1932

Abstract

In the last few decades, we have witnessed the emergence of new vector-borne diseases (VBDs), the globalization of endemic VBDs, and the urbanization of previously rural VBDs. Data harmonization forms the basis of robust decision-support systems designed to protect at-risk communities from VBD threats. Strong interdisciplinary partnerships, protocols, digital infrastructure, and capacity-building initiatives are essential for facilitating the coproduction of robust multisource data sets. This review provides a foundation for researchers and practitioners embarking on data harmonization efforts to () better understand the links among environmental degradation, climate change, socioeconomic inequalities, and VBD risk; () conduct risk assessments, health impact attribution, and projection studies; and () develop robust early warning and response systems. We draw upon best practices in harmonizing data for two well-studied VBDs, dengue and malaria, and provide recommendations for the evolution of research and digital technology to improve data harmonization for VBD risk management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-040124-015101
2025-01-28
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-040124-015101.html?itemId=/content/journals/10.1146/annurev-ento-040124-015101&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Afrane YA, Zhou G, Githeko AK, Yan G. 2014.. Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya. . Malar. J. 13::405
    [Crossref] [Google Scholar]
  2. 2.
    Aiello AE, Renson A, Zivich PN. 2020.. Social media– and Internet-based disease surveillance for public health. . Annu. Rev. Public Health 41::10118
    [Crossref] [Google Scholar]
  3. 3.
    Alkire S, Robson M. 2022.. On international household survey data availability for assessing pre-pandemic monetary and multidimensional poverty in developing countries. . Dev. Stud. Res. 9:(1):27795
    [Crossref] [Google Scholar]
  4. 4.
    Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD. 2013.. Climate change and infectious diseases: from evidence to a predictive framework. . Science 341:(6145):51419
    [Crossref] [Google Scholar]
  5. 5.
    Athni TS, Shocket MS, Couper LI, Nova N, Caldwell IR, et al. 2021.. The influence of vector-borne disease on human history: socio-ecological mechanisms. . Ecol. Lett. 24:(4):82946
    [Crossref] [Google Scholar]
  6. 6.
    Barcellos C, Matos V, Lana RM, Lowe R. 2024.. Climate change, thermal anomalies, and the recent progression of dengue in Brazil. . Sci. Rep. 14::5948
    [Crossref] [Google Scholar]
  7. 7.
    Bardosh KL, Ryan SJ, Ebi K, Welburn S, Singer B. 2017.. Addressing vulnerability, building resilience: community-based adaptation to vector-borne diseases in the context of global change. . Infect. Dis. Poverty 6::166
    [Crossref] [Google Scholar]
  8. 8.
    Bastos LS, Economou T, Gomes MF, Villela DA, Coelho FC, et al. 2019.. A modelling approach for correcting reporting delays in disease surveillance data. . Stat. Med. 38:(22):436377
    [Crossref] [Google Scholar]
  9. 9.
    Brady OJ, Hay SI. 2020.. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. . Annu. Rev. Entomol. 65::191208
    [Crossref] [Google Scholar]
  10. 10.
    Braks M, Schaffner F, Medlock JM, Berriatua E, Balenghien T, et al. 2022.. VectorNet: putting vectors on the map. . Front. Public Health 10::809763
    [Crossref] [Google Scholar]
  11. 11.
    Buchhorn M, Lesiv M, Tsendbazar N-E, Herold M, Bertels L, Smets B. 2020.. Copernicus Global Land Cover layers—collection 2. . Remote Sens. 12:(6):1044
    [Crossref] [Google Scholar]
  12. 12.
    Carlson CJ, Mitchell D, Carleton T, Chersich M, Gibb R, et al. 2024.. Designing and describing climate change impact attribution studies: a guide to common approaches. . Earth ArXiv X5CD7M. https://doi.org/10.31223/X5CD7M
  13. 13.
    Carrasco-Escobar G, Moreno M, Fornace K, Herrera-Varela M, Manrique E, Conn JE. 2022.. The use of drones for mosquito surveillance and control. . Parasites Vectors 15:(1):473
    [Crossref] [Google Scholar]
  14. 14.
    Castro MC, Baeza A, Codeço CT, Cucunubá ZM, Dal'Asta AP, et al. 2019.. Development, environmental degradation, and disease spread in the Brazilian Amazon. . PLOS Biol. 17:(11):e3000526
    [Crossref] [Google Scholar]
  15. 15.
    Cazelles B, Cazelles K, Tian H, Chavez M, Pascual M. 2023.. Disentangling local and global climate drivers in the population dynamics of mosquito-borne infections. . Sci. Adv. 9:(39):eadf7202
    [Crossref] [Google Scholar]
  16. 16.
    Chame M, Barbosa HJ, Gadelha LM Jr., Augusto DA, Krempser E, Abdalla L. 2019.. SISS-Geo: leveraging citizen science to monitor wildlife health risks in Brazil. . J. Healthc. Inform. Res. 3:(4):41440
    [Crossref] [Google Scholar]
  17. 17.
    Cheng C, Messerschmidt L, Bravo I, Waldbauer M, Bhavikatti R, et al. 2024.. A general primer for data harmonization. . Sci. Data 11::152
    [Crossref] [Google Scholar]
  18. 18.
    Climate Vulnerability Forum. 2022.. Climate Vulnerability Monitor, third edition: a planet on fire. Publ., Eur. Comm., Brussels:
    [Google Scholar]
  19. 19.
    Codeço CT, Coelho F, Cruz O, Oliveira S, Castro T, Bastos L. 2018.. Infodengue: a nowcasting system for the surveillance of arboviruses in Brazil. . Rev. Épidémiol. Santé Publique 66:(Suppl. 5):S386
    [Crossref] [Google Scholar]
  20. 20.
    Codeço CT, Oliveira SS, Ferreira DA, Riback TI, Bastos LS, et al. 2022.. Fast expansion of dengue in Brazil. . Lancet Reg. Health 12::100274
    [Google Scholar]
  21. 21.
    Codeço CT, Villela DA, Coelho FC. 2018.. Estimating the effective reproduction number of dengue considering temperature-dependent generation intervals. . Epidemics 25::10111
    [Crossref] [Google Scholar]
  22. 22.
    Colón-González FJ, Gibb R, Khan K, Watts A, Lowe R, Brady OJ. 2023.. Projecting the future incidence and burden of dengue in Southeast Asia. . Nat. Commun. 14::5439
    [Crossref] [Google Scholar]
  23. 23.
    Colón-González FJ, Sewe MO, Tompkins AM, Sjödin H, Casallas A, et al. 2021.. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. . Lancet Planet. Health 5:(7):e40414
    [Crossref] [Google Scholar]
  24. 24.
    Colón-González FJ, Soares Bastos L, Hofmann B, Hopkin A, Harpham Q, et al. 2021.. Probabilistic seasonal dengue forecasting in Vietnam: a modelling study using superensembles. . PLOS Med. 18:(3):e1003542
    [Crossref] [Google Scholar]
  25. 25.
    Cuervo PF, Artigas P, Lorenzo-Morales J, Bargues MD, Mas-Coma S. 2023.. Ecological niche modelling approaches: challenges and applications in vector-borne diseases. . Trop. Med. Infect. Dis. 8:(4):187
    [Crossref] [Google Scholar]
  26. 26.
    da Silva Neto SR, Tabosa de Oliveira T, Teixiera IV, Medeiros Neto L, Souza Sampaio V, et al. 2022.. Arboviral disease record data—dengue and chikungunya, Brazil, 2013–2020. . Sci. Data 9::198
    [Crossref] [Google Scholar]
  27. 27.
    Dalrymple U, Mappin B, Gething PW. 2015.. Malaria mapping: understanding the global endemicity of falciparum and vivax malaria. . BMC Med. 13::140
    [Crossref] [Google Scholar]
  28. 28.
    de Almeida IF, Lana RM, Codeço CT. 2022.. How heterogeneous is the dengue transmission profile in Brazil? A study in six Brazilian states. . PLOS Negl. Trop. Dis. 16:(9):e0010746
    [Crossref] [Google Scholar]
  29. 29.
    Di Napoli C, Romanello M, Minor K, Chambers J, Dasgupta S, et al. 2023.. The role of global reanalyses in climate services for health: insights from the Lancet Countdown. . Meteorol. Appl. 30:(2):e2122
    [Crossref] [Google Scholar]
  30. 30.
    dos Reis IC, Honório NA, de Barros FSM, Barcellos C, Kitron U, et al. 2015.. Epidemic and endemic malaria transmission related to fish farming ponds in the Amazon frontier. . PLOS ONE 10:(9):e0137521
    [Crossref] [Google Scholar]
  31. 31.
    Erazo D, Grant L, Ghisbain G, Marini G, Colón-González FJ, et al. 2024.. Contribution of climate change to the spatial expansion of West Nile virus in Europe. . Nat. Commun. 15::1196
    [Crossref] [Google Scholar]
  32. 32.
    Eritja R, Palmer JR, Roiz D, Sanpera-Calbet I, Bartumeus F. 2017.. Direct evidence of adult Aedes albopictus dispersal by car. . Sci. Rep. 7::14399
    [Crossref] [Google Scholar]
  33. 33.
    Feachem RG, Chen I, Akbari O, Bertozzi-Villa A, Bhatt S, et al. 2019.. Malaria eradication within a generation: ambitious, achievable, and necessary. . Lancet 394:(10203):1056112
    [Crossref] [Google Scholar]
  34. 34.
    Fick SE, Hijmans RJ. 2017.. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. . Int. J. Climatol. 37:(12):430215
    [Crossref] [Google Scholar]
  35. 35.
    Filion A, Eriksson A, Jorge F, Niebuhr CN, Poulin R. 2020.. Large-scale disease patterns explained by climatic seasonality and host traits. . Oecologia 194::72333
    [Crossref] [Google Scholar]
  36. 36.
    Finch E, Batista ML, Alcayna T, Lee SA, Fletcher IK, Lowe R. 2023.. Early warning systems for vector-borne diseases: engagement, methods and implementation. . In Planetary Health Approaches to Understand and Control Vector-Borne Diseases, ed. K Fornace, J Conn, MA Mureb, LS Moreira Chaves, J Logan , pp. 34786. Wageningen, Neth.:: Wageningen Acad.
    [Google Scholar]
  37. 37.
    Fletcher IK, Stewart-Ibarra AM, García-Díez M, Shumake-Guillemot J, Lowe R. 2021.. Climate services for health: from global observations to local interventions. . Medicine 2:(4):35561
    [Crossref] [Google Scholar]
  38. 38.
    Fletcher IK, Stewart-Ibarra AM, Sippy R, Carrasco-Escobar G, Silva M, et al. 2020.. The relative role of climate variation and control interventions on malaria elimination efforts in El Oro, Ecuador: a modeling study. . Front. Environ. Sci. 8::135
    [Crossref] [Google Scholar]
  39. 39.
    Gibb R, Colón-González FJ, Lan PT, Huong PT, Nam VS, et al. 2023.. Interactions between climate change, urban infrastructure and mobility are driving dengue emergence in Vietnam. . Nat. Commun. 14::8179
    [Crossref] [Google Scholar]
  40. 40.
    Gomes MF, Codeço CT, Bastos LS, Lana RM. 2020.. Measuring the contribution of human mobility to malaria persistence. . Malar. J. 19::404
    [Crossref] [Google Scholar]
  41. 41.
    Grillet ME. 2023.. What's needed to sustain malaria elimination in the region of the Americas. . Bull. World Health Organ. 101:(10):A619
    [Crossref] [Google Scholar]
  42. 42.
    Grillet ME, Moreno JE, Hernández-Villena JV, Vincenti-González MF, Noya O, et al. 2021.. Malaria in Southern Venezuela: the hottest hotspot in Latin America. . PLOS Negl. Trop. Dis. 15:(1):e0008211
    [Crossref] [Google Scholar]
  43. 43.
    Hoffmann E, Bauer P, Sandu I, Wedi N, Geenen T, Thiemert D. 2023.. Destination Earth—a digital twin in support of climate services. . Clim. Serv. 30::100394
    [Crossref] [Google Scholar]
  44. 44.
    Hollingsworth TD, Pulliam JR, Funk S, Truscott JE, Isham V, Lloyd AL. 2015.. Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases. . Epidemics 10::1620
    [Crossref] [Google Scholar]
  45. 45.
    Huang Z, Wu X, Garcia AJ, Fik TJ, Tatem AJ. 2013.. An open-access modeled passenger flow matrix for the global air network in 2010. . PLOS ONE 8:(5):e64317
    [Crossref] [Google Scholar]
  46. 46.
    Huber JH, Childs ML, Caldwell JM, Mordecai EA. 2018.. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. . PLOS Negl. Trop. Dis. 12:(5):e0006451
    [Crossref] [Google Scholar]
  47. 47.
    Hussain-Alkhateeb L, Rivera Ramirez T, Kroeger A, Gozzer E, Runge-Ranzinger S. 2021.. Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review. . PLOS Negl. Trop. Dis. 15:(9):e0009686
    [Crossref] [Google Scholar]
  48. 48.
    Iwamura T, Guzman-Holst A, Murray KA. 2020.. Accelerating invasion potential of disease vector Aedes aegypti under climate change. . Nat. Commun. 11::2130
    [Crossref] [Google Scholar]
  49. 49.
    Jones SG, Kulldorff M. 2012.. Influence of spatial resolution on space-time disease cluster detection. . PLOS ONE 7:(10):e48036
    [Crossref] [Google Scholar]
  50. 50.
    Kiang MV, Santillana M, Chen JT, Onnela J-P, Krieger N, et al. 2021.. Incorporating human mobility data improves forecasts of dengue fever in Thailand. . Sci. Rep. 11::923
    [Crossref] [Google Scholar]
  51. 51.
    Kirk D, Straus S, Childs ML, Harris M, Couper L, et al. 2024.. Temperature impacts on dengue incidence are nonlinear and mediated by climatic and socioeconomic factors: a meta-analysis. . PLOS Clim. 3:(3):e0000152
    [Crossref] [Google Scholar]
  52. 52.
    Lana RM, da Costa Gomes MF, de Lima TFM, Honorio NA, Codeço CT. 2017.. The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: a network-based analysis. . PLOS Negl. Trop. Dis. 11:(11):e0006070
    [Crossref] [Google Scholar]
  53. 53.
    Lazer D, Kennedy R, King G, Vespignani A. 2014.. The parable of Google Flu: traps in big data analysis. . Science 343:(6176):12035
    [Crossref] [Google Scholar]
  54. 54.
    Leandro AD, Ayala MJ, Lopes RD, Martins CA, Maciel-de-Freitas R, Villela DA. 2022.. Entomo-virological Aedes aegypti surveillance applied for prediction of dengue transmission: a spatio-temporal modeling study. . Pathogens 12:(1):4
    [Crossref] [Google Scholar]
  55. 55.
    Lee SA, Economou T, de Castro Catão R, Barcellos C, Lowe R. 2021.. The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. . PLOS Negl. Trop. Dis. 15:(12):e0009773
    [Crossref] [Google Scholar]
  56. 56.
    Liu Y, Lillepold K, Semenza JC, Tozan Y, Quam MB, Rocklöv J. 2020.. Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones. . Environ. Res. 182::109114
    [Crossref] [Google Scholar]
  57. 57.
    Louis VR, Phalkey R, Horstick O, Ratanawong P, Wilder-Smith A, et al. 2014.. Modeling tools for dengue risk mapping—a systematic review. . Int. J. Health Geogr. 13::50
    [Crossref] [Google Scholar]
  58. 58.
    Lowe R, Barcellos C, Coelho CA, Bailey TC, Coelho GE, et al. 2014.. Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. . Lancet Infect. Dis. 14:(7):61926
    [Crossref] [Google Scholar]
  59. 59.
    Lowe R, Coelho CA, Barcellos C, Carvalho MS, Catao RDC, et al. 2016.. Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil. . eLife 5::e11285
    [Crossref] [Google Scholar]
  60. 60.
    Lowe R, Ryan SJ, Mahon R, Van Meerbeeck CJ, Trotman AR, et al. 2020.. Building resilience to mosquito-borne diseases in the Caribbean. . PLOS Biol. 18:(11):e3000791
    [Crossref] [Google Scholar]
  61. 61.
    Lowe R, Stewart-Ibarra AM, Petrova D, García-Díez M, Borbor-Cordova MJ, et al. 2017.. Climate services for health: predicting the evolution of the 2016 dengue season in Machala, Ecuador. . Lancet Planet. Health 1:(4):e14251
    [Crossref] [Google Scholar]
  62. 62.
    Maheshwari D, Garcia-Zapirain B, Sierra-Sosa D. 2022.. Quantum machine learning applications in the biomedical domain: a systematic review. . IEEE Access 10::8046384
    [Crossref] [Google Scholar]
  63. 63.
    Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG. 2012.. An overview of the Global Historical Climatology Network–Daily database. . J. Atmos. Ocean Technol. 29:(7):897910
    [Crossref] [Google Scholar]
  64. 64.
    Miller S, Preis T, Mizzi G, Bastos LS, da Costa Gomes MF, et al. 2022.. Faster indicators of chikungunya incidence using Google searches. . PLOS Negl. Trop. Dis. 16:(6):e0010441
    [Crossref] [Google Scholar]
  65. 65.
    Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, et al. 2021.. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. . Earth Syst. Sci. Data 13:(9):434983
    [Crossref] [Google Scholar]
  66. 66.
    Neta G, Pan W, Ebi K, Buss DF, Castranio T, et al. 2022.. Advancing climate change health adaptation through implementation science. . Lancet Planet. Health 6:(11):e90918
    [Crossref] [Google Scholar]
  67. 67.
    Opoku Afriyie S, Addison TK, Gebre Y, Mutala A-H, Antwi KB, et al. 2023.. Accuracy of diagnosis among clinical malaria patients: comparing microscopy, RDT and a highly sensitive quantitative PCR looking at the implications for submicroscopic infections. . Malar. J. 22::76
    [Crossref] [Google Scholar]
  68. 68.
    Palmer JR, Oltra A, Collantes F, Delgado JA, Lucientes J, et al. 2017.. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. . Nat. Commun. 8::916
    [Crossref] [Google Scholar]
  69. 69.
    Pezzulo C, Hornby GM, Sorichetta A, Gaughan AE, Linard C, et al. 2017.. Sub-national mapping of population pyramids and dependency ratios in Africa and Asia. . Sci. Data 4::170089
    [Crossref] [Google Scholar]
  70. 70.
    Possas C, Lourenço-de-Oliveira R, Tauil PL, de Paula Pinheiro F, Pissinatti A, et al. 2018.. Yellow fever outbreak in Brazil: the puzzle of rapid viral spread and challenges for immunisation. . Mem. Inst. Oswaldo Cruz 113:(10):e180278
    [Crossref] [Google Scholar]
  71. 71.
    Raafat N, Loganathan S, Mukaka M, Blacksell SD, Maude RJ. 2021.. Diagnostic accuracy of the WHO clinical definitions for dengue and implications for surveillance: a systematic review and meta-analysis. . PLOS Negl. Trop. Dis. 15:(4):e0009359
    [Crossref] [Google Scholar]
  72. 72.
    Rocklöv J, Semenza JC, Dasgupta S, Robinson EJ, Abd El Wahed A, et al. 2023.. Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond. . Lancet Reg. Health 32::100701
    [Google Scholar]
  73. 73.
    Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, et al. 2022.. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. . Lancet 400:(10363):161954
    [Crossref] [Google Scholar]
  74. 74.
    Romanello M, Di Napoli C, Green C, Kennard H, Lampard P, et al. 2023.. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. . Lancet 402:(10419):234694
    [Crossref] [Google Scholar]
  75. 75.
    Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. 2019.. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. . PLOS Negl. Trop. Dis. 13:(3):e0007213
    [Crossref] [Google Scholar]
  76. 76.
    Ryan SJ, Lippi CA, Caplan T, Diaz A, Dunbar W, et al. 2023.. The current landscape of software tools for the climate-sensitive infectious disease modelling community. . Lancet Planet. Health 7:(6):e52736
    [Crossref] [Google Scholar]
  77. 77.
    Ryan SJ, Lippi CA, Zermoglio F. 2020.. Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. . Malar. J. 19::170
    [Crossref] [Google Scholar]
  78. 78.
    Stewart-Ibarra AM, Rollock L, Best S, Brown T, Diaz AR, et al. 2022.. Co-learning during the co-creation of a dengue early warning system for the health sector in Barbados. . BMJ Glob. Health 7:(Suppl. 7):e007842
    [Crossref] [Google Scholar]
  79. 79.
    Tian H, Sun Z, Faria NR, Yang J, Cazelles B, et al. 2017.. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. . PLOS Negl. Trop. Dis. 11:(8):e0005694
    [Crossref] [Google Scholar]
  80. 80.
    Tjaden NB, Caminade C, Beierkuhnlein C, Thomas SM. 2018.. Mosquito-borne diseases: advances in modelling climate-change impacts. . Trends Parasitol. 34:(3):22745
    [Crossref] [Google Scholar]
  81. 81.
    van Daalen KR, Romanello M, Rocklöv J, Semenza JC, Tonne C, et al. 2022.. The 2022 Europe report of the Lancet Countdown on health and climate change: towards a climate resilient future. . Lancet Public Health 7:(11):e94265
    [Crossref] [Google Scholar]
  82. 82.
    van Daalen KR, Tonne C, Semenza JC, Rocklöv J, Markandya A, et al. 2024.. The 2024 Europe report of the Lancet Countdown on health and climate change: unprecedented warming demands unprecedented action. . Lancet Public Health 9:(7):e495522
    [Crossref] [Google Scholar]
  83. 83.
    Weiss DJ, Lucas TC, Nguyen M, Nandi AK, Bisanzio D, et al. 2019.. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. . Lancet 394:(10195):32231
    [Crossref] [Google Scholar]
  84. 84.
    Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, et al. 2020.. The importance of vector control for the control and elimination of vector-borne diseases. . PLOS Negl. Trop. Dis. 14:(1):e0007831
    [Crossref] [Google Scholar]
  85. 85.
    Wimberly MC, de Beurs KM, Loboda TV, Pan WK. 2021.. Satellite observations and malaria: new opportunities for research and applications. . Trends Parasitol. 37:(6):52537
    [Crossref] [Google Scholar]
  86. 86.
    Wimberly MC, Nekorchuk DM, Kankanala RR. 2022.. Cloud-based applications for accessing satellite Earth observations to support malaria early warning. . Sci. Data 9::208
    [Crossref] [Google Scholar]
  87. 87.
    World Health Organ. 2020.. Vector-borne diseases. Fact Sheet, World Health Organ., Geneva:. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
    [Google Scholar]
  88. 88.
    Wu VY, Chen B, Christofferson R, Ebel G, Fagre AC, et al. 2022.. A minimum data standard for vector competence experiments. . Sci. Data 9::634
    [Crossref] [Google Scholar]
  89. 89.
    Zhao T, Xue R-D. 2024.. Vector biology and integrated management of malaria vectors in China. . Annu. Rev. Entomol. 69::33354
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-040124-015101
Loading
/content/journals/10.1146/annurev-ento-040124-015101
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error