1932

Abstract

Most insects encountered in the field are initially entomological dark matter in that they cannot be identified to species while alive. This explains the enduring quest for efficient ways to identify collected specimens. Morphological tools came first but are now routinely replaced or complemented with DNA barcodes. Initially too expensive for widespread use, these barcodes have since evolved into powerful tools for specimen identification and sorting, given that the evolution of sequencing approaches has dramatically reduced the cost of barcodes, thus enabling decentralized deployment across the planet. In this article, we review how DNA barcodes have become a key tool for accelerating biodiversity discovery and analyzing insect communities through both megabarcoding and metabarcoding in an era of insect decline. We predict that DNA barcodes will be particularly important for assembling image training sets for deep learning algorithms, global biodiversity genomics, and functional analysis of insect communities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-040124-014001
2025-01-28
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-040124-014001.html?itemId=/content/journals/10.1146/annurev-ento-040124-014001&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abeynayake SW, Fiorito S, Dinsdale A, Whattam M, Crowe B, et al. 2021.. A rapid and cost-effective identification of invertebrate pests at the borders using MinION sequencing of DNA barcodes. . Genes 12:(8):1138
    [Crossref] [Google Scholar]
  2. 2.
    Adler PH, Foottit RG. 2017.. Introduction. . In Insect Biodiversity: Science and Society, Vol. 1, ed. PH Adler, RG Foottit , pp. 17. Hoboken, NJ:: Wiley. , 2nd ed..
    [Google Scholar]
  3. 3.
    Ahrens D, Ahyong ST, Ballerio A, Barclay MVL, Eberle J, et al. 2021.. Is it time to describe new species without diagnoses? A comment on Sharkey et al. 2021. . Zootaxa 5027:(2):15159
    [Crossref] [Google Scholar]
  4. 4.
    Ahrens D, Fujisawa T, Krammer HJ, Eberle J, Fabrizi S, Vogler AP. 2016.. Rarity and incomplete sampling in DNA-based species delimitation. . Syst. Biol. 65:(3):47894
    [Crossref] [Google Scholar]
  5. 5.
    Basset Y, Hajibabaei M, Wright MTG, Castillo AM, Donoso DA, et al. 2022.. Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera). . Sci. Rep. 12::10762
    [Crossref] [Google Scholar]
  6. 6.
    Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, et al. 2013.. GenBank. . Nucleic Acids Res. 41::D3642
    [Crossref] [Google Scholar]
  7. 7.
    Blaxter ML. 2004.. The promise of a DNA taxonomy. . Philos. Trans. R. Soc. Lond. B 359:(1444):66979
    [Crossref] [Google Scholar]
  8. 8.
    Bleidorn C, Henze K. 2021.. A new primer pair for barcoding of bees (Hymenoptera: Anthophila) without amplifying the orthologous coxA gene of Wolbachia bacteria. . BMC Res. Notes 14:(1):427
    [Crossref] [Google Scholar]
  9. 9.
    Boykin LM, Armstrong K, Kubatko L, De Barro P. 2012.. DNA barcoding invasive insects: database roadblocks. . Invertebr. Syst. 26:(6):50614
    [Crossref] [Google Scholar]
  10. 10.
    Brown BV, Borkent A, Adler PH, Amorim DS, Barber K, et al. 2018.. Comprehensive inventory of true flies (Diptera) at a tropical site. . Commun. Biol. 1::21
    [Crossref] [Google Scholar]
  11. 11.
    Buchner D, Leese F. 2020.. BOLDigger—a Python package to identify and organise sequences with the Barcode of Life Data systems. . Metabarcoding Metagenom. 4::e53535
    [Crossref] [Google Scholar]
  12. 12.
    Castalanelli MA, Severtson DL, Brumley CJ, Szito A, Foottit RG, et al. 2010.. A rapid non-destructive DNA extraction method for insects and other arthropods. . J. Asia-Pac. Entomol. 13:(3):24348
    [Crossref] [Google Scholar]
  13. 13.
    Caterino MS, Recuero E. 2024.. Overcoming life stage-centric biases illuminates arthropod diversity, systematics and biology. . Syst. Entomol. 49:(3):34554
    [Crossref] [Google Scholar]
  14. 14.
    Centre for Biodiversity Genomics. Global Malaise Trap Program. https://biodiversitygenomics.net/projects/gmp/
    [Google Scholar]
  15. 15.
    Chimeno C, Schmidt S, Cancian de Araujo B, Perez K, von Rintelen T, et al. 2023.. Abundant, diverse, unknown: extreme species richness and turnover despite drastic undersampling in two closely placed tropical Malaise traps. . PLOS ONE 18:(8):e0290173
    [Crossref] [Google Scholar]
  16. 16.
    Collins RA, Cruickshank RH. 2013.. The seven deadly sins of DNA barcoding. . Mol. Ecol. Resour. 13:(6):96975
    [Crossref] [Google Scholar]
  17. 17.
    Cywinska A, Hunter FF, Hebert P. 2006.. Identifying Canadian mosquito species through DNA barcodes. . Med. Vet. Entomol. 20::41324
    [Crossref] [Google Scholar]
  18. 18.
    Darwin Tree Life Proj. Consort. 2022.. Sequence locally, think globally: the Darwin Tree of Life Project. . PNAS 119:(4):e2115642118
    [Crossref] [Google Scholar]
  19. 19.
    Dayrat B. 2004.. Towards integrative taxonomy. . Biol. J. Linn. Soc. 85::40715
    [Crossref] [Google Scholar]
  20. 20.
    de Souza Amorim D, Brown BV, Boscolo D, Ale-Rocha R, Alvarez-Garcia DM, et al. 2022.. Vertical stratification of insect abundance and species richness in an Amazonian tropical forest. . Sci. Rep. 12::1734
    [Crossref] [Google Scholar]
  21. 21.
    DeSalle R, Goldstein P. 2019.. Review and interpretation of trends in DNA barcoding. . Front. Ecol. Evol. 7::302
    [Crossref] [Google Scholar]
  22. 22.
    D'Souza ML, Hebert PDN. 2018.. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. . Mol. Ecol. 27:(10):244760
    [Crossref] [Google Scholar]
  23. 23.
    D'Souza ML, van der Bank M, Shongwe Z, Rattray RD, Stewart R, et al. 2021.. Biodiversity baselines: tracking insects in Kruger National Park with DNA barcodes. . Biol. Conserv. 256::109034
    [Crossref] [Google Scholar]
  24. 24.
    Dupérré N. 2020.. Old and new challenges in taxonomy: What are taxonomists up against?. Megataxa 1:(1):5962
    [Crossref] [Google Scholar]
  25. 25.
    Elbrecht V, Braukmann TWA, Ivanova NV, Prosser SWJ, Hajibabaei M, et al. 2019.. Validation of COI metabarcoding primers for terrestrial arthropods. . PeerJ 7::e7745
    [Crossref] [Google Scholar]
  26. 26.
    Fedosov A, Achaz G, Gontchar A, Puillandre N. 2022.. mold, a novel software to compile accurate and reliable DNA diagnoses for taxonomic descriptions. . Mol. Ecol. Resour. 22:(5):203853
    [Crossref] [Google Scholar]
  27. 27.
    Folmer O, Black M, Hoeh W, Lutz W, Vrijenhoek R. 1994.. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. . Mol. Mar. Biol. Biotechnol. 3:(5):29499
    [Google Scholar]
  28. 28.
    Forbes AA, Bagley RK, Beer MA, Hippee AC, Widmayer HA. 2018.. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. . BMC Ecol. 18:(1):21
    [Crossref] [Google Scholar]
  29. 29.
    Fujisawa T, Barraclough TG. 2013.. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. . Syst. Biol. 62:(5):70724
    [Crossref] [Google Scholar]
  30. 30.
    Fujisawa T, Noguerales V, Meramveliotakis E, Papadopoulou A, Vogler AP. 2022.. Image-based taxonomic classification of bulk insect biodiversity samples using deep learning and domain adaptation. . Syst. Entomol. 48::387401
    [Crossref] [Google Scholar]
  31. 31.
    García-Robledo C, Kuprewicz EK, Staines CL, Kress WJ, Erwin TL. 2013.. Using a comprehensive DNA barcode library to detect novel egg and larval host plant associations in a Cephaloleia rolled-leaf beetle (Coleoptera: Chrysomelidae). . Biol. J. Linn. Soc. 110::18998
    [Crossref] [Google Scholar]
  32. [Google Scholar]
  33. 33.
    Geiger MF, Moriniere J, Hausmann A, Haszprunar G, Wagele W, et al. 2016.. Testing the Global Malaise Trap Program—how well does the current barcode reference library identify flying insects in Germany?. Biodivers. Data J. 4::e10671
    [Crossref] [Google Scholar]
  34. 34.
    González R, Carrejo N, Wilkerson RC, Alarcon J, Alarcon-Ormasa J, et al. 2010.. Confirmation of Anopheles (Anopheles) calderoni Wilkerson, 1991 (Diptera: Culicidae) in Colombia and Ecuador through molecular and morphological correlation with topotypic material. . Mem. Inst. Oswaldo Cruz. 105:(8):10019
    [Crossref] [Google Scholar]
  35. 35.
    Hartop E, Srivathsan A, Ronquist F, Meier R. 2022.. Towards large-scale integrative taxonomy (LIT): resolving the data conundrum for dark taxa. . Syst. Biol. 71:(6):140422
    [Crossref] [Google Scholar]
  36. 36.
    Hausmann A, Miller SE, Holloway JD, deWaard JR, Pollock D, et al. 2016.. Calibrating the taxonomy of a megadiverse insect family: 3000 DNA barcodes from geometrid type specimens (Lepidoptera, Geometridae). . Genome 59:(9):67184
    [Crossref] [Google Scholar]
  37. 37.
    Hebert PD, Cywinska A, Ball SL, deWaard JR. 2003.. Biological identifications through DNA barcodes. . Proc. Biol. Sci. 270:(1512):31321
    [Crossref] [Google Scholar]
  38. 38.
    Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. 2004.. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. . PNAS 101:(41):1481217
    [Crossref] [Google Scholar]
  39. 39.
    Hebert PD, Ratnasingham S, deWaard JR. 2003.. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. . Proc. Biol. Sci. 270:(Suppl. 1):S9699
    [Google Scholar]
  40. 40.
    Hebert PDN, Braukmann TWA, Prosser SWJ, Ratnasingham S, deWaard JR, et al. 2018.. A sequel to Sanger: amplicon sequencing that scales. . BMC Genom. 19:(1):219
    [Crossref] [Google Scholar]
  41. 41.
    Hofmann EP, Nicholson KE, Luque-Montes IR, Kohler G, Cerrato-Mendoza CA, et al. 2019.. Cryptic diversity, but to what extent? Discordance between single-locus species delimitation methods within mainland Anoles (Squamata: Dactyloidae) of Northern Central America. . Front. Genet. 10::11
    [Crossref] [Google Scholar]
  42. 42.
    Hoye TT, Arje J, Bjerge K, Hansen OLP, Iosifidis A, et al. 2021.. Deep learning and computer vision will transform entomology. . PNAS 118:(2):e2002545117
    [Crossref] [Google Scholar]
  43. 43.
    Ivanova NV, Dewaard JR, Hebert PDN. 2006.. An inexpensive, automation-friendly protocol for recovering high-quality DNA. . Mol. Ecol. Notes 6:(4):9981002
    [Crossref] [Google Scholar]
  44. 44.
    Jones G. 2017.. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. . J. Math. Biol. 74:(1–2):44767
    [Crossref] [Google Scholar]
  45. 45.
    Jung S, Duwal RK, Lee S. 2011.. COI barcoding of true bugs (Insecta, Heteroptera). . Mol. Ecol. Resour. 11:(2):26670
    [Crossref] [Google Scholar]
  46. 46.
    Jurado-Rivera JA, Vogler AP, Reid CA, Petitpierre E, Gomez-Zurita J. 2009.. DNA barcoding insect-host plant associations. . Proc. Biol. Sci. 276:(1657):63948
    [Google Scholar]
  47. 47.
    Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, et al. 2017.. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. . Bioinformatics 33:(11):163038
    [Crossref] [Google Scholar]
  48. 48.
    Korlević P, Lawniczak M. 2023.. SOP—lysis C plate based DNA extraction. Rep., protocols.io , Berkeley, CA:. https://www.protocols.io/view/sop-lysis-c-plate-based-dna-extraction-ewov1o3molr2/v1
    [Google Scholar]
  49. 49.
    Korlević P, McAlister E, Mayho M, Makunin A, Flicek P, Lawniczak MKN. 2021.. A minimally morphologically destructive approach for DNA retrieval and whole-genome shotgun sequencing of pinned historic Dipteran vector species. . Genome Biol. Evol. 13:(10):evab226
    [Crossref] [Google Scholar]
  50. 50.
    Krehenwinkel H, Kennedy SR, Rueda A, Lam A, Gillespie RG. 2018.. Scaling up DNA barcoding—primer sets for simple and cost efficient arthropod systematics by multiplex PCR and Illumina amplicon sequencing. . Methods Ecol. Evol. 9:(11):218193
    [Crossref] [Google Scholar]
  51. 51.
    Kühn AL, Haase M. 2020.. QUIDDICH: QUick IDentification of DIagnostic CHaracters. . J. Zool. Syst. Evol. Res. 58:(1):2226
    [Crossref] [Google Scholar]
  52. 52.
    Kumar NP, Rajavel AR, Natarajan R, Jambulingam P. 2007.. DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). . J. Med. Entomol. 44:(1):17
    [Crossref] [Google Scholar]
  53. 53.
    Kwong S, Srivathsan A, Meier R. 2012.. An update on DNA barcoding: low species coverage and numerous unidentified sequences. . Cladistics 28:(6):63944
    [Crossref] [Google Scholar]
  54. 54.
    Kwong S, Srivathsan A, Vaidya G, Meier R. 2012.. Is the COI barcoding gene involved in speciation through intergenomic conflict?. Mol. Phylogenet. Evol. 62:(3):100912
    [Crossref] [Google Scholar]
  55. 55.
    Lewin HA, Richards S, Lieberman Aiden E, Allende ML, Archibald JM, et al. 2022.. The Earth BioGenome Project 2020: starting the clock. . PNAS 119:(4):e2115635118
    [Crossref] [Google Scholar]
  56. 56.
    Lin X, Stur E, Ekrem T. 2015.. Exploring genetic divergence in a species-rich insect genus using 2790 DNA barcodes. . PLOS ONE 10:(9):e0138993
    [Crossref] [Google Scholar]
  57. 57.
    Lipscomb D, Platnick N, Wheeler Q. 2003.. The intellectual content of taxonomy: a comment on DNA taxonomy. . Trends Ecol. Evol. 18:(2):6566
    [Crossref] [Google Scholar]
  58. 58.
    Liu S, Yang C, Zhou C, Zhou X. 2017.. Filling reference gaps via assembling DNA barcodes using high-throughput sequencing-moving toward barcoding the world. . GigaScience 6:(12):gix104
    [Crossref] [Google Scholar]
  59. 59.
    Loto F, Romero CM, Baigorí MD, Pera LM. 2013.. Direct DNA amplification from fall armyworm (Lepidoptera: Noctuidae) samples. . Fla. Entomol. 96:(4):161820
    [Crossref] [Google Scholar]
  60. 60.
    Lukic D, Eberle J, Thormann J, Holzschuh C, Ahrens D. 2021.. Excluding spatial sampling bias does not eliminate oversplitting in DNA-based species delimitation analyses. . Ecol. Evol. 11:(15):1032737
    [Crossref] [Google Scholar]
  61. 61.
    Ma Z, Ren J, Zhang R. 2022.. Identifying the genetic distance threshold for Entiminae (Coleoptera: Curculionidae) species delimitation via COI barcodes. . Insects 13:(3):261
    [Crossref] [Google Scholar]
  62. 62.
    Maestri S, Cosentino E, Paterno M, Freitag H, Garces JM, et al. 2019.. A rapid and accurate MinION-based workflow for tracking species biodiversity in the field. . Genes 10:(6):468
    [Crossref] [Google Scholar]
  63. 63.
    Magnacca KN, Brown MJ. 2012.. DNA barcoding a regional fauna: Irish solitary bees. . Mol. Ecol. Resour. 12:(6):99098
    [Crossref] [Google Scholar]
  64. 64.
    Magurran AE, Henderson PA. 2010.. Commoness and rarity. . In Biological Diversity: Frontiers in Measurement and Assessment, ed. AE Magurran, BJ McGill , pp. 97104. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  65. 65.
    Marshall E. 2005.. Taxonomy. Will DNA barcodes breathe life into classification?. Science 307:(5712):1037
    [Crossref] [Google Scholar]
  66. 66.
    McKeon SN, Lehr M, Wilkerson RC, Ruiz JF, Sallum MA, et al. 2010.. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil. . Malar. J. 9::271
    [Crossref] [Google Scholar]
  67. 67.
    Meglecz E. 2023.. COInr and mkCOInr: building and customizing a nonredundant barcoding reference database from BOLD and NCBI using a semi-automated pipeline. . Mol. Ecol. Resour. 23:(4):93345
    [Crossref] [Google Scholar]
  68. 68.
    Meier R. 2008.. DNA Sequences in taxonomy: opportunities and challenges. . In The New Taxonomy, ed. Q Wheeler , pp. 95127. Boca Raton, FL:: CRC Press
    [Google Scholar]
  69. 69.
    Meier R, Blaimer BB, Buenaventura E, Hartop E, von Rintelen T, et al. 2022.. A re-analysis of the data in Sharkey et al.’s 2021 minimalist revision reveals that BINs do not deserve names, but BOLD systems needs a stronger commitment to open science. . Cladistics 38:(2):26475
    [Crossref] [Google Scholar]
  70. 70.
    Meier R, Shiyang K, Vaidya G, Ng PKL. 2006.. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. . Syst. Biol. 55:(5):71528
    [Crossref] [Google Scholar]
  71. 71.
    Meier R, Wong W, Srivathsan A, Foo M. 2016.. $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. . Cladistics 32:(1):10010
    [Crossref] [Google Scholar]
  72. 72.
    Meierotto S, Sharkey MJ, Janzen DH, Hallwachs W, Hebert PDN, et al. 2019.. A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment. . Dtsch. Entomol. Z. 66:(2):11945
    [Crossref] [Google Scholar]
  73. 73.
    Miller JC. 1993.. Insect natural history, multi-species interactions and biodiversity in ecosystems. . Biodivers. Conserv. 2::23341
    [Crossref] [Google Scholar]
  74. 74.
    Miralles A, Bruy T, Wolcott K, Scherz MD, Begerow D, et al. 2020.. Repositories for taxonomic data: where we are and what is missing. . Syst. Biol. 69:(6):123153
    [Crossref] [Google Scholar]
  75. 75.
    Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, et al. 2009.. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. . Syst. Biol. 58:(3):298311
    [Crossref] [Google Scholar]
  76. 76.
    Moretti M, Dias ATC, de Bello F, Altermatt F, Chown SL, et al. 2016.. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. . Funct. Ecol. 31:(3):55867
    [Crossref] [Google Scholar]
  77. 77.
    Moritz C, Cicero C. 2004.. DNA barcoding: promise and pitfalls. . PLOS Biol. 2:(10):e354
    [Crossref] [Google Scholar]
  78. 78.
    Padial JM, Miralles A, De la Riva I, Vences M. 2010.. The integrative future of taxonomy. . Front Zool. 7::16
    [Crossref] [Google Scholar]
  79. 79.
    Page R. 2011.. Dark taxa: GenBank in a post-taxonomic world. iPhylo. , April 12. https://iphylo.blogspot.com/2011/04/dark-taxa-genbank-in-post-taxonomic.html
  80. 80.
    Page R. 2012.. Dark taxa even darker: NCBI pulls (some) DNA barcodes from GenBank (updated). . iPhylo, April 24. https://iphylo.blogspot.com/2012/04/dark-taxa-even-darker-ncbi-pulls-dna.html
    [Google Scholar]
  81. 81.
    Page RD. 2016.. DNA barcoding and taxonomy: dark taxa and dark texts. . Philos. Trans. R. Soc. Lond. B 371:(1702):20150334
    [Crossref] [Google Scholar]
  82. 82.
    Park N, Dawson E, Thurston S, Tuameh A, Mosca MM, et al. 2023.. High-throughput DNA barcoding library construction and sequencing protocol for BIOSCAN using unpurified non-destructively extracted DNA from arthropods. Rep., protocols.io , Berkeley, CA:. https://www.protocols.io/view/high-throughput-dna-barcoding-library-construction-8epv5jzxdl1b/v1
    [Google Scholar]
  83. 83.
    Parslow BA, Schwarz MP, Stevens MI. 2021.. Molecular diversity and species delimitation in the family Gasteruptiidae (Hymenoptera: Evanioidea). . Genome 64:(3):25364
    [Crossref] [Google Scholar]
  84. 84.
    Pfrender ME, Hawkins CP, Begley M, Courtney GW, Creutzbeurg BR, et al. 2010.. Assessing macroinvertebrate biodiversity in freshwater ecosystems: advances and challenges in DNA-based approaches. . Q. Rev. Biol. 85:(3):31940
    [Crossref] [Google Scholar]
  85. 85.
    Pomerantz A, Sahlin K, Vasiljevic N, Seah A, Lim M, et al. 2022.. Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment. . Nat. Protoc. 17:(6):141543
    [Crossref] [Google Scholar]
  86. 86.
    Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, et al. 2006.. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. . Syst. Biol. 55:(4):595609
    [Crossref] [Google Scholar]
  87. 87.
    Porco D, Rougerie R, Deharveng L, Hebert PDN. 2010.. Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied arthropods in a high throughput context: the example of Collembola. . Mol. Ecol. Resour. 10::94245
    [Crossref] [Google Scholar]
  88. 88.
    Pornon A, Escaravage N, Burrus M, Holota H, Khimoun A, et al. 2016.. Using metabarcoding to reveal and quantify plant-pollinator interactions. . Sci. Rep. 6::27282
    [Crossref] [Google Scholar]
  89. 89.
    Porter TM, Morris DM, Basiliko N, Hajibabaei M, Doucet D, et al. 2019.. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. . Sci. Rep. 9::18218
    [Crossref] [Google Scholar]
  90. 90.
    Prieto C, Faynel C, Robbins R, Hausmann A. 2021.. Congruence between morphology-based species and Barcode Index Numbers (BINs) in neotropical Eumaeini (Lycaenidae). . PeerJ 9::e11843
    [Crossref] [Google Scholar]
  91. 91.
    Prosser S, deWaard J, Miller SE, Hebert P. 2015.. DNA barcodes from century-old type specimens using next generation sequencing. . Mol. Ecol. Resour. 16:(2):48797
    [Crossref] [Google Scholar]
  92. 92.
    Puillandre N, Brouillet S, Achaz G. 2021.. ASAP: assemble species by automatic partitioning. . Mol. Ecol. Resour. 21:(2):60920
    [Crossref] [Google Scholar]
  93. 93.
    Puillandre N, Lambert A, Brouillet S, Achaz G. 2012.. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. . Mol. Ecol. 21:(8):186477
    [Crossref] [Google Scholar]
  94. 94.
    Puillandre N, Modica MV, Zhang Y, Sirovich L, Boisselier MC, et al. 2012.. Large-scale species delimitation method for hyperdiverse groups. . Mol. Ecol. 21:(11):267191
    [Crossref] [Google Scholar]
  95. 95.
    Quicke DLJ, Hebert PDN, Pentinsaari M, Butcher BA. 2023.. Barcoding Hymenoptera: 11 Malaise traps in three Thai forests: the first 68 trap weeks and 15,338 parasitoid wasp sequences. . Forests 14:(10):1991
    [Crossref] [Google Scholar]
  96. 96.
    Ranasinghe U, Eberle J, Thormann J, Bohacz C, Benjamin SP, Ahrens D. 2022.. Multiple species delimitation approaches with COI barcodes poorly fit each other and morphospecies—an integrative taxonomy case of Sri Lankan Sericini chafers (Coleoptera: Scarabaeidae). . Ecol. Evol. 12:(5):e8942
    [Crossref] [Google Scholar]
  97. 97.
    Ratnasingham S, Hebert PDN. 2007.. BOLD: the Barcode of Life Data System ( http://www.barcodinglife.org). . Mol. Ecol. Notes 7:(3):35564
    [Crossref] [Google Scholar]
  98. 98.
    Ratnasingham S, Hebert PD. 2013.. A DNA-based registry for all animal species: the barcode index number (BIN) system. . PLOS ONE 8:(7):e66213
    [Crossref] [Google Scholar]
  99. 99.
    Raupach MJ, Hendrich L, Kuchler SM, Deister F, Moriniere J, Gossner MM. 2014.. Building-up of a DNA barcode library for true bugs (Insecta: Hemiptera: Heteroptera) of Germany reveals taxonomic uncertainties and surprises. . PLOS ONE 9:(9):e106940
    [Crossref] [Google Scholar]
  100. 100.
    Rowley DL, Coddington JA, Gates MW, Norrbom AL, Ochoa RA, et al. 2007.. Vouchering DNA-barcoded specimens: test of a nondestructive extraction protocol for terrestrial arthropods. . Mol. Ecol. Notes 7:(6):91524
    [Crossref] [Google Scholar]
  101. 101.
    Sarkar IN, Planet PJ, Desalle R. 2008.. caos software for use in character-based DNA barcoding. . Mol. Ecol. Resour. 8:(6):125659
    [Crossref] [Google Scholar]
  102. 102.
    Scheffer SJ, Lewis ML, Joshi RC. 2006.. DNA barcoding applied to invasive leafminers (Diptera: Agromyzidae) in the Philippines. . Ann. Entomol. Soc. Am. 99:(2):20410
    [Crossref] [Google Scholar]
  103. 103.
    Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. 2010.. Integrative taxonomy: a multisource approach to exploring biodiversity. . Annu. Rev. Entomol. 55::42138
    [Crossref] [Google Scholar]
  104. 104.
    Seberg O, Humphries CJ, Knapp S, Stevenson DW, Petersen G, et al. 2003.. Shortcuts in systematics? A commentary on DNA-based taxonomy. . Trends Ecol. Evol. 18:(2):6365
    [Crossref] [Google Scholar]
  105. 105.
    Sharkey MJ, Janzen DH, Hallwachs W, Chapman EG, Smith MA, et al. 2021.. Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species. . Zookeys 1013::1665
    [Crossref] [Google Scholar]
  106. 106.
    Shokralla S, Gibson JF, Nikbakht H, Janzen DH, Hallwachs W, Hajibabaei M. 2014.. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. . Mol. Ecol. Resour. 14:(5):892901
    [Crossref] [Google Scholar]
  107. 107.
    Shokralla S, Porter TM, Gibson JF, Dobosz R, Janzen DH, et al. 2015.. Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. . Sci. Rep. 5::9687
    [Crossref] [Google Scholar]
  108. 108.
    Sites JW, Marshall JC. 2003.. Delimiting species: a Renaissance issue in systematic biology. . Trends Ecol. Evol. 18:(9):46270
    [Crossref] [Google Scholar]
  109. 109.
    Smith MD, Knapp AK. 2003.. Dominant species maintain ecosystem function with non-random species loss. . Ecol. Lett. 6:(6):50917
    [Crossref] [Google Scholar]
  110. 110.
    Sperling F. 2003.. DNA barcoding: deus ex machina. . Newsl. Biol. Surv. Can. 22:(2):5053
    [Google Scholar]
  111. 111.
    Srivathsan A, Ang Y, Heraty JM, Hwang WS, Jusoh WFA, et al. 2023.. Convergence of dominance and neglect in flying insect diversity. . Nat. Ecol. Evol. 7::101221
    [Crossref] [Google Scholar]
  112. 112.
    Srivathsan A, Baloglu B, Wang W, Tan WX, Bertrand D, et al. 2018.. A MinION-based pipeline for fast and cost-effective DNA barcoding. . Mol. Ecol. Resour. 18:(5):103549
    [Crossref] [Google Scholar]
  113. 113.
    Srivathsan A, Feng V, Suarez D, Emerson B, Meier R. 2023.. ONTbarcoder 2.0: rapid species discovery and identification with real-time barcoding facilitated by Oxford Nanopore R10.4. . Cladistics 40:(2):192203
    [Crossref] [Google Scholar]
  114. 114.
    Srivathsan A, Hartop E, Puniamoorthy J, Lee WT, Kutty SN, et al. 2019.. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. . BMC Biol. 17:(1):96
    [Crossref] [Google Scholar]
  115. 115.
    Srivathsan A, Lee L, Katoh K, Hartop E, Kutty SN, et al. 2021.. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. . BMC Biol. 19:(1):217
    [Crossref] [Google Scholar]
  116. 116.
    Srivathsan A, Loh RK, Ong EJ, Lee L, Ang Y, et al. 2023.. Network analysis with either Illumina or MinION reveals that detecting vertebrate species requires metabarcoding of iDNA from a diverse fly community. . Mol. Ecol. 32:(23):641835
    [Crossref] [Google Scholar]
  117. 117.
    Stein F, Wagner S, Brasicke N, Gailing O, Moura CCM, Gotz M. 2022.. A non-destructive high-speed procedure to obtain DNA barcodes from soft-bodied insect samples with a focus on the Dipteran section of Schizophora. . Insects 13:(8):679
    [Crossref] [Google Scholar]
  118. 118.
    Steinke D, deWaard SL, Sones JE, Ivanova NV, Prosser SWJ, et al. 2022.. Message in a bottle—metabarcoding enables biodiversity comparisons across ecoregions. . Gigascience 11::giac040
    [Crossref] [Google Scholar]
  119. 119.
    Strutzenberger P, Brehm G, Fiedler K. 2012.. DNA barcode sequencing from old type specimens as a tool in taxonomy: a case study in the diverse genus Eois (Lepidoptera: Geometridae). . PLOS ONE 7:(11):e49710
    [Crossref] [Google Scholar]
  120. 120.
    Talavera G, Dincă V, Vila R, Paradis E. 2013.. Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. . Methods Ecol. Evol. 4:(12):110110
    [Crossref] [Google Scholar]
  121. 121.
    Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP. 2003.. A plea for DNA taxonomy. . Trends Ecol. Evol. 18:(2):7074
    [Crossref] [Google Scholar]
  122. 122.
    Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, et al. 2023.. How genomics can help biodiversity conservation. . Trends Genet. 39:(7):54559
    [Crossref] [Google Scholar]
  123. 123.
    Thongjued K, Chotigeat W, Bumrungsri S, Thanakiatkrai P, Kitpipit T. 2019.. A new cost-effective and fast direct PCR protocol for insects based on PBS buffer. . Mol. Ecol. Resour. 19:(3):691701
    [Crossref] [Google Scholar]
  124. 124.
    Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. 2000.. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). . BioTechniques 29::5254
    [Crossref] [Google Scholar]
  125. 125.
    Valan M, Makonyi K, Maki A, Vondracek D, Ronquist F. 2019.. Automated taxonomic identification of insects with expert-level accuracy using effective feature transfer from convolutional networks. . Syst. Biol. 68:(6):87695
    [Crossref] [Google Scholar]
  126. 126.
    Virgilio M, Backeljau T, Nevado B, De Meyer M. 2010.. Comparative performances of DNA barcoding across insect orders. . BMC Bioinform. 11::206
    [Crossref] [Google Scholar]
  127. 127.
    Wang J, Qiao G. 2009.. DNA barcoding of genus Toxoptera Koch (Hemiptera: Aphididae): identification and molecular phylogeny inferred from mitochondrial COI sequences. . Insect Sci. 16:(6):47584
    [Crossref] [Google Scholar]
  128. 128.
    Wang WY, Srivathsan A, Foo M, Yamane SK, Meier R. 2018.. Sorting specimen-rich invertebrate samples with cost-effective NGS barcodes: validating a reverse workflow for specimen processing. . Mol. Ecol. Resour. 18:(3):490501
    [Crossref] [Google Scholar]
  129. 129.
    Weiss B, Aksoy S. 2011.. Microbiome influences on insect host vector competence. . Trends Parasitol. 27:(11):51422
    [Crossref] [Google Scholar]
  130. 130.
    Whitworth TL, Dawson RD, Magalon H, Baudry E. 2007.. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). . Proc. Biol. Sci. 274:(1619):173139
    [Google Scholar]
  131. 131.
    Wick RR, Judd LM, Holt KE. 2019.. Performance of neural network basecalling tools for Oxford Nanopore sequencing. . Genome Biol. 20:(1):129
    [Crossref] [Google Scholar]
  132. 132.
    Will KW, Mishler BD, Wheeler QD. 2005.. The perils of DNA barcoding and the need for integrative taxonomy. . Syst. Biol. 54:(5):84451
    [Crossref] [Google Scholar]
  133. 133.
    Will KW, Rubinoff D. 2004.. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. . Cladistics 20:(1):4755
    [Crossref] [Google Scholar]
  134. 134.
    Wong WH, Tay YC, Puniamoorthy J, Balke M, Cranston PS, Meier R. 2014.. “ Direct PCR” optimization yields a rapid, cost-effective, nondestructive and efficient method for obtaining DNA barcodes without DNA extraction. . Mol. Ecol. Resour. 14:(6):127180
    [Crossref] [Google Scholar]
  135. 135.
    World Econ. Forum. 2024.. The Global Risks Report 2024. Rep. , World Econ. Forum, Cologny, Switz.:
    [Google Scholar]
  136. 136.
    Wührl L, Pylatiuk C, Giersch M, Lapp F, von Rintelen T, et al. 2022.. DiversityScanner: robotic handling of small invertebrates with machine learning methods. . Mol. Ecol. Resour. 22:(4):162638
    [Crossref] [Google Scholar]
  137. 137.
    Wührl L, Rettenberger L, Meier R, Hartop E, Graf J, Pulatiuk C. 2024.. Entomoscope: an open-source photomicroscope for biodiversity discovery. . IEEE Access 12::1178594
    [Crossref] [Google Scholar]
  138. 138.
    Yang Z. 2015.. The BPP program for species tree estimation and species delimitation. . Curr. Zool. 61:(5):85465
    [Crossref] [Google Scholar]
  139. 139.
    Yeo D, Puniamoorthy J, Ngiam RWJ, Meier R. 2018.. Towards holomorphology in entomology: rapid and cost-effective adult-larva matching using NGS barcodes. . Syst. Entomol. 43:(4):67891
    [Crossref] [Google Scholar]
  140. 140.
    Yeo D, Srivathsan A, Meier R. 2020.. Longer is not always better: optimizing barcode length for large-scale species discovery and identification. . Syst. Biol. 69:(5):9991015
    [Crossref] [Google Scholar]
  141. 141.
    Yeo D, Srivathsan A, Puniamoorthy J, Maosheng F, Grootaert P, et al. 2021.. Mangroves are an overlooked hotspot of insect diversity despite low plant diversity. . BMC Biol. 19:(1):202
    [Crossref] [Google Scholar]
  142. 142.
    Yu DW, Ji Y, Emerson BC, Wang X, Ye C, et al. 2012.. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. . Methods Ecol. Evol. 3:(4):61323
    [Crossref] [Google Scholar]
  143. 143.
    Zamani A, Fric ZF, Gante HF, Hopkins T, Orfinger AB, et al. 2022.. DNA barcodes on their own are not enough to describe a species. . Syst. Entomol. 47:(3):38589
    [Crossref] [Google Scholar]
  144. 144.
    Zhang H, Bu W. 2022.. Exploring large-scale patterns of genetic variation in the COI gene among Insecta: implications for DNA barcoding and threshold-based species delimitation studies. . Insects 13:(5):425
    [Crossref] [Google Scholar]
  145. 145.
    Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013.. A general species delimitation method with applications to phylogenetic placements. . Bioinformatics 29:(22):286976
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-040124-014001
Loading
/content/journals/10.1146/annurev-ento-040124-014001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error