1932

Abstract

The point of entry for the majority of arthropod pathogens and arthropod-vectored pathogens of plant, animal, and human health importance is the arthropod midgut. Pathogen interaction with the midgut therefore represents a primary target for intervention to prevent pathogen infection and transmission. Despite this key role in pathogen invasion, relatively little is known of the specific molecular interactions between pathogens and the surface of the arthropod gut epithelium, with few pathogen receptors having been definitively identified. This article provides an overview of pathogen molecular interactions in the arthropod midgut, with a focus on gut surface proteins that mediate pathogen entry, and highlights recent methodological advances that facilitate the identification of pathogen receptor proteins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-030624-014608
2025-01-28
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-030624-014608.html?itemId=/content/journals/10.1146/annurev-ento-030624-014608&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aksoy E, Vigneron A, Bing X, Zhao X, O'Neill M, et al. 2016.. Mammalian African trypanosome VSG coat enhances tsetse's vector competence. . PNAS 113::696166
    [Crossref] [Google Scholar]
  2. 2.
    Angrisano F, Tan YH, Sturm A, McFadden GI, Baum J. 2012.. Malaria parasite colonisation of the mosquito midgut—placing the Plasmodium ookinete centre stage. . Int. J. Parasitol. 42::51927
    [Crossref] [Google Scholar]
  3. 3.
    Armistead JS, Morlais I, Mathias DK, Jardim JG, Joy J, et al. 2014.. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria. . Infect. Immun. 82::81829
    [Crossref] [Google Scholar]
  4. 4.
    Arora AK, Pesko KN, Quintero-Hernandez V, Possani LD, Miller TA, Durvasula RV. 2018.. A paratransgenic strategy to block transmission of Xylella fastidiosa from the glassy-winged sharpshooter Homalodisca vitripennis. . BMC Biotechnol. 18::50
    [Crossref] [Google Scholar]
  5. 5.
    Azizi A, Arora A, Markiv A, Lampe DJ, Miller TA, Kang AS. 2012.. Ribosome display of combinatorial antibody libraries derived from mice immunized with heat-killed Xylella fastidiosa and the selection of MopB-specific single-chain antibodies. . Appl. Environ. Microbiol. 78::263847
    [Crossref] [Google Scholar]
  6. 6.
    Badillo-Vargas IE, Chen Y, Martin KM, Rotenberg D, Whitfield AE. 2019.. Discovery of novel thrips vector proteins that bind to the viral attachment protein of the plant bunyavirus tomato spotted wilt virus. . J. Virol. 93::e00699-19
    [Crossref] [Google Scholar]
  7. 7.
    Bayyareddy K, Zhu X, Orlando R, Adang MJ. 2012.. Proteome analysis of Cry4Ba toxin-interacting Aedes aegypti lipid rafts using geLC-MS/MS. . J. Proteome Res. 11::584355
    [Crossref] [Google Scholar]
  8. 8.
    Bencharki B, Boissinot S, Revollon S, Ziegler-Graff V, Erdinger M, et al. 2010.. Phloem protein partners of cucurbit aphid borne yellows virus: possible involvement of phloem proteins in virus transmission by aphids. . Mol. Plant-Microbe Interact. 23::799810
    [Crossref] [Google Scholar]
  9. 9.
    Bento FMM, Darolt JC, Merlin BL, Pena L, Wulff NA, Consoli FL. 2021.. The molecular interplay of the establishment of an infection—gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. . BMC Genom. 22::677
    [Crossref] [Google Scholar]
  10. 10.
    Bertola M, Mutinelli F. 2021.. A systematic review on viruses in mass-reared edible insect species. . Viruses 13::2280
    [Crossref] [Google Scholar]
  11. 11.
    Bonay P, Molina R, Fresno M. 2001.. Binding specificity of mannose-specific carbohydrate-binding protein from the cell surface of Trypanosoma cruzi. . Glycobiology 11::71929
    [Crossref] [Google Scholar]
  12. 12.
    Bonning BC, Chougule NP. 2014.. Delivery of intrahemocoelic peptides for insect pest management. . Trends Biotechnol. 32::9198
    [Crossref] [Google Scholar]
  13. 13.
    Bonning BC, Pal N, Liu S, Wang Z, Sivakumar S, et al. 2014.. Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. . Nat. Biotechnol. 32::1025
    [Crossref] [Google Scholar]
  14. 14.
    Boulant S, Stanifer M, Lozach PY. 2015.. Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. . Viruses 7::2794815
    [Crossref] [Google Scholar]
  15. 15.
    Bouvaine S, Boonham N, Douglas AE. 2011.. Interactions between a luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. . J. Gen. Virol. 92::146774
    [Crossref] [Google Scholar]
  16. 16.
    Brault V, Van den Heuvel JF, Verbeek M, Ziegler-Graff V, Reutenauer A, et al. 1995.. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. . EMBO J. 14::65059
    [Crossref] [Google Scholar]
  17. 17.
    Caccia S, Casartelli M, Tettamanti G. 2019.. The amazing complexity of insect midgut cells: types, peculiarities, and functions. . Cell Tissue Res. 377::50525
    [Crossref] [Google Scholar]
  18. 18.
    Casartelli M, Cermenati G, Rodighiero S, Pennacchio F, Giordana B. 2008.. A megalin-like receptor is involved in protein endocytosis in the midgut of an insect (Bombyx mori, Lepidoptera). . Am. J. Physiol. Regul. Integr. Comp. Physiol. 295::R1290300
    [Crossref] [Google Scholar]
  19. 19.
    Chiu E, Hijnen M, Bunker RD, Boudes M, Rajendran C, et al. 2015.. Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. . PNAS 112::397378
    [Crossref] [Google Scholar]
  20. 20.
    Chougule NP, Li H, Liu S, Linz LB, Narva KE, et al. 2013.. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. . PNAS 110::846570
    [Crossref] [Google Scholar]
  21. 21.
    Christensen EI, Birn H. 2002.. Megalin and cubilin: multifunctional endocytic receptors. . Nat. Rev. Mol. Cell Biol. 3::25666
    [Crossref] [Google Scholar]
  22. 22.
    de Castro Neto AL, da Silveira JF, Mortara RA. 2022.. Role of virulence factors of trypanosomatids in the insect vector and putative genetic events involved in surface protein diversity. . Front. Cell. Infect. Microbiol. 12::807172
    [Crossref] [Google Scholar]
  23. 23.
    de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, et al. 2017.. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. . Front. Cell. Infect. Microbiol. 7::114
    [Crossref] [Google Scholar]
  24. 24.
    de la Guardia C, Quijada M, Lleonart R. 2017.. Phage-displayed peptides selected to bind envelope glycoprotein show antiviral activity against dengue virus serotype 2. . Adv. Virol 2017::1827341
    [Crossref] [Google Scholar]
  25. 25.
    Di Noia JM, D'Orso I, Aslund L, Sanchez DO, Frasch AC. 1998.. The Trypanosoma cruzi mucin family is transcribed from hundreds of genes having hypervariable regions. . J. Biol. Chem. 273::1084350
    [Crossref] [Google Scholar]
  26. 26.
    Dias RO, Cardoso C, Pimentel AC, Damasceno TF, Ferreira C, Terra WR. 2018.. The roles of mucus-forming mucins, peritrophins and peritrophins with mucin domains in the insect midgut. . Insect Mol. Biol. 27::4660
    [Crossref] [Google Scholar]
  27. 27.
    Dinglasan RR, Kalume DE, Kanzok SM, Ghosh AK, Muratova O, et al. 2007.. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen. . PNAS 104::1346166
    [Crossref] [Google Scholar]
  28. 28.
    Drysdale R, FlyBaseConsort. 2008.. FlyBase: a database for the Drosophila research community. . Methods Mol. Biol. 420::4559
    [Crossref] [Google Scholar]
  29. 29.
    Fan YY, Chi Y, Chen N, Cuellar WJ, Wang XW. 2024.. Role of aminopeptidase N-like in the acquisition of begomoviruses by Bemisia tabaci, the whitefly vector. . Insect Sci. 31::70719
    [Crossref] [Google Scholar]
  30. 30.
    Fuzita FJ, Chandler KB, Haserick JR, Terra WR, Ferreira C, Costello CE. 2020.. N-glycosylation in Spodoptera frugiperda (Lepidoptera: Noctuidae) midgut membrane-bound glycoproteins. . Comp. Biochem. Physiol. B 246–47::110464
    [Crossref] [Google Scholar]
  31. 31.
    Geng L, Qian LX, Shao RX, Liu YQ, Liu SS, Wang XW. 2018.. Transcriptome profiling of whitefly guts in response to Tomato yellow leaf curl virus infection. . Virol. J. 15::14
    [Crossref] [Google Scholar]
  32. 32.
    Ghosh AK, Coppens I, Gardsvoll H, Ploug M, Jacobs-Lorena M. 2011.. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. . PNAS 108::1715358
    [Crossref] [Google Scholar]
  33. 33.
    Ghosh AK, Ribolla PE, Jacobs-Lorena M. 2001.. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. . PNAS 98::1327881
    [Crossref] [Google Scholar]
  34. 34.
    González-Lázaro M, Dinglasan RR, de la Cruz Hernández-Hernández F, Rodríguez MH, Laclaustra M, et al. 2009.. Anopheles gambiae Croquemort SCRBQ2, expression profile in the mosquito and its potential interaction with the malaria parasite Plasmodium berghei. . Insect Biochem. Mol. Biol. 39::395402
    [Crossref] [Google Scholar]
  35. 35.
    Gray S, Gildow FE. 2003.. Luteovirus-aphid interactions. . Annu. Rev. Phytopathol. 41::53966
    [Crossref] [Google Scholar]
  36. 36.
    Grove J, Marsh M. 2011.. The cell biology of receptor-mediated virus entry. . J. Cell Biol. 195::107182
    [Crossref] [Google Scholar]
  37. 37.
    Grozinger CM, Flenniken ML. 2019.. Bee viruses: ecology, pathogenicity, and impacts. . Annu. Rev. Entomol. 64::20526
    [Crossref] [Google Scholar]
  38. 38.
    Hall AR, Blakeman JT, Eissa AH, Chapman P, Morales-Garcia AL, et al. 2020.. Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. . Chem. Sci. 11::1097383
    [Crossref] [Google Scholar]
  39. 39.
    Han J, Rotenberg D. 2021.. Integration of transcriptomics and network analysis reveals co-expressed genes in Frankliniella occidentalis larval guts that respond to tomato spotted wilt virus infection. . BMC Genom. 22::810
    [Crossref] [Google Scholar]
  40. 40.
    He YZ, Wang YM, Yin TY, Cuellar WJ, Liu SS, Wang XW. 2021.. Gut-expressed vitellogenin facilitates the movement of a plant virus across the midgut wall in its insect vector. . mSystems 6::e0058121
    [Crossref] [Google Scholar]
  41. 41.
    Huang HT, Leu JH, Huang PY, Chen LL. 2012.. A putative cell surface receptor for white spot syndrome virus is a member of a transporter superfamily. . PLOS ONE 7::e33216
    [Crossref] [Google Scholar]
  42. 42.
    Huang W, Vega-Rodriguez J, Kizito C, Cha SJ, Jacobs-Lorena M. 2022.. Combining transgenesis with paratransgenesis to fight malaria. . eLife 11::e77584
    [Crossref] [Google Scholar]
  43. 43.
    Ito K, Kidokoro K, Katsuma S, Sezutsu H, Uchino K, et al. 2018.. A single amino acid substitution in the Bombyx-specific mucin-like membrane protein causes resistance to Bombyx mori densovirus. . Sci. Rep. 8::7430
    [Crossref] [Google Scholar]
  44. 44.
    Ito K, Kidokoro K, Sezutsu H, Nohata J, Yamamoto K, et al. 2008.. Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus. . PNAS 105::752327
    [Crossref] [Google Scholar]
  45. 45.
    Ito K, Sivaprasad V, Katsuma S, Yokoyama T, Kadono-Okuda K. 2022.. Resistance mechanism of Nid-1, a dominant non-susceptibility gene, against Bombyx mori densovirus 1 infection. . Virus Res. 318::198849
    [Crossref] [Google Scholar]
  46. 46.
    Jakhar R, Sehrawat N, Gakhar SK. 2022.. An analytical review of vector- and pathogen-based transmission-blocking vaccine for malaria control. . J. Vector Borne Dis. 59::111
    [Crossref] [Google Scholar]
  47. 47.
    Javed MA, Coutu C, Theilmann DA, Erlandson MA, Hegedus DD. 2019.. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles. . Insect Sci. 26::42440
    [Crossref] [Google Scholar]
  48. 48.
    Jiménez J, Kemmerer M, King GF, Polston JE, Bonning BC. 2024.. Coat protein of a whitefly-vectored plant virus as a delivery system to target whitefly. . Microb. Biotechnol. 17::e14468
    [Crossref] [Google Scholar]
  49. 49.
    Jiménez J, Mishra R, Wang X, Magee CM, Bonning BC. 2024.. Composition and abundance of midgut plasma membrane proteins in two major hemipteran vectors of plant viruses, Bemisia tabaci and Myzus persicae. . Arch. Insect Biochem. Physiol. 116::e22133
    [Crossref] [Google Scholar]
  50. 50.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  51. 51.
    Jurat-Fuentes JL, Heckel DG, Ferre J. 2021.. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. . Annu. Rev. Entomol. 66::12140
    [Crossref] [Google Scholar]
  52. 52.
    Kemmerer M, Bonning BC. 2020.. Transcytosis of Junonia coenia densovirus VP4 across the gut epithelium of Spodoptera frugiperda (Lepidoptera: Noctuidae). . Insect Sci. 27::2232
    [Crossref] [Google Scholar]
  53. 53.
    Kristiansen M, Kozyraki R, Jacobsen C, Nexo E, Verroust PJ, Moestrup SK. 1999.. Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding. . J. Biol. Chem. 274::2054044
    [Crossref] [Google Scholar]
  54. 54.
    Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. 2011.. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. . PNAS 108::1596671
    [Crossref] [Google Scholar]
  55. 55.
    Lecona-Valera AN, Tao D, Rodriguez MH, Lopez T, Dinglasan RR, Rodriguez MC. 2016.. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development. . Parasit. Vectors 9::274
    [Crossref] [Google Scholar]
  56. 56.
    Lehane MJ. 1997.. Peritrophic matrix structure and function. . Annu. Rev. Entomol. 42::52550
    [Crossref] [Google Scholar]
  57. 57.
    Leonard SP, Powell JE, Perutka J, Geng P, Heckmann LC, et al. 2020.. Engineered symbionts activate honey bee immunity and limit pathogens. . Science 367::57376
    [Crossref] [Google Scholar]
  58. 58.
    Li F, Patra KP, Yowell CA, Dame JB, Chin K, Vinetz JM. 2010.. Apical surface expression of aspartic protease Plasmepsin 4, a potential transmission-blocking target of the Plasmodium ookinete. . J. Biol. Chem. 285::807683
    [Crossref] [Google Scholar]
  59. 59.
    Linz LB, Liu S, Chougule NP, Bonning BC. 2015.. In vitro evidence supports membrane alanyl aminopeptidase N as a receptor for a plant virus in the pea aphid vector. . J. Virol. 89::1120312
    [Crossref] [Google Scholar]
  60. 60.
    Liu S, Sivakumar S, Sparks WO, Miller WA, Bonning BC. 2010.. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel. . Virology 401::10716
    [Crossref] [Google Scholar]
  61. 61.
    Maitre A, Wu-Chuang A, Azelyte J, Palinauskas V, Mateos-Hernandez L, et al. 2022.. Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines. . Parasit. Vectors 15::4
    [Crossref] [Google Scholar]
  62. 62.
    Mathias DK, Jardim JG, Parish LA, Armistead JS, Trinh HV, et al. 2014.. Differential roles of an Anopheline midgut GPI-anchored protein in mediating Plasmodium falciparum and Plasmodium vivax ookinete invasion. . Infect. Genet. Evol. 28::63547
    [Crossref] [Google Scholar]
  63. 63.
    Maurastoni M, Han J, Whitfield AE, Rotenberg D. 2023.. A call to arms: novel strategies for thrips and tospovirus control. . Curr. Opin. Insect Sci. 57::101033
    [Crossref] [Google Scholar]
  64. 64.
    Mayor S, Parton RG, Donaldson JG. 2014.. Clathrin-independent pathways of endocytosis. . Cold Spring Harb. Perspect. Biol. 6::a016758
    [Crossref] [Google Scholar]
  65. 65.
    Mishra R, Guo Y, Kumar P, Canton PE, Tavares CS, et al. 2021.. Streamlined phage display library protocols for identification of insect gut binding peptides highlight peptide specificity. . Curr. Res. Insect Sci. 1::100012
    [Crossref] [Google Scholar]
  66. 66.
    Mitsuhashi W, Shimura S, Miyamoto K, Sugimoto TN. 2019.. Spatial distribution of orally administered viral fusolin protein in the insect midgut and possible synergism between fusolin and digestive proteases to disrupt the midgut peritrophic matrix. . Arch. Virol. 164::1725
    [Crossref] [Google Scholar]
  67. 67.
    Mulot M, Monsion B, Boissinot S, Rastegar M, Meyer S, et al. 2018.. Transmission of turnip yellows virus by Myzus persicae is reduced by feeding aphids on double-stranded RNA targeting the ephrin receptor protein. . Front. Microbiol. 9::457
    [Crossref] [Google Scholar]
  68. 68.
    Multeau C, Froissart R, Perrin A, Castelli I, Casartelli M, Ogliastro M. 2012.. Four amino acids of an insect densovirus capsid determine midgut tropism and virulence. . J. Virol. 86::593741
    [Crossref] [Google Scholar]
  69. 69.
    Mutuel D, Ravallec M, Chabi B, Multeau C, Salmon JM, et al. 2010.. Pathogenesis of Junonia coenia densovirus in Spodoptera frugiperda: a route of infection that leads to hypoxia. . Virology 403::13744
    [Crossref] [Google Scholar]
  70. 70.
    Myskova J, Dostalova A, Penickova L, Halada P, Bates PA, Volf P. 2016.. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment. . Parasit. Vectors 9::413
    [Crossref] [Google Scholar]
  71. 71.
    Niu G, Franc AC, Zhang G, Roobsoong W, Nguitragool W, et al. 2017.. The fibrinogen-like domain of FREP1 protein is a broad-spectrum malaria transmission-blocking vaccine antigen. . J. Biol. Chem. 292::1196069
    [Crossref] [Google Scholar]
  72. 72.
    Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, et al. 2004.. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. . Cell 119::45768
    [Crossref] [Google Scholar]
  73. 73.
    Pan LL, Chen QF, Zhao JJ, Guo T, Wang XW, et al. 2017.. Clathrin-mediated endocytosis is involved in Tomato yellow leaf curl virus transport across the midgut barrier of its whitefly vector. . Virology 502::15259
    [Crossref] [Google Scholar]
  74. 74.
    Parish LA, Colquhoun DR, Ubaida Mohien C, Lyashkov AE, Graham DR, Dinglasan RR. 2011.. Ookinete-interacting proteins on the microvillar surface are partitioned into detergent resistant membranes of Anopheles gambiae midguts. . J. Proteome Res. 10::515062
    [Crossref] [Google Scholar]
  75. 75.
    Parton RG, del Pozo MA. 2013.. Caveolae as plasma membrane sensors, protectors and organizers. . Nat. Rev. Mol. Cell Biol. 14::98112
    [Crossref] [Google Scholar]
  76. 76.
    Patton MF, Hansen AK, Casteel CL. 2021.. Potato leafroll virus reduces Buchnera aphidocola titer and alters vector transcriptome responses. . Sci. Rep. 11::23931
    [Crossref] [Google Scholar]
  77. 77.
    Perveen N, Muhammad K, Muzaffar SB, Zaheer T, Munawar N, et al. 2023.. Host-pathogen interaction in arthropod vectors: lessons from viral infections. . Front. Immunol. 14::1061899
    [Crossref] [Google Scholar]
  78. 78.
    Pigeyre L, Schatz M, Ravallec M, Gasmi L, Negre N, et al. 2019.. Interaction of a densovirus with glycans of the peritrophic matrix mediates oral infection of the lepidopteran pest Spodoptera frugiperda. . Viruses 11::870
    [Crossref] [Google Scholar]
  79. 79.
    Qin F, Liu W, Wu N, Zhang L, Zhang Z, et al. 2018.. Invasion of midgut epithelial cells by a persistently transmitted virus is mediated by sugar transporter 6 in its insect vector. . PLOS Pathog. 14::e1007201
    [Crossref] [Google Scholar]
  80. 80.
    Rana VS, Popli S, Saurav GK, Raina HS, Jamwal R, et al. 2019.. Implication of the whitefly, Bemisia tabaci, collagen protein in begomoviruses acquisition and transmission. . Phytopathology 109::148193
    [Crossref] [Google Scholar]
  81. 81.
    Resh MD. 2016.. Fatty acylation of proteins: the long and the short of it. . Prog. Lipid Res. 63::12031
    [Crossref] [Google Scholar]
  82. 82.
    Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M. 2007.. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. . Int. J. Parasitol. 37::595603
    [Crossref] [Google Scholar]
  83. 83.
    Riethmuller J, Riehle A, Grassme H, Gulbins E. 2006.. Membrane rafts in host-pathogen interactions. . Biochim. Biophys. Acta 1758::213947
    [Crossref] [Google Scholar]
  84. 84.
    Rosen R, Kanakala S, Kliot A, Pakkianathan BC, Abu Farich B, et al. 2015.. Persistent, circulative transmission of begomoviruses by whitefly vectors. . Curr. Opin. Virol. 15::18
    [Crossref] [Google Scholar]
  85. 85.
    Sagouti T, Belabess Z, Rhallabi N, Barka EA, Tahiri A, Lahlali R. 2022.. Citrus stubborn disease: current insights on an enigmatic problem prevailing in citrus orchards. . Microorganisms 10::183
    [Crossref] [Google Scholar]
  86. 86.
    Shen Z, Dimopoulos G, Kafatos FC, Jacobs-Lorena M. 1999.. A cell surface mucin specifically expressed in the midgut of the malaria mosquito Anopheles gambiae. . PNAS 96::561015
    [Crossref] [Google Scholar]
  87. 87.
    Silva CP, Silva JR, Vasconcelos FF, Petretski MD, Damatta RA, et al. 2004.. Occurrence of midgut perimicrovillar membranes in paraneopteran insect orders with comments on their function and evolutionary significance. . Arthropod Struct. Dev. 33::13948
    [Crossref] [Google Scholar]
  88. 88.
    Simionescu M, Popov D, Sima A. 2009.. Endothelial transcytosis in health and disease. . Cell Tissue Res. 335::2740
    [Crossref] [Google Scholar]
  89. 89.
    Sparks WO, Rohlfing A, Bonning BC. 2011.. A peptide with similarity to baculovirus ODV-E66 binds the gut epithelium of Heliothis virescens and impedes infection with Autographa californica multiple nucleopolyhedrovirus. . J. Gen. Virol. 92::105160
    [Crossref] [Google Scholar]
  90. 90.
    Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, et al. 1998.. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. . N. Engl. J. Med. 339::20915
    [Crossref] [Google Scholar]
  91. 91.
    Takei K, Haucke V. 2001.. Clathrin-mediated endocytosis: Membrane factors pull the trigger. . Trends Cell Biol. 11::38591
    [Crossref] [Google Scholar]
  92. 92.
    Tavares CS, Mishra R, Ghobrial PN, Bonning BC. 2022.. Composition and abundance of midgut surface proteins in the Asian citrus psyllid, Diaphorina citri. . J. Proteom. 261::104580
    [Crossref] [Google Scholar]
  93. 93.
    Toprak U, Harris S, Baldwin D, Theilmann D, Gillott C, et al. 2012.. Role of enhancin in Mamestra configurata nucleopolyhedrovirus virulence: selective degradation of host peritrophic matrix proteins. . J. Gen. Virol. 93::74453
    [Crossref] [Google Scholar]
  94. 94.
    Tyska MJ, Nambiar R. 2010.. Myosin-1a: a motor for microvillar membrane movement and mechanics. . Commun. Integr. Biol. 3::6466
    [Crossref] [Google Scholar]
  95. 95.
    Ubaida Mohien C, Colquhoun DR, Mathias DK, Gibbons JG, Armistead JS, et al. 2013.. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites. . Mol. Cell. Proteom. 12::12031
    [Crossref] [Google Scholar]
  96. 96.
    Urbanowicz A, Lewandowski D, Szpotkowski K, Figlerowicz M. 2016.. Tick receptor for outer surface protein A from Ixodes ricinus—the first intrinsically disordered protein involved in vector-microbe recognition. . Sci. Rep. 6::25205
    [Crossref] [Google Scholar]
  97. 97.
    Vega-Rodriguez J, Ghosh AK, Kanzok SM, Dinglasan RR, Wang S, et al. 2014.. Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut. . PNAS 111::E492500
    [Crossref] [Google Scholar]
  98. 98.
    Vendeville A, Ravallec M, Jousset FX, Devise M, Mutuel D, et al. 2009.. Densovirus infectious pathway requires clathrin-mediated endocytosis followed by trafficking to the nucleus. . J. Virol. 83::467889
    [Crossref] [Google Scholar]
  99. 99.
    Viswanath VK, Gore ST, Valiyaparambil A, Mukherjee S, Lakshminarasimhan A. 2021.. Plasmodium chitinases: revisiting a target of transmission-blockade against malaria. . Protein Sci. 30::1493501
    [Crossref] [Google Scholar]
  100. 100.
    Walski T, De Schutter K, Van Damme EJM, Smagghe G. 2017.. Diversity and functions of protein glycosylation in insects. . Insect Biochem. Mol. Biol. 83::2134
    [Crossref] [Google Scholar]
  101. 101.
    Wang P, Granados RR. 1997.. An intestinal mucin is the target substrate for a baculovirus enhancin. . PNAS 94::697782
    [Crossref] [Google Scholar]
  102. 102.
    Wang XW, Blanc S. 2021.. Insect transmission of plant single-stranded DNA viruses. . Annu. Rev. Entomol. 66::389405
    [Crossref] [Google Scholar]
  103. 103.
    Wang Y, Gosselin Grenet AS, Castelli I, Cermenati G, Ravallec M, et al. 2013.. Densovirus crosses the insect midgut by transcytosis and disturbs the barrier epithelial function. . J. Virol. 87::1238091
    [Crossref] [Google Scholar]
  104. 104.
    Whitfield AE, Falk BW, Rotenberg D. 2015.. Insect vector-mediated transmission of plant viruses. . Virology 479–80::27889
    [Crossref] [Google Scholar]
  105. 105.
    Whitfield AE, Kumar NK, Rotenberg D, Ullman DE, Wyman EA, et al. 2008.. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. . Phytopathology 98::4550
    [Crossref] [Google Scholar]
  106. 106.
    Whitfield AE, Ullman DE, German TL. 2004.. Expression and characterization of a soluble form of tomato spotted wilt virus glycoprotein GN. . J. Virol. 78::13197206
    [Crossref] [Google Scholar]
  107. 107.
    WHO (World Health Organ.). 2022.. World malaria report 2022. Rep. , WHO, Geneva:. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
    [Google Scholar]
  108. 108.
    Wolfersberger MG. 1993.. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the gypsy moth (Lymantria dispar). . Arch. Insect Biochem. Physiol. 24::13947
    [Crossref] [Google Scholar]
  109. 109.
    Wu P, Sun P, Nie K, Zhu Y, Shi M, et al. 2019.. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. . Cell Host Microbe 25::10112
    [Crossref] [Google Scholar]
  110. 110.
    Xia WQ, Liang Y, Chi Y, Pan LL, Zhao J, et al. 2018.. Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. . PLOS Pathog. 14::e1006866
    [Crossref] [Google Scholar]
  111. 111.
    Yadav K, Rana VS, Anjali, Saurav GK, Rawat N, et al. 2023.. Mucin protein of Aedes aegypti interacts with dengue virus 2 and influences viral infection. . Microbiol. Spectr. 11::e0250322
    [Crossref] [Google Scholar]
  112. 112.
    Yang L, Weiss BL, Williams AE, Aksoy E, de Silva Orfano A, et al. 2021.. Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly's midgut environment. . PLOS Pathog. 17::e1009475
    [Crossref] [Google Scholar]
  113. 113.
    Yu S, Wang J, Luo X, Zheng H, Wang L, et al. 2022.. Transmission-blocking strategies against malaria parasites during their mosquito stages. . Front. Cell. Infect. Microbiol. 12::820650
    [Crossref] [Google Scholar]
  114. 114.
    Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. 2015.. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. . Science 347::99194
    [Crossref] [Google Scholar]
  115. 115.
    Zhang L, Liu W, Zhang X, Li L, Wang X. 2021.. Southern rice black-streaked dwarf virus hijacks SNARE complex of its insect vector for its effective transmission to rice. . Mol. Plant Pathol. 22::125670
    [Crossref] [Google Scholar]
  116. 116.
    Zhao J, Lei T, Zhang XJ, Yin TY, Wang XW, Liu SS. 2020.. A vector whitefly endocytic receptor facilitates the entry of begomoviruses into its midgut cells via binding to virion capsid proteins. . PLOS Pathog. 16::e1009053
    [Crossref] [Google Scholar]
  117. 117.
    Zhou J, Tzanetakis IE. 2020.. Transmission blockage of an orthotospovirus using synthetic peptides. . J. Gen. Virol. 101::11221
    [Crossref] [Google Scholar]
  118. 118.
    Zieler H, Garon CF, Fischer ER, Shahabuddin M. 2000.. A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes. . J. Exp. Biol. 203::1599611
    [Crossref] [Google Scholar]
  119. 119.
    Zieler H, Nawrocki JP, Shahabuddin M. 1999.. Plasmodium gallinaceum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. . J. Exp. Biol. 202::48595
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-030624-014608
Loading
/content/journals/10.1146/annurev-ento-030624-014608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error