1932

Abstract

Major changes in genetic variation are generally considered deleterious to populations. The massive biodiversity of insects distinguishes them from other animal groups. Insect deviant effective population sizes, alternative modes of reproduction, advantageous inbreeding, endosymbionts, and other factors translate to highly specific inbreeding and outbreeding outcomes. We review the evidence for inbreeding and outbreeding depression and consequences across wild and captive insect populations, highlighting conservation, invasion, and commercial production entomology. We not only discern patterns but also explain why they are often inconsistent or absent. We discuss how insect inbreeding and outbreeding depression operates in complex, sometimes contradictory directions, such as inbreeding being detrimental to individuals but beneficial to populations. We conclude by giving recommendations to () more comprehensively account for important variables in insect inbreeding and outbreeding depression, () standardize the means of measuring genetic variation and phenotypic impacts for insect populations so as to more reliably predict when inbreeding or outbreeding depression applies, and () outline possible remediation options, both nongenetic and genetic, including revision of restrictive international trade laws.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022924-020221
2025-01-28
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-022924-020221.html?itemId=/content/journals/10.1146/annurev-ento-022924-020221&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adrion JR, Kousathanas A, Pascual M, Burrack HJ, Haddad NM, et al. 2014.. Drosophila suzukii: the genetic footprint of a recent, worldwide invasion. . Mol. Biol. Evol. 31::314863
    [Crossref] [Google Scholar]
  2. 2.
    Alcock J. 2017.. A long-term study of male territoriality in the tarantula hawk wasp (Hemipepsis ustulata; Pompilidae) in Central Arizona. . Southwest. Nat. 62::10912
    [Crossref] [Google Scholar]
  3. 3.
    Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos-Filho PS, Billen J, Wenseleers T. 2011.. Successful maintenance of a stingless bee population despite a severe genetic bottleneck. . Conserv. Genet. 12::64758
    [Crossref] [Google Scholar]
  4. 4.
    Antolin MF, Ode PJ, Strand MR. 1995.. Variable sex-ratios and ovicide in an outbreeding parasitic wasp. . Anim. Behav. 49::589600
    [Crossref] [Google Scholar]
  5. 5.
    Arce-Valdés LR, Sánchez-Guillén RA. 2022.. The evolutionary outcomes of climate-change-induced hybridization in insect populations. . Curr. Opin. Insect Sci. 54::100966
    [Crossref] [Google Scholar]
  6. 6.
    Atalay D, Schausberger P. 2018.. Balancing in- and out-breeding by the predatory mite Phytoseiulus persimilis. . Exp. Appl. Acarol. 74::15969
    [Crossref] [Google Scholar]
  7. 7.
    Bagheri Z, Talebi AA, Asgari S, Mehrabadi M. 2022.. Wolbachia promotes successful sex with siblings in the parasitoid Habrobracon hebetor. . Pest Manag. Sci. 78::36268
    [Crossref] [Google Scholar]
  8. 8.
    Bast J, Parker DJ, Dumas Z, Jalvingh KM, Van PT, et al. 2018.. Consequences of asexuality in natural populations: insights from stick insects. . Mol. Biol. Evol. 35::166877
    [Crossref] [Google Scholar]
  9. 9.
    Bertin A, Pavinato VAC, Parra JRP. 2018.. Effects of intraspecific hybridization on the fitness of the egg parasitoid Trichogramma galloi. . BioControl 63::55563
    [Crossref] [Google Scholar]
  10. 10.
    Betti MI, Lee I. 2020.. The effects of diploid male production on honey bee colony evolution and survival. . Theor. Popul. Biol. 135::4955
    [Crossref] [Google Scholar]
  11. 11.
    Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW. 2003.. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. . Cell 114::41929
    [Crossref] [Google Scholar]
  12. 12.
    Bradshaw CJA, Leroy B, Bellard C, Roiz D, Albert C, et al. 2016.. Massive yet grossly underestimated global costs of invasive insects. . Nat. Commun. 7::12986
    [Crossref] [Google Scholar]
  13. 13.
    Bruckner D. 1980.. Hoarding behaviour and life span of inbred, non-inbred and hybrid honeybees. . J. Apic. Res. 19::3541
    [Crossref] [Google Scholar]
  14. 14.
    Bryant EH, Reed DH. 1999.. Fitness decline under relaxed selection in captive populations. . Conserv. Biol. 13::66569
    [Crossref] [Google Scholar]
  15. 15.
    Buitenhuis R, Cock MJW, Colmenarez YC, de Clercq P, Edgington S, et al., eds. 2023.. Sustainable Use and Conservation of Microbial and Invertebrate Biological Control Agents and Microbial Biostimulants. Rome:: FAO
    [Google Scholar]
  16. 16.
    Cai M, Li L, Zhao Z, Zhang K, Li F, et al. 2022.. Morphometric characteristics of black soldier fly (Hermetia illucens) · Wuhan strain and its egg production improved by selectively inbreeding. . Life 12::873
    [Crossref] [Google Scholar]
  17. 17.
    Carr DE, Roulston TH, Hart H. 2014.. Inbreeding in Mimulus guttatus reduces visitation by bumble bee pollinators. . PLOS ONE 9::e101463
    [Crossref] [Google Scholar]
  18. 18.
    Çekin D, Schausberger P. 2019.. Founder effects on trans-generational dynamics of closed inbreeding lineages of the predatory mite Phytoseiulus persimilis. . PLOS ONE 14::e0215360
    [Crossref] [Google Scholar]
  19. 19.
    Cesari M, Maistrello L, Piemontese L, Bonini R, Dioli P, et al. 2018.. Genetic diversity of the brown marmorated stink bug Halyomorpha halys in the invaded territories of Europe and its patterns of diffusion in Italy. . Biol. Invasions 20::107392
    [Crossref] [Google Scholar]
  20. 20.
    Charlesworth B, Hughes KA. 1996.. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. . PNAS 93::614045
    [Crossref] [Google Scholar]
  21. 21.
    Córdoba-Aguilar A. 2009.. Seasonal variation in genital and body size, sperm displacement ability, female mating rate, and male harassment in two calopterygid damselflies (Odonata: Calopterygidae). . Biol. J. Linn. Soc. 96::81529
    [Crossref] [Google Scholar]
  22. 22.
    De Boer JG, Kuijper B, Heimpel GE, Beukeboom LW. 2012.. Sex determination meltdown upon biological control introduction of the parasitoid Cotesia rubecula?. Evol. Appl. 5::44454
    [Crossref] [Google Scholar]
  23. 23.
    de Clercq P, Vandewalle M, Tirry L. 1998.. Impact of inbreeding on performance of the predator Podisus maculiventris. . BioControl 43::299310
    [Crossref] [Google Scholar]
  24. 24.
    Deplazes-Zemp A, Abiven S, Schaber P, Schaepman M, Schaepman-Strub G, et al. 2018.. The Nagoya Protocol could backfire on the Global South. . Nat. Ecol. Evol. 2::91719
    [Crossref] [Google Scholar]
  25. 25.
    Dicks LV, Breeze TD, Ngo HT, Senapathi D, An J, et al. 2021.. A global-scale expert assessment of drivers and risks associated with pollinator decline. . Nat. Ecol. Evol. 5::145361
    [Crossref] [Google Scholar]
  26. 26.
    Didham RK, Basset Y, Collins CM, Leather SR, Littlewood NA, et al. 2020.. Interpreting insect declines: seven challenges and a way forward. . Insect Conserv. Divers. 13::10314
    [Crossref] [Google Scholar]
  27. 27.
    Doekes HP, Bijma P, Windig JJ. 2021.. How depressing is inbreeding? A meta-analysis of 30 years of research on the effects of inbreeding in livestock. . Genes 12::926
    [Crossref] [Google Scholar]
  28. 28.
    Dorsey OC, Rosenthal GG. 2023.. A taste for the familiar: explaining the inbreeding paradox. . Trends Ecol. Evol. 38::13242
    [Crossref] [Google Scholar]
  29. 29.
    Dunn RR. 2005.. Modern insect extinctions, the neglected majority. . Conserv. Biol. 19::103036
    [Crossref] [Google Scholar]
  30. 30.
    Duthie AB, Reid JM. 2015.. What happens after inbreeding avoidance? Inbreeding by rejected relatives and the inclusive fitness benefit of inbreeding avoidance. . PLOS ONE 10::e0125140
    [Crossref] [Google Scholar]
  31. 31.
    Edmands S. 2007.. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. . Mol. Ecol. 16::46375
    [Crossref] [Google Scholar]
  32. 32.
    Eriksson T, Picard CJ. 2021.. Genetic and genomic selection in insects as food and feed. . J. Insects Food Feed 7::66182
    [Crossref] [Google Scholar]
  33. 33.
    Eyer PA, Matsuura K, Vargo EL, Kobayashi K, Yashiro T, et al. 2018.. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. . Mol. Ecol. 27::471124
    [Crossref] [Google Scholar]
  34. 34.
    Eyer PA, Vargo EL. 2021.. Breeding structure and invasiveness in social insects. . Curr. Opin. Insect Sci. 46::2430
    [Crossref] [Google Scholar]
  35. 35.
    Facon B, Hufbauer RA, Tayeh A, Loiseau A, Lombaert E, et al. 2011.. Inbreeding depression is purged in the invasive insect Harmonia axyridis. . Curr. Biol. 21::42427
    [Crossref] [Google Scholar]
  36. 36.
    Ferguson KB, Chattington SR, Plouvier WN, Pannebakker BA. 2020.. Genetic variation of traits in natural enemies relevant for biological control: a systematic review. . Preprints 2020010276. https://doi.org/10.20944/preprints202001.0276.v1
  37. 37.
    Ferguson KB, Visser S, Dalíková M, Provazníková I, Urbaneja A, et al. 2021.. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. . Insect Mol. Biol. 30::188209
    [Crossref] [Google Scholar]
  38. 38.
    Fountain T, Butlin RK, Reinhardt K, Otti O. 2015.. Outbreeding effects in an inbreeding insect. , Cimex lectularius. Ecol. Evol. 5::40918
    [Crossref] [Google Scholar]
  39. 39.
    Fox CW, Reed DH. 2010.. Inbreeding depression increases with maternal age in a seed-feeding beetle. . Evol. Ecol. Res. 12::96172
    [Google Scholar]
  40. 40.
    Franke K, Fischer K. 2013.. Effects of inbreeding and temperature stress on life history and immune function in a butterfly. . J. Evol. Biol. 26::51728
    [Crossref] [Google Scholar]
  41. 41.
    Frankham R. 2008.. Effective population size/adult population size ratios in wildlife: a review. . Genet. Res. 89::491503
    [Crossref] [Google Scholar]
  42. 42.
    Frankham R. 2015.. Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. . Mol. Ecol. 24::261018
    [Crossref] [Google Scholar]
  43. 43.
    Freelance CB, Magrath MJL, Elgar MA, Wong BBM. 2022.. Long-term captivity is associated with changes to sensory organ morphology in a critically endangered insect. . J. Appl. Ecol. 59::50413
    [Crossref] [Google Scholar]
  44. 44.
    Garland T, Downs CJ, Ives AR. 2022.. Trade-offs (and constraints) in organismal biology. . Physiol. Biochem. Zool. 95::82112
    [Crossref] [Google Scholar]
  45. 45.
    Gerloff CU, Schmid-Hempel P. 2005.. Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera: Apidae). . Oikos 111::6780
    [Crossref] [Google Scholar]
  46. 46.
    Gierus L, Birand A, Bunting MD, Godahewa GI, Piltz SG, et al. 2022.. Leveraging a natural murine meiotic drive to suppress invasive populations. . PNAS 119::e2213308119
    [Crossref] [Google Scholar]
  47. 47.
    Gligorescu A, Toft S, Hauggaard-Nielsen H, Axelsen JA, Nielsen SA. 2019.. Development, growth and metabolic rate of Hermetia illucens larvae. . J. Appl. Entomol. 143::87581
    [Crossref] [Google Scholar]
  48. 48.
    Gloag R, Ding G, Christie JR, Buchmann G, Beekman M, Oldroyd BP. 2016.. An invasive social insect overcomes genetic load at the sex locus. . Nat. Ecol. Evol. 1::11
    [Crossref] [Google Scholar]
  49. 49.
    Greeff JM, Jansen van Vuuren GJ, Kryger P, Moore JC. 2009.. Outbreeding and possibly inbreeding depression in a pollinating fig wasp with a mixed mating system. . Heredity 102::34956
    [Crossref] [Google Scholar]
  50. 50.
    Hagan T, Gloag R. 2021.. Founder effects on sex determination systems in invasive social insects. . Curr. Opin. Insect Sci. 46::3138
    [Crossref] [Google Scholar]
  51. 51.
    Hagberg L, Celemín E, Irisarri I, Hawlitschek O, Bella JL, et al. 2022.. Extensive introgression at late stages of species formation: insights from grasshopper hybrid zones. . Mol. Ecol. 31::238499
    [Crossref] [Google Scholar]
  52. 52.
    Haikola S, Fortelius W, O'Hara RB, Kuussaari M, Wahlberg N, et al. 2001.. Inbreeding depression and the maintenance of genetic load in Melitaea cinxia metapopulations. . Conserv. Genet. 2::32535
    [Crossref] [Google Scholar]
  53. 53.
    Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, et al. 2017.. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. . PLOS ONE 12::e0185809
    [Crossref] [Google Scholar]
  54. 54.
    Harpur BA, Sobhani M, Zayed A. 2013.. A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. . Entomol. Exp. Appl. 146::15664
    [Crossref] [Google Scholar]
  55. 55.
    Harrison RG. 1993.. Hybrid Zones and the Evolutionary Process. New York:: Oxford Univ. Press
    [Google Scholar]
  56. 56.
    Hasselmann M, Vekemans X, Pflugfelder J, Koeniger N, Koeniger G, et al. 2008.. Evidence for convergent nucleotide evolution and high allelic turnover rates at the complementary sex determiner gene of western and Asian honeybees. . Mol. Biol. Evol. 25::696708
    [Crossref] [Google Scholar]
  57. 57.
    Hauser SS, Athrey G, Leberg PL. 2021.. Waste not, want not: Microsatellites remain an economical and informative technology for conservation genetics. . Ecol. Evol. 11::1580014
    [Crossref] [Google Scholar]
  58. 58.
    Hawlitschek O, Bruns C, Dey L-S, Nuhlícková S, Felix R, et al. 2023.. The genomics of isolated populations of Gampsocleis glabra. . Insects 14::946
    [Crossref] [Google Scholar]
  59. 59.
    Heimpel GE, de Boer JG. 2008.. Sex determination in the Hymenoptera. . Annu. Rev. Entomol. 53::20930
    [Crossref] [Google Scholar]
  60. 60.
    Helleu Q, Gérard PR, Montchamp-Moreau C. 2015.. Sex chromosome drive. . Cold Spring Harb. Perspect. Biol. 7::a017616
    [Crossref] [Google Scholar]
  61. 61.
    Hénault M. 2021.. The challenges of predicting transposable element activity in hybrids. . Curr. Genet. 67::56772
    [Crossref] [Google Scholar]
  62. 62.
    Henter HJ. 2003.. Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. . Evolution 57::1793803
    [Google Scholar]
  63. 63.
    Higashiura Y, Ishihara M, Schaefer PW. 1999.. Sex ratio distortion and severe inbreeding depression in the gypsy moth Lymantria dispar L. in Hokkaido, Japan. . Heredity 83::29097
    [Crossref] [Google Scholar]
  64. 64.
    Hoffmann AA, Ross PA. 2018.. Rates and patterns of laboratory adaptation in (mostly) insects. . J. Econ. Entomol. 111::5019
    [Crossref] [Google Scholar]
  65. 65.
    Honan P. 2008.. Notes on the biology, captive management and conservation status of the Lord Howe Island stick insect (Dryococelus australis) (Phasmatodea). . J. Insect Conserv. 12::399413
    [Crossref] [Google Scholar]
  66. 66.
    Honěk A. 1993.. Intraspecific variation in body size and fecundity in insects: a general relationship. . Oikos 66::48392
    [Crossref] [Google Scholar]
  67. 67.
    Hunter FM, Birkhead TR. 2002.. Sperm viability and sperm competition in insects. . Curr. Biol. 12::12123
    [Crossref] [Google Scholar]
  68. 68.
    Ivey CT, Carr DE. 2005.. Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). . Am. J. Bot. 92::164149
    [Crossref] [Google Scholar]
  69. 69.
    Ivimey-Cook E, Bricout S, Candela V, Maklakov AA, Berg EC. 2021.. Inbreeding reduces fitness of seed beetles under thermal stress. . J. Evol. Biol. 34::138696
    [Crossref] [Google Scholar]
  70. 70.
    Jaenike J. 2001.. Sex chromosome meiotic drive. . Annu. Rev. Ecol. Evol. Syst. 32::2549
    [Crossref] [Google Scholar]
  71. 71.
    Jensen K, Kristensen TN, Heckmann LL, Sørensen JG. 2017.. Breeding and maintaining high-quality insects. . In Insects as Food and Feed: From Production to Consumption, ed. A van Huis, JT Tomberlin , pp. 17498. Wageningen, Neth.:: Wageningen Acad.
    [Google Scholar]
  72. 72.
    Joron M, Brakefield PM. 2003.. Captivity masks inbreeding effects on male mating success in butterflies. . Nature 424::19194
    [Crossref] [Google Scholar]
  73. 73.
    Kalske A, Mutikainen P, Muola A, Scheepens JF, Laukkanen L, et al. 2014.. Simultaneous inbreeding modifies inbreeding depression in a plant–herbivore interaction. . Ecol. Lett. 17::22938
    [Crossref] [Google Scholar]
  74. 74.
    Kang JH, Ham D, Park SH, Hwang JM, Park SJ, et al. 2023.. Population genetic structure of a recent insect invasion: a gall midge, Asynapta groverae (Diptera: Cecidomyiidae) in South Korea since the first outbreak in 2008. . Sci. Rep. 13::2812
    [Crossref] [Google Scholar]
  75. 75.
    Kariyat RR, Bentley TG, Nihranz CT, Stephenson AG, de Moraes CM, Mescher MC. 2021.. Inbreeding in Solanum carolinense alters floral attractants and rewards and adversely affects pollinator visitation. . Am. J. Bot. 108::7482
    [Crossref] [Google Scholar]
  76. 76.
    Kaya C, Generalovic TN, Ståhls G, Hauser M, Samayoa AC, et al. 2021.. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. . BMC Biol. 19::94
    [Crossref] [Google Scholar]
  77. 77.
    Kern P, Cook JM, Kageyama D, Riegler M. 2015.. Double trouble: combined action of meiotic drive and Wolbachia feminization in Eurema butterflies. . Biol. Lett. 11::20150095
    [Crossref] [Google Scholar]
  78. 78.
    Kristensen TN, Sørensen AC. 2005.. Inbreeding - lessons from animal breeding, evolutionary biology and conservation genetics. . Anim. Sci. 80::12133
    [Crossref] [Google Scholar]
  79. 79.
    Kuriwada T, Kumano N, Shiromoto K, Haraguchi D. 2010.. Effect of mass rearing on life history traits and inbreeding depression in the sweetpotato weevil (Coleoptera: Brentidae). . J. Econ. Entomol. 103::114448
    [Crossref] [Google Scholar]
  80. 80.
    Lange JD, Bastide H, Lack JB, Pool JE. 2022.. A population genomic assessment of three decades of evolution in a natural Drosophila population. . Mol. Biol. Evol. 39::msab368
    [Crossref] [Google Scholar]
  81. 81.
    Laugier GJM, Le Moguédec G, Su W, Tayeh A, Soldati L, et al. 2016.. Reduced population size can induce quick evolution of inbreeding depression in the invasive ladybird Harmonia axyridis. . Biol. Invasions 18::287181
    [Crossref] [Google Scholar]
  82. 82.
    Leather SR. 2018.. “ Ecological armageddon”—more evidence for the drastic decline in insect numbers. . Ann. Appl. Biol. 172::13
    [Crossref] [Google Scholar]
  83. 83.
    Legner EF. 1979.. Prolonged culture and inbreeding effects on reproductive rates of two pteromalid parasites of muscoid flies. . Ann. Entomol. Soc. Am. 72::11418
    [Crossref] [Google Scholar]
  84. 84.
    Leiva F, Barneche D, Blackburn T, Castañeda L, Chown S, et al. 2023.. ShareTrait: a data portal for making trait data interoperable and reusable. Software Package, GitHub. . https://github.com/ShareTraitProject/ShareTrait
  85. 85.
    Leroy G. 2014.. Inbreeding depression in livestock species: review and meta-analysis. . Anim. Genet. 45::61828
    [Crossref] [Google Scholar]
  86. 86.
    Leung K. 2023.. Breeding for genetic improvement. . See Reference 15 , pp. 3134
  87. 87.
    Leung K, Ras E, Ferguson KB, Ariëns S, Babendreier D, et al. 2020.. Next-generation biological control: the need for integrating genetics and genomics. . Biol. Rev. 95::183854
    [Crossref] [Google Scholar]
  88. 88.
    Leung K, van der Meulen H. 2022.. Revisiting the hymenopteran diploid male vortex: a review of avoidance mechanisms and incidence. . Entomol. Exp. Appl. 170::101031
    [Crossref] [Google Scholar]
  89. 89.
    Lindsey ARI, Stouthamer R. 2017.. Penetrance of symbiont-mediated parthenogenesis is driven by reproductive rate in a parasitoid wasp. . PeerJ 5::e3505
    [Crossref] [Google Scholar]
  90. 90.
    Lirakis M, Magalhães S. 2019.. Does experimental evolution produce better biological control agents? A critical review of the evidence. . Entomol. Exp. Appl. 167::58497
    [Crossref] [Google Scholar]
  91. 91.
    Liu Y, Olsson A, Larva T, Cantwell-Jones A, Gill RJ, et al. 2023.. Genomic variation in montane bumblebees in Scandinavia: high levels of intraspecific diversity despite population vulnerability. . Mol. Ecol. 33::e17251
    [Crossref] [Google Scholar]
  92. 92.
    Luna MG, Hawkins BA. 2004.. Effects of inbreeding versus outbreeding in Nasonia vitripennis (Hymenoptera: Pteromalidae). . Environ. Entomol. 33::76575
    [Crossref] [Google Scholar]
  93. 93.
    Lynch M, Walsh. B. 1997.. Genetics and Analysis of Quantitative Traits. Sunderland, MA:: Sinauer
    [Google Scholar]
  94. 94.
    Ma WJ, Pannebakker BA, van de Zande L, Schwander T, Wertheim B, Beukeboom LW. 2015.. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp. . BMC Evol. Biol. 15::84
    [Crossref] [Google Scholar]
  95. 95.
    Maciel-Vergara G, Jensen AB, Lecocq A, Eilenberg J. 2021.. Diseases in edible insect rearing systems. . J. Insects Food Feed 7::62138
    [Crossref] [Google Scholar]
  96. 96.
    Mackay-Smith A, Dornon MK, Lucier R, Okimoto A, de Sousa FM, et al. 2021.. Host-specific gene expression as a tool for introduction success in Naupactus parthenogenetic weevils. . PLOS ONE 16::e0248202
    [Crossref] [Google Scholar]
  97. 97.
    Mackay IJ, Cockram J, Howell P, Powell W. 2021.. Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. . Plant Biotechnol. J. 19::2634
    [Crossref] [Google Scholar]
  98. 98.
    Magnacca K. 2020.. Reintroduction of a native Hawaiian bee, Hylaeus anthracinus (F. Smith) (Hymenoptera: Colletidae), to part of its former range. . Proc. Hawaii. Entomol. Soc. 52::3544
    [Google Scholar]
  99. 99.
    Mateo Leach I, Pannebakker B, Schneider MV, Driessen G, van de Zande L, Beukeboom LW. 2009.. Thelytoky in Hymenoptera with Venturia canescens and Leptopilina clavipes as case studies. . In Lost Sex: The Evolutionary Biology of Parthenogenesis, ed. I Schön, K Martens, P Dijk , pp. 34775. Berlin:: Springer
    [Google Scholar]
  100. 100.
    May CM, van den Heuvel J, Doroszuk A, Hoedjes KM, Flatt T, Zwaan BJ. 2019.. Adaptation to developmental diet influences the response to selection on age at reproduction in the fruit fly. . J. Evol. Biol. 32::42537
    [Crossref] [Google Scholar]
  101. 101.
    Medeiros MJ, Eiben JA, Haines WP, Kaholoaa RL, King CBA, et al. 2013.. The importance of insect monitoring to conservation actions in Hawaii. . Proc. Hawaii. Entomol. Soc. 45::14666
    [Google Scholar]
  102. 102.
    Meunier J, Kölliker M. 2013.. Inbreeding depression in an insect with maternal care: influences of family interactions, life stage and offspring sex. . J. Evol. Biol. 26::220920
    [Crossref] [Google Scholar]
  103. 103.
    Mikheyev AS, Zwick A, Magrath MJL, Grau ML, Qiu L, et al. 2017.. Museum genomics confirms that the Lord Howe Island stick insect survived extinction. . Curr. Biol. 27::315761.e4
    [Crossref] [Google Scholar]
  104. 104.
    Miller SE, Sheehan MJ. 2023.. Sex differences in deleterious genetic variants in a haplodiploid social insect. . Mol. Ecol. 32::454656
    [Crossref] [Google Scholar]
  105. 105.
    Moncaz A, Ben-Shlomo R, Lubin Y, Kliot A, Harari A. 2023.. Sib-mating enhances fitness in a haplodiploid beetle. . Evolution 77::593607
    [Crossref] [Google Scholar]
  106. 106.
    Mongue AJ, Tsai MV, Wayne ML, de Roode JC. 2016.. Inbreeding depression in monarch butterflies. . J. Insect Conserv. 20::47783
    [Crossref] [Google Scholar]
  107. 107.
    Moritz RFA. 1983.. Inbreeding effects in flight muscle mitochondria of Apis mellifera L. . Braz. J. Genet. 6::5970
    [Google Scholar]
  108. 108.
    Moritz RFA. 1986.. Comparison of within-family and mass selection in honeybee populations. . J. Apic. Res. 25::14653
    [Crossref] [Google Scholar]
  109. 109.
    Müller T, Juškauskas A. 2018.. Inbreeding affects personality and fitness of a leaf beetle. . Anim. Behav. 138::2937
    [Crossref] [Google Scholar]
  110. 110.
    Mullin VE, Stephen W, Arce AN, Nash W, Raine C, et al. 2023.. First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing. . Methods Ecol. Evol. 14::36071
    [Crossref] [Google Scholar]
  111. 111.
    Nagaraju J, Goldsmith M. 2002.. Silkworm genomics—progress and prospects. . Curr. Sci. 83::41525
    [Google Scholar]
  112. 112.
    Neaves LE, Eales J, Whitlock R, Hollingsworth PM, Burke T, Pullin AS. 2015.. The fitness consequences of inbreeding in natural populations and their implications for species conservation—a systematic map. . Environ. Evid. 4::5
    [Crossref] [Google Scholar]
  113. 113.
    New TR, Pyle RM, Thomas JA, Thomas CD, Hammond PC. 1995.. Butterfly conservation management. . Annu. Rev. Entomol. 40::5783
    [Crossref] [Google Scholar]
  114. 114.
    Nogueira-Neto P. 2002.. Inbreeding and building up small populations of stingless bees (Hymenoptera, Apidae). . Rev. Bras. Zool. 19::1181214
    [Crossref] [Google Scholar]
  115. 115.
    Orr HA. 1996.. Dobzhansky, Bateson, and the genetics of speciation. . Genetics 144::133135
    [Crossref] [Google Scholar]
  116. 116.
    Otte M, Netschitailo O, Weidtkamp-Peters S, Seidel CAM, Beye M. 2023.. Recognition of polymorphic Csd proteins determines sex in the honeybee. . Sci. Adv. 9::eadg4239
    [Crossref] [Google Scholar]
  117. 117.
    Peer K, Taborsky M. 2005.. Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. . Evolution 59::31723
    [Google Scholar]
  118. 118.
    Pilakouta N, Jamieson S, Moorad JA, Smiseth PT. 2015.. Parental care buffers against inbreeding depression in burying beetles. . PNAS 112::803135
    [Crossref] [Google Scholar]
  119. 119.
    Puillandre N, Dupas S, Dangles O, Zeddam JL, Capdevielle-Dulac C, et al. 2008.. Genetic bottleneck in invasive species: The potato tuber moth adds to the list. . Biol. Invasions 10::31933
    [Crossref] [Google Scholar]
  120. 120.
    Raychoudhury R, Grillenberger BK, Gadau J, Bijlsma R, van de Zande L, et al. 2010.. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial-Wolbachia sweep in North America. . Heredity 104::318326
    [Crossref] [Google Scholar]
  121. 121.
    Rhode C, Badenhorst R, Hull KL, Greenwood MP, Bester-van der Merwe AE, et al. 2020.. Genetic and phenotypic consequences of early domestication in black soldier flies (Hermetia illucens). . Anim. Genet. 51::75262
    [Crossref] [Google Scholar]
  122. 122.
    Roff DA. 1998.. Effects of inbreeding on morphological and life history traits of the sand cricket, Gryllus firmus. . Heredity 81::2837
    [Crossref] [Google Scholar]
  123. 123.
    Romiguier J, Lourenco J, Gayral P, Faivre N, Weinert LA, et al. 2014.. Population genomics of eusocial insects: the costs of a vertebrate-like effective population size. . J. Evol. Biol. 27::593603
    [Crossref] [Google Scholar]
  124. 124.
    Saccheri IJ, Brakefield PM, Nichols RA. 1996.. Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae). . Evolution 50::200013
    [Crossref] [Google Scholar]
  125. 125.
    San Jose M, Doorenweerd C, Rubinoff D. 2023.. Genomics reveals widespread hybridization across insects with ramifications for species boundaries and invasive species. . Curr. Opin. Insect Sci. 58::101052
    [Crossref] [Google Scholar]
  126. 126.
    Sánchez-Rosario M, Pérez-Staples D, Toledo J, Valle-Mora J, Liedo P. 2017.. Artificial selection on mating competitiveness of Anastrepha ludens for sterile insect technique application. . Entomol. Exp. Appl. 162::13347
    [Crossref] [Google Scholar]
  127. 127.
    Schmack JM, Brenton-Rule EC, Veldtman R, Wenseleers T, Beggs JR, et al. 2019.. Lack of genetic structuring, low effective population sizes and major bottlenecks characterise common and German wasps in New Zealand. . Biol. Invasions 21::3185201
    [Crossref] [Google Scholar]
  128. 128.
    Schmid-Hempel P, Schmid-Hempel R, Brunner PC, Seeman OD, Allen GR. 2007.. Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. . Heredity 99::41422
    [Crossref] [Google Scholar]
  129. 129.
    Schmitt T, Cizek O, Konvicka M. 2005.. Genetics of a butterfly relocation: large, small and introduced populations of the mountain endemic Erebia epiphron silesiana. . Biol. Conserv. 123::1118
    [Crossref] [Google Scholar]
  130. 130.
    Schrader M, Hughes P, Jenkins S, Kusher I, Lopez J, et al. 2022.. Can age-related changes in parental care modulate inbreeding depression? A test using the burying beetle, Nicrophorus orbicollis. . Ecol. Evol. 12::e9391
    [Crossref] [Google Scholar]
  131. 131.
    Schrieber K, Paul SC, Höche LV, Salas AC, Didszun R, et al. 2021.. Inbreeding in a dioecious plant has sex- and population origin-specific effects on its interactions with pollinators. . eLife 10::e65610
    [Crossref] [Google Scholar]
  132. 132.
    Silvestri L, Sosa A, Mc Kay F, Vitorino MD, Hill M, et al. 2020.. Implementation of access and benefit-sharing measures has consequences for classical biological control of weeds. . BioControl 65::12541
    [Crossref] [Google Scholar]
  133. 133.
    Sinotte VM, Conlon BH, Seibel E, Schwitalla JW, de Beer ZW, et al. 2021.. Female-biased sex allocation and lack of inbreeding avoidance in Cubitermes termites. . Ecol. Evol. 11::5598605
    [Crossref] [Google Scholar]
  134. 134.
    Smith D, Ryan MJ, Seier MK, Pollard KM, Pratt CF, et al. 2021.. CABI UK and Nagoya Protocol triggered benefit sharing. Work. Pap. 25 , CABI, Egham, UK:
    [Google Scholar]
  135. 135.
    Smith NMA, Wade C, Allsopp MH, Harpur BA, Zayed A, et al. 2019.. Strikingly high levels of heterozygosity despite 20 years of inbreeding in a clonal honey bee. . J. Evol. Biol. 32::14452
    [Crossref] [Google Scholar]
  136. 136.
    Sorati M, Newman M, Hoffmann AA. 1996.. Inbreeding and incompatibility in Trichogramma nr. brassicae: evidence and implications for quality control. . Entomol. Exp. Appl. 78::28390
    [Crossref] [Google Scholar]
  137. 137.
    Suomalainen E, Saura A, Lokki J. 2012.. Evolution of parthenogenetic insects. . Evol. Biol. 9::20950
    [Google Scholar]
  138. 138.
    Tien NSH, Sabelis MW, Egas M. 2015.. Inbreeding depression and purging in a haplodiploid: gender-related effects. . Heredity 114::32732
    [Crossref] [Google Scholar]
  139. 139.
    Tsutsui ND, Suarez AV, Holway DA, Case TJ. 2000.. Reduced genetic variation and the success of an invasive species. . PNAS 97::594853
    [Crossref] [Google Scholar]
  140. 140.
    Välimäki P, Kivelä SM, Mäenpää MI. 2011.. Mating with a kin decreases female remating interval: a possible example of inbreeding avoidance. . Behav. Ecol. Sociobiol. 65::203747
    [Crossref] [Google Scholar]
  141. 141.
    Valtonen TM, Roff DA, Rantala MJ. 2011.. Analysis of the effects of early nutritional environment on inbreeding depression in Drosophila melanogaster. . J. Evol. Biol. 24::196205
    [Crossref] [Google Scholar]
  142. 142.
    van't Hof AE, Whiteford S, Yung CJ, Yoshido A, Zrzavá M, et al. 2024.. Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer. . Sci. Adv. 10::eadj6979
    [Crossref] [Google Scholar]
  143. 143.
    van Bergen E, Brakefield PM, Heuskin S, Zwaan BJ, Nieberding CM. 2013.. The scent of inbreeding: a male sex pheromone betrays inbred males. . Proc. R. Soc. B 280::20130102
    [Crossref] [Google Scholar]
  144. 144.
    Van Huis A. 2013.. Potential of insects as food and feed in assuring food security. . Annu. Rev. Entomol. 58::56383
    [Crossref] [Google Scholar]
  145. 145.
    van Wilgenburg E, Driessen G, Beukeboom LW. 2006.. Single locus complementary sex determination in Hymenoptera: an “unintelligent” design?. Front. Zool. 3::1
    [Crossref] [Google Scholar]
  146. 146.
    Vitikainen E, Sundström L. 2011.. Inbreeding and caste-specific variation in immune defence in the ant Formica exsecta. . Behav. Ecol. Sociobiol. 65::899907
    [Crossref] [Google Scholar]
  147. 147.
    Wagner DL. 2020.. Insect declines in the Anthropocene. . Annu. Rev. Entomol. 65::45780
    [Crossref] [Google Scholar]
  148. 148.
    Waldbauer GP, Sternburg JG. 1979.. Inbreeding depression and a behavioral mechanism for its avoidance in Hyalophora cecropia. . Am. Midl. Nat. 102::2048
    [Crossref] [Google Scholar]
  149. 149.
    Waller DM. 2021.. Addressing Darwin's dilemma: Can pseudo-overdominance explain persistent inbreeding depression and load?. Evolution 75::77993
    [Crossref] [Google Scholar]
  150. 150.
    Watts PC, Saccheri IJ, Kemp SJ, Thompson DJ. 2007.. Effective population sizes and migration rates in fragmented populations of an endangered insect (Coenagrion mercuriale: Odonata). . J. Anim. Ecol. 76::790800
    [Crossref] [Google Scholar]
  151. 151.
    Webster MT, Beaurepaire A, Neumann P, Stolle E. 2023.. Population genomics for insect conservation. . Annu. Rev. Anim. Biosci. 11::11540
    [Crossref] [Google Scholar]
  152. 152.
    Werren JH. 1993.. The evolution of inbreeding in haplodiploid organisms. . In The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives, ed. NW Thornhill , pp. 4259. Chicago/London:: Univ. Chicago Press
    [Google Scholar]
  153. 153.
    Whitehorn PR, Tinsley MC, Brown MJF, Darvill B, Goulson D. 2009.. Impacts of inbreeding on bumblebee colony fitness under field conditions. . BMC Evol. Biol. 9::152
    [Crossref] [Google Scholar]
  154. 154.
    Whitehorn PR, Tinsley MC, Brown MJF, Darvill B, Goulson D. 2011.. Genetic diversity, parasite prevalence and immunity in wild bumblebees. . Proc. R. Soc. B 278::1195202
    [Crossref] [Google Scholar]
  155. 155.
    Whitehorn PR, Tinsley MC, Brown MJF, Darvill B, Goulson D. 2014.. Genetic diversity and parasite prevalence in two species of bumblebee. . J. Insect Conserv. 18::66773
    [Crossref] [Google Scholar]
  156. 156.
    Whitlock R, Stewart GB, Goodman SJ, Piertney SB, Butlin RK, et al. 2013.. A systematic review of phenotypic responses to between-population outbreeding. . Environ. Evid. 2::13
    [Crossref] [Google Scholar]
  157. 157.
    Wickman P-O, Rutowski RL. 2019.. The evolution of mating dispersion in insects. . Oikos 84::46372
    [Crossref] [Google Scholar]
  158. 158.
    Wright S. 1933.. Inbreeding and homozygosis. . PNAS 19::41120
    [Crossref] [Google Scholar]
  159. 159.
    Yang CC, Yu YC, Valles SM, Oi DH, Chen YC, et al. 2010.. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. . Biol. Invasions 12::330718
    [Crossref] [Google Scholar]
  160. 160.
    Zayed A, Constantin SA, Packer L. 2007.. Successful biological invasion despite a severe genetic load. . PLOS ONE 2::e868
    [Crossref] [Google Scholar]
  161. 161.
    Zayed A, Packer L. 2005.. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. . PNAS 102::1074246
    [Crossref] [Google Scholar]
  162. 162.
    Zhou JC, Shang D, Liu SM, Zhang C, Huo LX, et al. 2023.. Wolbachia-infected Trichogramma dendrolimi is outcompeted by its uninfected counterpart in superparasitism but does not have developmental delay. . Pest Manag. Sci. 79::100517
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-022924-020221
Loading
/content/journals/10.1146/annurev-ento-022924-020221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error