillars (Lepidoptera: Limacodidae). . Ecol. Evol. 9::982740
    [Crossref] [Google Scholar]
  68. 68.
    Ma GJ, Shi LT, Wu CW. 2011.. Biomechanical property of a natural microneedle: the caterpillar spine. . J. Med. Devices 5::034502
    [Crossref] [Google Scholar]
  69. 69.
    Maggi S, Faulhaber GAM. 2015.. Lonomia obliqua Walker (Lepidoptera: Saturniidae): hemostasis implications. . Rev. Assoc. Méd. Bras. 61::26368
    [Crossref] [Google Scholar]
  70. 70.
    Maier H, Spiegel W, Kinaciyan T, Krehan H, Cabaj A, et al. 2003.. The oak processionary caterpillar as the cause of an epidemic airborne disease: survey and analysis. . Br. J. Dermatol. 149::99097
    [Crossref] [Google Scholar]
  71. 71.
    Maschwitz UWJ, Kloft W. 1971.. Morphology and function of the venom apparatus of insects—bees, wasps, ants, and caterpillars. . In Venomous Animals and Their Venoms: Venomous Invertebrates, ed. W Bucherl, EE Buckley , pp. 160. New York:: Academic
    [Google Scholar]
  72. 72.
    Michienzi AE, Holstege EP, Cole RJ, Charlton NP. 2022.. The sting of a white flannel moth caterpillar (Norape ovina). . Wilderness Environ. Med. 33::32931
    [Crossref] [Google Scholar]
  73. 73.
    Mitpuangchon N, Nualcharoen K, Boonrotpong S, Engsontia P. 2021.. Identification of novel toxin genes from the stinging nettle caterpillar Parasa lepida (Cramer, 1799): insights into the evolution of Lepidoptera toxins. . Insects 12::396
    [Crossref] [Google Scholar]
  74. 74.
    Mitter C, Davis DR, Cummings MP. 2017.. Phylogeny and evolution of Lepidoptera. . Annu. Rev. Entomol. 62::26583
    [Crossref] [Google Scholar]
  75. 75.
    Moneo I, Vega JM, Caballero ML, Vega J, Alday E. 2003.. Isolation and characterization of Tha p 1, a major allergen from the pine processionary caterpillar Thaumetopoea pityocampa. . Allergy 58::3437
    [Crossref] [Google Scholar]
  76. 76.
    Moraes JA, Rodrigues G, Guimarães-Bastos D, Nascimento-Silva V, Svensjö E, et al. 2021.. Effect of Lonomia obliqua venom on human neutrophils. . Toxins 13::908
    [Crossref] [Google Scholar]
  77. 77.
    Moraes JA, Rodrigues G, Nascimento-Silva V, Renovato-Martins M, Berger M, et al. 2017.. Effects of Lonomia obliqua venom on vascular smooth muscle cells: contribution of NADPH oxidase-derived reactive oxygen species. . Toxins 9::360
    [Crossref] [Google Scholar]
  78. 78.
    Murphey DR. 1973.. Toxic material from the puss caterpillar, Lagoa crispata. MSc Diss., Oklahoma City Univ., Oklahoma City, OK:
    [Google Scholar]
  79. 79.
    Murphy SM, Leahy SM, Williams LS, Lill JT. 2010.. Stinging spines protect slug caterpillars (Limacodidae) from multiple generalist predators. . Behav. Ecol. 21::15360
    [Crossref] [Google Scholar]
  80. 80.
    Oliveira DS, de Souza JG, Alvarez-Flores MP, Cunegundes PS, DeOcesano-Pereira C, et al. 2021.. Lonomia obliqua venom induces NF-κB activation and a pro-inflammatory profile in THP-1-derived macrophage. . Toxins 13::462
    [Crossref] [Google Scholar]
  81. 81.
    Orozco-Flores AA, Valadez-Lira JA, Covarrubias-Cárdenas KE, Pérez-Trujillo JJ, Gomez-Flores R, et al. 2020.. In vitro antitumor, pro-inflammatory, and pro-coagulant activities of Megalopygeopercularis J.E. Smith hemolymph and spine venom. . Sci. Rep. 10::18395
    [Crossref] [Google Scholar]
  82. 82.
    Perkins LE, Cribb BW, Pagendam DE, Zalucki MP. 2019.. Variation in morphology and airborne dispersal of the urticating apparatus of Ochrogaster lunifer (Lepidoptera: Notodontidae), an Australian processionary caterpillar, and implications for livestock and humans. . J. Insect Sci. 19::6
    [Crossref] [Google Scholar]
  83. 83.
    Perkins LE, Zalucki MP, Perkins NR, Cawdell-Smith AJ, Todhunter KH, et al. 2016.. The urticating setae of Ochrogaster lunifer, an Australian processionary caterpillar of veterinary importance. . Med. Vet. Entomol. 30::24145
    [Crossref] [Google Scholar]
  84. 84.
    Pidde G, Nishiyama MY, de Oliveira UC, Villas-Boas IM, Paes-Leme AF, et al. 2021.. Integrative multiomics analysis of Premolis semirufa caterpillar venom in the search for molecules leading to a joint disease. . Sci. Rep. 11::199595
    [Crossref] [Google Scholar]
  85. 85.
    Pinto AFM, Berger M, Reck J, Terra RMS, Guimarães JA. 2010.. Lonomia obliqua venom: in vivo effects and molecular aspects associated with the hemorrhagic syndrome. . Toxicon 56::110312
    [Crossref] [Google Scholar]
  86. 86.
    Pinto AFM, Dobrovolski R, Veiga ABG, Guimarães JA. 2004.. Lonofibrase, a novel α-fibrinogenase from Lonomia obliqua caterpillars. . Thromb. Res. 113::14754
    [Crossref] [Google Scholar]
  87. 87.
    Quintana MA, Sciani JM, Auada AVV, Martínez MM, Sánchez MN, et al. 2017.. Stinging caterpillars from the genera Podalia, Leucanella and Lonomia in Misiones, Argentina: a preliminary comparative approach to understand their toxicity. . Comp. Biochem. Physiol. C 202::5562
    [Google Scholar]
  88. 88.
    Reis CV, Andrade SA, Ramos OHP, Ramos CRR, Ho PL, et al. 2006.. Lopap, a prothrombin activator from Lonomia obliqua belonging to the lipocalin family: recombinant production, biochemical characterization and structure-function insights. . Biochem. J. 398::295302
    [Crossref] [Google Scholar]
  89. 89.
    Reis CV, Farsky SHP, Fernandes BL, Santoro ML, Oliva MLV, et al. 2001.. In vivo characterization of Lopap, a prothrombin activator serine protease from the Lonomia obliqua caterpillar venom. . Thromb. Res. 102::43743
    [Crossref] [Google Scholar]
  90. 90.
    Reis CV, Portaro FCV, Andrade SA, Fritzen M, Fernandes BL, et al. 2001.. A prothrombin activator serine protease from the Lonomia obliqua caterpillar venom (Lopap): biochemical characterization. . Thromb. Res. 102::42736
    [Crossref] [Google Scholar]
  91. 91.
    Reynaud S, Ciolek J, Degueldre M, Saez NJ, Sequeira AF, et al. 2020.. A venomics approach coupled to high-throughput toxin production strategies identifies the first venom-derived melanocortin receptor agonists. . J. Med. Chem. 63::825064
    [Crossref] [Google Scholar]
  92. 92.
    Ricci-Silva ME, Valente RH, León IR, Tambourgi DV, Ramos OHP, et al. 2008.. Immunochemical and proteomic technologies as tools for unravelling toxins involved in envenoming by accidental contact with Lonomia obliqua caterpillars. . Toxicon 51::101728
    [Crossref] [Google Scholar]
  93. 93.
    Robinson SD, Li Q, Bandyopadhyay PK, Gajewiak J, Yandell M, et al. 2017.. Hormone-like peptides in the venoms of marine cone snails. . Gen. Comp. Endocrinol. 244::1118
    [Crossref] [Google Scholar]
  94. 94.
    Sánchez MN, Sciani JM, Quintana MA, Martínez MM, Tavares FL, et al. 2018.. Understanding toxicological implications of accidents with caterpillars Megalopyge lanata and Podalia orsilochus (Lepidoptera: Megalopygidae). . Comp. Biochem. Physiol. C 216::11019
    [Google Scholar]
  95. 95.
    Sano-Martins IS, González C, Anjos IV, Díaz J, Gonçalves LRC. 2018.. Effectiveness of Lonomia antivenom in recovery from the coagulopathy induced by Lonomia orientoandensis and Lonomia casanarensis caterpillars in rats. . PLOS Negl. Trop. Dis. 12::e0006721
    [Crossref] [Google Scholar]
  96. 96.
    Schendel V, Rash LD, Jenner RA, Undheim EAB. 2019.. The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution. . Toxins 11::666
    [Crossref] [Google Scholar]
  97. 97.
    Sebastian MM, Bernard WV, Riddle TW, Latimer CR, Fitzgerald TD, Harrison LR. 2008.. Mare reproductive loss syndrome. . Vet. Pathol. 45::71022
    [Crossref] [Google Scholar]
  98. 98.
    Seibert CS, Shinohara EMG, Sano-Martins IS. 2003.. In vitro hemolytic activity of Lonomia obliqua caterpillar bristle extract on human and Wistar rat erythrocytes. . Toxicon 41::83139
    [Crossref] [Google Scholar]
  99. 99.
    Seibert CS, Tanaka-Azevedo AM, Santoro ML, Mackessy SP, Soares Torquato RJ, et al. 2006.. Purification of a phospholipase A2 from Lonomia obliqua caterpillar bristle extract. . Biochem. Biophys. Res. Commun. 342::102733
    [Crossref] [Google Scholar]
  100. 100.
    Seldeslachts A, Peigneur S, Mebs D, Tytgat J. 2022.. Unraveling the venom chemistry with evidence for histamine as key regulator in the envenomation by caterpillar Automeris zaruma. . Front. Immunol. 13::972442
    [Crossref] [Google Scholar]
  101. 101.
    Seldeslachts A, Peigneur S, Tytgat J. 2020.. Caterpillar venom: a health hazard of the 21st century. . Biomedicines 8::143
    [Crossref] [Google Scholar]
  102. 102.
    Siqueira-Batista R, Pereira Montenegro SS, Novelli MM, Feio RN. 2021.. Pararamosis: disease of the rubber plantations. . Am. J. Trop. Med. Hyg. 104::163942
    [Crossref] [Google Scholar]
  103. 103.
    Southcott RV. 1978.. Lepidopterism in the Australian region. . Rec. Adel. Child. Hosp. 2::87173
    [Google Scholar]
  104. 104.
    Spadacci-Morena DD, Soares MAM, Moraes RHP, Sano-Martins IS, Sciani JM. 2016.. The urticating apparatus in the caterpillar of Lonomia obliqua (Lepidoptera: Saturniidae). . Toxicon 119::21824
    [Crossref] [Google Scholar]
  105. 105.
    Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG. 1981.. Sequence and specificity of two antibacterial proteins involved in insect immunity. . Nature 292::24648
    [Crossref] [Google Scholar]
  106. 106.
    Stipetic ME, Stipetic M, Rosen PB, Borys DJ. 1999.. A retrospective analysis of 96 “asp” (Megalopyge opercularis) envenomations in central Texas during 1996. . J. Toxicol. Clin. Toxicol. 37::45762
    [Crossref] [Google Scholar]
  107. 107.
    Sugiura S. 2020.. Predators as drivers of insect defenses. . Entomol. Sci. 23::31637
    [Crossref] [Google Scholar]
  108. 108.
    Sunagar K, Jackson TNW, Undheim EAB, Ali SA, Antunes A, Fry BG. 2013.. Three-fingered RAVERs: rapid accumulation of variation in exposed residues of snake venom toxins. . Toxins 5::2172208
    [Crossref] [Google Scholar]
  109. 109.
    Surm JM, Birch S, Macrander J, Jaimes-Becerra A, Fridrich A, et al. 2024.. Venom trade-off shapes interspecific interactions, physiology, and reproduction. . Sci. Adv. 10::eadk3870
    [Crossref] [Google Scholar]
  110. 110.
    Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ. 2010.. Insect silk: one name, many materials. . Annu. Rev. Entomol. 55::17188
    [Crossref] [Google Scholar]
  111. 111.
    Tamang DG, Saier MH Jr. 2006.. The cecropin superfamily of toxic peptides. . J. Mol. Microbiol. Biotechnol. 11::94103
    [Google Scholar]
  112. 112.
    Todhunter KH, Cawdell-Smith AJ, Bryden WL, Perkins NR, Begg AP. 2013.. Processionary caterpillar setae and equine fetal loss: 1. Histopathology of experimentally exposed pregnant mares. . Vet. Pathol. 51::111730
    [Crossref] [Google Scholar]
  113. 113.
    Todhunter KH, Cawdell-Smith AJ, Bryden WL, Perkins NR, Begg AP. 2014.. Processionary caterpillar setae and equine fetal loss: 2. Histopathology of the fetal-placental unit from experimentally exposed mares. . Vet. Pathol. 51::113142
    [Crossref] [Google Scholar]
  114. 114.
    Trébouet F, Reichard UH, Pinkaew N, Malaivijitnond S. 2017.. Extractive foraging of toxic caterpillars in wild northern pig-tailed macaques (Macaca leonina). . Primates 59::18596
    [Crossref] [Google Scholar]
  115. 115.
    Valle dos Anjos I, Gonzalez C, Diaz J, Sciani JM, Sano-Martins IS, Gonçalves LRC. 2023.. Biological characterization of bristle extract of Lonomia descimoni caterpillar (Lepidoptera, Saturniidae) and effectiveness of Lonomia antivenom to neutralize experimental envenomation in rats. . Toxicon 223::107004
    [Crossref] [Google Scholar]
  116. 116.
    Van Bockxmeer JJ, Green J. 2013.. Paediatric osteomyelitis after exposure to toxic Ochrogaster lunifer moth. . Med. J. Aust. 199::33132
    [Crossref] [Google Scholar]
  117. 117.
    Vega J, Vega JM, Moneo I, Armentia A, Caballero ML, Miranda A. 2004.. Occupational immunologic contact urticaria from pine processionary caterpillar (Thaumetopoea pityocampa): experience in 30 cases. . Contact Dermat. 50::6064
    [Crossref] [Google Scholar]
  118. 118.
    Veiga ABG, Blochtein B, Guimarães JA. 2001.. Structures involved in production, secretion and injection of the venom produced by the caterpillar Lonomia obliqua (Lepidoptera, Saturniidae). . Toxicon 39::134351
    [Crossref] [Google Scholar]
  119. 119.
    Veiga ABG, Pinto AFM, Guimarães JA. 2003.. Fibrinogenolytic and procoagulant activities in the hemorrhagic syndrome caused by Lonomia obliqua caterpillars. . Thromb. Res. 111::95101
    [Crossref] [Google Scholar]
  120. 120.
    Veiga ABG, Ribeiro JMC, Guimarães JA, Francischetti IMB. 2005.. A catalog for the transcripts from the venomous structures of the caterpillar Lonomia obliqua: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome. . Gene 355::1127
    [Crossref] [Google Scholar]
  121. 121.
    Villas Boas IM, Pidde-Queiroz G, Magnoli FC, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. 2015.. A serine protease isolated from the bristles of the Amazonic caterpillar, Premolis semirufa, is a potent complement system activator. . PLOS ONE 10::e0118615
    [Crossref] [Google Scholar]
  122. 122.
    Villas-Boas IM, Bonfá G, Tambourgi DV. 2018.. Venomous caterpillars: from inoculation apparatus to venom composition and envenomation. . Toxicon 153::3952
    [Crossref] [Google Scholar]
  123. 123.
    Villas-Boas IM, Gonçalves-de-Andrade RM, Squaiella-Baptistão CC, Sant'Anna OA, Tambourgi DV. 2013.. Characterization of phenotypes of immune cells and cytokines associated with chronic exposure to Premolis semirufa caterpillar bristles extract. . PLOS ONE 8::e71938
    [Crossref] [Google Scholar]
  124. 124.
    Villas-Boas IM, Pidde G, Lichtenstein F, Ching ATC, Junqueira-de-Azevedo IdLM, et al. 2020.. Human chondrocyte activation by toxins from Premolis semirufa, an Amazon rainforest moth caterpillar: identifying an osteoarthritis signature. . Front. Immunol. 11::2191
    [Crossref] [Google Scholar]
  125. 125.
    Waismam K, Chudzinski-Tavassi AM, Carrijo-Carvalho LC, Fernandes Pacheco MT, Farsky SHP. 2009.. Lopap: a non-inflammatory and cytoprotective molecule in neutrophils and endothelial cells. . Toxicon 53::65259
    [Crossref] [Google Scholar]
  126. 126.
    Walker AA, Perkins LE, Battisti A, Zalucki MP, King GF. 2023.. Proteome of urticating setae of Ochrogaster lunifer, a processionary caterpillar of medical and veterinary importance, including primary structures of putative toxins. . Proteomics 23::2300204
    [Crossref] [Google Scholar]
  127. 127.
    Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. 2020.. Deadly proteomes: a practical guide to proteotranscriptomics of animal venoms. . Proteomics 20::1900324
    [Crossref] [Google Scholar]
  128. 128.
    Walker AA, Robinson SD, Merritt DJ, Cardoso FC, Goudarzi MH, et al. 2023.. Horizontal gene transfer underlies the painful stings of asp caterpillars (Lepidoptera: Megalopygidae). . PNAS 120::e2305871120
    [Crossref] [Google Scholar]
  129. 129.
    Walker AA, Robinson SD, Paluzzi J-PV, Merritt DJ, Nixon SA, et al. 2021.. Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, Doratifera vulnerans. . PNAS 118::e2023815118
    [Crossref] [Google Scholar]
  130. 130.
    Walker AA, Robinson SD, Yeates DK, Jin J, Baumann K, et al. 2018.. Entomo-venomics: the evolution, biology and biochemistry of insect venoms. . Toxicon 154::1527
    [Crossref] [Google Scholar]
  131. 131.
    Werno J, Lamy M, Vincendeau P. 1993.. Caterpillar hairs as allergens. . Lancet 342::93637
    [Crossref] [Google Scholar]
  132. 132.
    Yao Z, Kamau MP, Han Y, Hu J, Luo A, et al. 2019.. The Latoia consocia caterpillar induces pain by targeting nociceptive ion channel TRPV1. . Toxins 11::695
    [Crossref] [Google Scholar]
  133. 133.
    Zannin M, Lourenco DM, Motta G, Dalla Costa LR, Grando M, et al. 2003.. Blood coagulation and fibrinolytic factors in 105 patients with hemorrhagic syndrome caused by accidental contact with Lonomia obliqua caterpillar in Santa Catarina, Southern Brazil. . Thromb. Haemost. 89::35564
    [Crossref] [Google Scholar]
  134. 134.
    Zaspel JM, Weller SJ, Epstein ME. 2016.. Origin of the hungry caterpillar: evolution of fasting in slug moths (Insecta: Lepidoptera: Limacodidae). . Mol. Phylogenet. Evol. 94::82732
    [Crossref] [Google Scholar]
  135. 135.
    Ziprkowski L, Rolant F. 1966.. Study of the toxin from the poison hairs of Thaumetopoea wilkinsoni caterpillars. . J. Investig. Dermatol. 46::43945
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-022924-014200
Loading
/content/journals/10.1146/annurev-ento-022924-014200
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error