1932

Abstract

Distant and predictable features in the environment make ideal compass cues to allow movement along a straight path. Ball-rolling dung beetles use a wide range of different signals in the day or night sky to steer themselves along a fixed bearing. These include the sun, the Milky Way, and the polarization pattern generated by the moon. Almost two decades of research into these remarkable creatures have shown that the dung beetle's compass is flexible and readily adapts to the cues available in its current surroundings. In the morning and afternoon, dung beetles use the sun to orient, but at midday, they prefer to use the wind, and at night or in a forest, they rely primarily on polarized skylight to maintain straight paths. We are just starting to understand the neuronal substrate underlying the dung beetle's compass and the mystery of why these beetles start each journey with a dance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-042020-102149
2021-01-07
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/en/66/1/annurev-ento-042020-102149.html?itemId=/content/journals/10.1146/annurev-ento-042020-102149&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adden A. 2020. There and back again: the neural basis of migration in the Bogong moth PhD thesis, Lund Univ. Swed:.
    [Google Scholar]
  2. 2. 
    Baird E, Byrne MJ, Scholtz CH, Warrant EJ, Dacke M 2010. Bearing selection in ball-rolling dung beetles: Is it constant. J. Comp. Physiol. A 196:801–6
    [Google Scholar]
  3. 3. 
    Baird E, Byrne MJ, Smolka J, Warrant EJ, Dacke M 2012. The dung beetle dance: an orientation behaviour. PLOS ONE 7:e30211
    [Google Scholar]
  4. 4. 
    Byrne MJ, Dacke M. 2011. The visual ecology of dung beetles. Dung Beetle Ecology and Evolution LW Simmons, J Ridsdill-Smith Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  5. 5. 
    Byrne MJ, Dacke M, Nordström P, Scholtz CH, Warrant EJ 2003. Visual cues used by ball-rolling dung beetles for orientation. J. Comp. Physiol A 189:411–18
    [Google Scholar]
  6. 6. 
    Byrne M, Lunn H. 2019. Dance of the Dung Beetles: Their Role in Our Changing World Johannesburg: Wits Univ. PressTraces the history of dung beetles in science, from the Egyptians to gene jockeys.
    [Google Scholar]
  7. 7. 
    Caveney S, McIntyre PD. 1981. Design of graded-index lenses in the superposition eyes of scarab beetles. Phil. Trans. R. Soc. Lond. B 294:589–632
    [Google Scholar]
  8. 8. 
    Cheung A, Zhang S, Stricker C, Srinivasan MV 2007. Animal navigation: the difficulty of moving in a straight line. Biol. Cybern. 97:47–61
    [Google Scholar]
  9. 9. 
    Cheung A, Zhang S, Stricker C, Srinivasan MV 2008. Animal navigation: general properties of directed walks. Biol. Cybern. 99:197–217
    [Google Scholar]
  10. 10. 
    Dacke M, Baird E, Byrne M, Scholtz CH, Warrant EJ 2013. Dung beetles use the Milky Way for orientation. Curr. Biol. 23:298–300First demonstration of an insect (the dung beetle Scarabaeussatyrus) that orients using the stars.
    [Google Scholar]
  11. 11. 
    Dacke M, Bell ATA, Foster JJ, Baird EJ, Strube-Bloss MF et al. 2019. Multimodal cue integration in the dung beetle compass. PNAS 116:1421–53
    [Google Scholar]
  12. 12. 
    Dacke M, Byrne MJ, Baird E, Scholtz CH, Warrant EJ 2011. How dim is dim? Precision of the celestial compass in moonlight and sunlight. Phil. Trans. R. Soc. B 366:697–702
    [Google Scholar]
  13. 13. 
    Dacke M, Byrne MJ, Scholtz CH, Warrant EJ 2004. Lunar orientation in a beetle. Proc. R. Soc. Lond. B 271:361–65
    [Google Scholar]
  14. 14. 
    Dacke M, Byrne MJ, Smolka J, Warrant EJ, Baird E 2013. Dung beetles ignore landmarks for straight-line orientation. J. Comp. Physiol. A 199:17–23
    [Google Scholar]
  15. 15. 
    Dacke M, el Jundi B 2018. The dung beetle compass. Curr. Biol. 28:R952–1008
    [Google Scholar]
  16. 16. 
    Dacke M, el Jundi B, Smolka J, Byrne MJ, Baird E 2014. The role of the sun in the celestial compass of dung beetles. Phil. Trans. R. Soc. B 369:20130036
    [Google Scholar]
  17. 17. 
    Dacke M, Nilsson D-E, Scholtz CH, Byrne M, Warrant EJ 2003. Insect orientation to polarized moonlight. Nature 424:33First demonstration of an animal (the dung beetle Scarabaeuszambesianus) that orients using polarized moonlight.
    [Google Scholar]
  18. 18. 
    Dacke M, Nordström P, Scholtz CH 2003. Twilight orientation to polarized moonlight in the crepuscular dung beetle Scarabaeuszambesianus. J. Exp. Biol 206:1535–43
    [Google Scholar]
  19. 19. 
    Ehmer B. 1999. Orientation in the ant Paraponeraclavata. J. Insect Behav 12:711–22
    [Google Scholar]
  20. 20. 
    el Jundi B, Baird E, Byrne MJ, Dacke M 2019. The brain behind straight-line orientation in dung beetles. J. Exp. Biol. 222:jeb192450
    [Google Scholar]
  21. 21. 
    el Jundi B, Foster JJ, Byrne MJ, Baird E, Dacke M 2015. Spectral information as an orientation cue in dung beetles. Biol. Lett. 11:20150656
    [Google Scholar]
  22. 22. 
    el Jundi B, Foster JJ, Khaldy L, Byrne M, Dacke M, Baird E 2016. A snapshot-based mechanism for celestial orientation. Curr. Biol. 26:1456–62
    [Google Scholar]
  23. 23. 
    el Jundi B, Pfeiffer K, Heinze S, Homberg U 2014. Integration of polarization and chromatic cues in the insect sky compass. J. Comp. Physiol. A 200:575–89
    [Google Scholar]
  24. 24. 
    el Jundi B, Smolka J, Baird E, Byrne MJ, Dacke M 2014. Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation. J. Exp. Biol. 217:2422–29
    [Google Scholar]
  25. 25. 
    el Jundi B, Warrant EJ, Byrne MJ, Khaldy L, Baird E et al. 2015. Neural coding underlying the cue preference for celestial orientation. PNAS 112:11395–400
    [Google Scholar]
  26. 26. 
    el Jundi B, Warrant EJ, Pfeiffer K, Dacke M 2018. Neuroarchitecture of the dung beetle central complex. J. Comp. Neurol. 526:2612–30
    [Google Scholar]
  27. 27. 
    Fabre J-H. 1918. The Sacred Beetle and Others London: Hodder & StoughtonThe first studies of dung beetle behaviors, conducted by an amateur scientist.
    [Google Scholar]
  28. 28. 
    Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD et al. 2016. The new world atlas of artificial night sky brightness. Sci. Adv. 2:e1600377
    [Google Scholar]
  29. 29. 
    Fisher YE, Lu J, D'Alessandro I, Wilson RI 2019. Sensorimotor experience remaps visual input to a heading-direction network. Nature 675:121–25
    [Google Scholar]
  30. 30. 
    Fleischmann PN, Christian M, Müller VL, Rössler W, Wehner R 2016. Ontogeny of learning walks and the acquisition of landmark information in desert ants. Cataglyphis fortis. J. Exp. Biol. 219:3137–45
    [Google Scholar]
  31. 30a. 
    Fleischmann PN, Grob R, Müller VL, Wehner R, Rössler W 2018. The geomagnetic field is a compass cue in Cataglyphis ant navigation.. Curr. Biol. 28:1440–44
    [Google Scholar]
  32. 31. 
    Fleischmann PN, Grob R, Wehner R, Rössler W 2017. Species-specific differences in the fine structure of learning walk elements in Cataglyphis ants. J. Exp. Biol. 220:2426–35
    [Google Scholar]
  33. 32. 
    Fleischmann PN, Rössler W, Wehner RJ 2018. Early foraging life: spatial and temporal aspects of landmark learning in the ant Cataglyphisnoda. J. Comp. Physiol. A 204:579–92
    [Google Scholar]
  34. 33. 
    Foster JJ, el Jundi B, Smolka J, Khaldy L, Nilsson D-E et al. 2017. Stellar performance: mechanisms underlying Milky Way orientation in dung beetles. Phil. Trans. R. Soc. B 372:20160079
    [Google Scholar]
  35. 34. 
    Foster JJ, Kirwan JD, el Jundi B, Smolka J, Khaldy L et al. 2019. Orienting to polarized light at night—matching lunar skylight to performance in a nocturnal beetle. J. Exp. Biol. 222:jeb188532
    [Google Scholar]
  36. 35. 
    Foster JJ, Smolka J, Nilsson D-E, Dacke M 2018. How animals follow stars. Proc. R. Soc. B 285:20172322
    [Google Scholar]
  37. 36. 
    Froy O, Gotter AL, Casselman AL, Reppert SM 2003. Illuminating the circadian clock in monarch butterfly migration. Science 300:1303–5
    [Google Scholar]
  38. 37. 
    Hegedüs R, Barta A, Bernath B, Meyer-Rochow VB, Horvath G 2007. Imaging polarimetry of forest canopies—how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage. Appl. Opt. 46:6019–32
    [Google Scholar]
  39. 38. 
    Heinze S, Florman J, Asokaraj S, el Jundi B, Reppert SM 2013. Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly. J. Comp. Neurol. 521:267–98
    [Google Scholar]
  40. 39. 
    Heinze S, Homberg U. 2007. Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–97
    [Google Scholar]
  41. 40. 
    Heinze S, Homberg U. 2009. Linking the input to the output: New sets of neurons complement the polarization vision network in the locust central complex. J. Neurosci. 29:4911–21
    [Google Scholar]
  42. 41. 
    Hironaka M, Filippi L, Nomakuchi S, Horiguchi H, Hariyama T 2007. Hierarchical use of chemical marking and path integration in the homing trip of a subsocial shield bug. Anim. Behav. 73:739–45
    [Google Scholar]
  43. 42. 
    Hironaka M, Inadomi K, Nomakuchi S, Filippi L, Hariyama T 2008. Canopy compass in nocturnal homing of the subsocial shield bug, Parastrachiajaponensis (Heteroptera: Parastrachiidae). Naturwissenschaften 95:343–46
    [Google Scholar]
  44. 43. 
    Hölldobler B. 1980. Canopy orientation: a new kind of orientation in ants. Science 210:86–88
    [Google Scholar]
  45. 44. 
    Hölldobler B, Taylor RW. 1983. A behavioral study of the primitive ant Nothomyrmeciamacrops Clark. Insect Soc 30:384–401
    [Google Scholar]
  46. 45. 
    Homberg U, Heinze S, Pfeiffer K, Kinoshita M, el Jundi B 2011. Central neural coding of sky polarization in insects. Phil. Trans. R. Soc. B 366:680–87
    [Google Scholar]
  47. 46. 
    Honkanen A, Adden A, Silva Freitas J, Heinze S 2019. The insect central complex and the neural basis of navigational strategies. J. Exp. Biol. 222:jeb188854
    [Google Scholar]
  48. 47. 
    Horton KG, Nilsson C, Van Doren BM, La Sorte FA, Dokter AM, Farnsworth A 2019. Bright lights in the big cities: migratory birds’ exposure to artificial light. Front. Ecol. Environ. 17:209–14
    [Google Scholar]
  49. 48. 
    Immonen E-V, Dacke M, Heinze S, el Jundi B 2017. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. J. Comp. Neurol. 525:1879–908A comprehensive description of the dung beetle brain.
    [Google Scholar]
  50. 49. 
    Khaldy L, Peleg O, Tocco C, Mahadevan L, Byrne M, Dacke M 2019. The effect of step size on straight-line orientation. J. R. Soc. Interface 16:20190181
    [Google Scholar]
  51. 50. 
    Khaldy L, Tocco C, Byrne M, Baird E, Dacke M 2020. Straight-line orientation in the woodland-living beetle Sisyphusfasciculatus. J. Comp. Physiol. A 206:327–35
    [Google Scholar]
  52. 51. 
    Kim SS, Hermundstad AM, Romani S, Abbott LF, Jayaraman V 2019. Generation of stable heading representations in diverse visual scenes. Nature 576:126–31
    [Google Scholar]
  53. 52. 
    Lebhardt F, Ronacher B. 2015. Transfer of directional information between the polarization compass and the sun compass in desert ants. J. Comp. Physiol. A 201:599–608
    [Google Scholar]
  54. 53. 
    Lindauer M. 1960. Time-compensated sun orientation in bees. Cold Spring Harb. Symp. Quant. Biol. 25:371–77
    [Google Scholar]
  55. 54. 
    Lorne JK, Salmon M. 2007. Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endanger. Species Res. 3:23–30
    [Google Scholar]
  56. 55. 
    McIntyre PD, Caveney S. 1985. Graded-index optics are matched to optical geometry in the superposition eyes of scarab beetles. Philos. Trans. R. Soc. Lond. B 311:237–69
    [Google Scholar]
  57. 56. 
    McIntyre PD, Caveney S. 1998. Superposition optics and the time of flight in onitine dung beetles. J. Comp. Physiol. A 183:45–60Shows how evolution molds the visual system of an animal to its lifestyle.
    [Google Scholar]
  58. 57. 
    Mouritsen H, Frost BJ. 2002. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. PNAS 99:10162–66
    [Google Scholar]
  59. 58. 
    Müller M, Wehner R. 2007. Wind and sky as compass cues in desert ant navigation. Naturwissenschaften 94:589–94
    [Google Scholar]
  60. 59. 
    Müller M, Wehner R. 2010. Path-integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20:1366–71
    [Google Scholar]
  61. 59a. 
    Okubo TS, Patella P, D'Alessandro I, Wilson RI 2020. A neural network for wind-guided compass navigation. Neuron 107:P924–90.e18
    [Google Scholar]
  62. 60. 
    Oliveira PS, Hölldobler B. 1989. Orientation and communication in the neotropical ant Odontomachusbauri Emery (Hymenoptera, Formicidae, Ponerinae). Ethology 83:154–66
    [Google Scholar]
  63. 61. 
    Pegel U, Pfeiffer K, Zittrell F, Scholtyssek C, Homberg U 2019. Two compasses in the central complex of the locust brain. J. Neurosci. 39:3070–80
    [Google Scholar]
  64. 62. 
    Pfeiffer K, Homberg U. 2014. Organization and functional roles of the central complex in the insect brain. Annu. Rev. Entomol. 59:165–84
    [Google Scholar]
  65. 63. 
    Philips TK, Pretorius E, Scholtz CH 2004. A phylogenetic analysis of dung beetles (Scarabaeinae: Scarabaeidae): unrolling an evolutionary history. Invertebr. Syst. 18:153–88
    [Google Scholar]
  66. 64. 
    Schmitt F, Stieb SM, Wehner R, Rössler W 2016. Experience-related reorganization of giant synapses in the lateral complex: potential role in plasticity of the sky-compass pathway in the desert ant Cataglyphisfortis. Dev. Neurobiol 76:390–404
    [Google Scholar]
  67. 65. 
    Seelig JD, Jayaraman V. 2015. Neural dynamics for landmark orientation and angular path integration. Nature 521:186–91First evidence for central-complex neurons with similar properties to head-direction cells.
    [Google Scholar]
  68. 66. 
    Shashar N, Cronin TW. 1998. The polarization of light in a tropical rain forest. Biotropica 30:275–85
    [Google Scholar]
  69. 67. 
    Smolka J, Baird E, Byrne MJ, Warrant EJ, el Jundi B, Dacke M 2012. Dung beetles use their dung ball as a mobile thermal refuge. Curr. Biol. 22:R863–64Reveals how evolution can repurpose an adaptation to another, completely different role.
    [Google Scholar]
  70. 68. 
    Smolka J, Baird E, el Jundi B, Reber T, Byrne M, Dacke M 2016. Night-sky orientation with diurnal and nocturnal eyes: Dim-light adaptations are critical when the moon is out of sight. Anim. Behav. 111:127–46
    [Google Scholar]
  71. 69. 
    Souman JL, Frissen I, Sreenivasa MN, Ernst MO 2009. Walking straight into circles. Curr. Biol. 19:1538–42
    [Google Scholar]
  72. 70. 
    Stöckl AL, O'Carroll DC, Warrant EJ 2016. Neural summation in the hawkmoth visual system extends the limits of vision in dim light. Curr. Biol. 26:821–26
    [Google Scholar]
  73. 71. 
    Stöckl AL, O'Carroll DC, Warrant EJ 2017. Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths. Proc. R. Soc. B 284:20170880
    [Google Scholar]
  74. 72. 
    Stone T, Webb B, Adden A, Weddig NB, Honkanen A et al. 2017. An anatomically constrained model for path integration in the bee brain. Curr. Biol. 27:3071–85Presents a biologically constrained model circuit for steering by comparing current and desired headings.
    [Google Scholar]
  75. 73. 
    Tocco C, Dacke M, Byrne M 2019. Eye and wing structure closely reflects the visual ecology of dung beetles. J. Comp. Physiol. A 205:211–21
    [Google Scholar]
  76. 74. 
    Warrant EJ. 1999. Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vis. Res. 39:1611–30
    [Google Scholar]
  77. 75. 
    Warrant EJ. 2017. The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains. Philos. Trans. R. Soc. Lond. B 372:20160063
    [Google Scholar]
  78. 76. 
    Warrant EJ, Dacke M. 2011. Vision and visual navigation in nocturnal insects. Annu. Rev. Entomol. 56:239–54
    [Google Scholar]
  79. 77. 
    Warrant EJ, Dacke M. 2016. Visual navigation in nocturnal insects. Physiology 31:182–92A review of nocturnal navigators and the optical and neural mechanisms employed to guide them.
    [Google Scholar]
  80. 78. 
    Warrant EJ, McIntyre PD. 1990. Limitations to resolution in superposition eyes. J. Comp. Physiol. A 167:785–803
    [Google Scholar]
  81. 79. 
    Warrant EJ, McIntyre PD. 1990. Screening pigment, aperture and sensitivity in the dung beetle superposition eye. J. Comp. Physiol. A 167:804–16
    [Google Scholar]
  82. 80. 
    Wehner R. 1992. Arthropods. Animal Homing F Papi 45–144 London: Chapman & Hall
    [Google Scholar]
  83. 81. 
    Wehner R. 1997. The ant's celestial compass system: spectral and polarization channels. Arthropod Communication and Orientation M Lehrer 145–85 Basel: Birkhäuser Verlag
    [Google Scholar]
  84. 82. 
    Wehner R, Duelli P. 1971. The spatial orientation of desert ants, Cataglyphisbicolor, before sunrise and after sunset. Experientia 27:1364–66
    [Google Scholar]
  85. 83. 
    Wehner R, Hoinville T, Cruse H, Cheng K 2016. Steering intermediate courses: Desert ants combine information from various navigational routines. J. Comp. Physiol. A 202:459–72
    [Google Scholar]
  86. 84. 
    Wolf H, Wehner R. 2000. Pinpointing food sources: olfactory and anemotactic orientation in desert ants. Cataglyphis fortis. J. Exp. Biol. 203:857–68
    [Google Scholar]
  87. 85. 
    Wystrach A, Philippides A, Aurejac A, Cheng K, Graham P 2014. Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorusbagoti. J. Comp. Physiol. A 200:615–26
    [Google Scholar]
/content/journals/10.1146/annurev-ento-042020-102149
Loading
/content/journals/10.1146/annurev-ento-042020-102149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error