1932

Abstract

Ants have outstanding capacity to mediate inter- and intraspecific interactions by producing structurally diverse metabolites from numerous secretory glands. Since Murray Blum's pioneering studies dating from the 1950s, there has been a growing interest in arthropod toxins as natural products. Over a dozen different alkaloid classes have been reported from approximately 40 ant genera in five subfamilies, with peak diversity within the Myrmicinae tribe Solenopsidini. Most ant alkaloids function as venom, but some derive from other glands with alternative functions. They are used in defense (e.g., alarm, repellants) or offense (e.g., toxins) but also serve as antimicrobials and pheromones. We provide an overview of ant alkaloid diversity and function with an evolutionary perspective. We conclude that more directed integrative research is needed. We suggest that comparative phylogenetics will illuminate compound diversification, while molecular approaches will elucidate genetic origins. Biological context, informed by natural history, remains critical not only for research about focal species, but also to guide applied research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-072821-063525
2022-01-07
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-072821-063525.html?itemId=/content/journals/10.1146/annurev-ento-072821-063525&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdulina GA, Gazaliev AM, Baikenova GG, Fazylov SD, Kudaibergenova SZ. 2002. A comparative study of the antibacterial and antifungal activity of anabasine hydrochloride and dialkylthiophosphates. Pharm. Chem. J. 36:3119–20
    [Google Scholar]
  2. 2. 
    Adams ES, Traniello JFA. 1981. Chemical interference competition by Monomorium minimum (Hymenoptera: Formicidae). Oecologia 51:2265–70
    [Google Scholar]
  3. 3. 
    Adams RM, Mueller UG, Schultz TR, Norden B. 2000. Agro-predation: usurpation of attine fungus gardens by Megalomyrmex ants. Naturwissenschaften 87:12549–54
    [Google Scholar]
  4. 4. 
    Adams RMM, Jones TH, Jeter AW. 2010. Male specific tyramides from three additional myrmicine genera. Biochem. Syst. Ecol. 38:3454–56
    [Google Scholar]
  5. 5. 
    Adams RMM, Jones TH, Jeter AW, De Fine Licht HH, Schultz TR, Nash DR 2012. A comparative study of exocrine gland chemistry in Trachymyrmex and Sericomyrmex fungus-growing ants. Biochem. Syst. Ecol. 40:91–97
    [Google Scholar]
  6. 6. 
    Adams RMM, Jones TH, Longino JT, Weatherford RG, Mueller UG. 2015. Alkaloid venom weaponry of three Megalomyrmex thief ants and the behavioral response of Cyphomyrmex costatus host ants. J. Chem. Ecol. 41:4373–85
    [Google Scholar]
  7. 7. 
    Adams RMM, Liberti J, Illum AA, Jones TH, Nash DR, Boomsma JJ. 2013. Chemically armed mercenary ants protect fungus-farming societies. PNAS 110:3915752–57
    [Google Scholar]
  8. 8. 
    Adams RMM, Longino JT. 2007. Nesting biology of the arboreal fungus-growing ant Cyphomyrmex cornutus and behavioral interactions with the social-parasitic ant Megalomyrmex mondabora. Insectes Soc 54:2136–43
    [Google Scholar]
  9. 9. 
    Adams RMM, Wells RL, Yanoviak SP, Frost CJ, Fox EGP. 2020. Interspecific eavesdropping on ant chemical communication. Front. Ecol. Evol. 8:24
    [Google Scholar]
  10. 10. 
    Andersen AN, Blum MS, Jones TH. 1991. Venom alkaloids in Monomoriumrothsteini” Forel repel other ants: Is this the secret to success by Monomorium in Australian ant communities?. Oecologia 88:2157–60
    [Google Scholar]
  11. 11. 
    Arbiser JL, Kau T, Konar M, Narra K, Ramchandran R et al. 2007. Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood 109:2560–65
    [Google Scholar]
  12. 12. 
    Arbuckle K. 2018. Phylogenetic comparative methods can provide important insights into the evolution of toxic weaponry. Toxins 10:12518–28
    [Google Scholar]
  13. 13. 
    Attygale AB, Morgan ED. 1984. Chemicals from the glands of ants. R. Soc. Chem. Lond. 13:3245–78
    [Google Scholar]
  14. 14. 
    Baracchi D, Tragust S 2017. Venom as a component of external immune defense in Hymenoptera. Evolution of Venomous Animals and Their Toxins A Malhotra 213–33 Berlin: Springer
    [Google Scholar]
  15. 15. 
    Beran F, Köllner TG, Gershenzon J, Tholl D 2019. Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. New Phytol 223:152–67
    [Google Scholar]
  16. 16. 
    Berenbaum M, Seigler D 1992. Biochemicals: engineering problems for natural selection. Insect Chemical Ecology: An Evolutionary Approach BD Roitberg, MB Isman 89–121 New York: Chapman & Hall
    [Google Scholar]
  17. 17. 
    Blum MS. 1969. Alarm pheromones. Annu. Rev. Entomol. 14:57–80
    [Google Scholar]
  18. 18. 
    Blum MS. 1984. Poisonous ants and their venoms. Handbook of Natural Toxins: Insect Poisons, Allergens, and Other Invertebrate Venoms 2 AT Tu 225–42 New York: Marcel Dekker
    [Google Scholar]
  19. 19. 
    Blum MS 1985. Alkaloidal ant venoms: chemistry and biological activities. Bioregulators for Pest Control PA Hedin, HG Cutler, BD Hammock, JJ Menn, DE Moreland, JR Plimmer 393–408 ACS Symp. Ser 276 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  20. 20. 
    Blum MS, Jones TH, Hölldobler B, Fales HM, Jaouni T. 1980. Alkaloidal venom mace: offensive use by a thief ant. Naturwissenschaften 67:3144–45
    [Google Scholar]
  21. 21. 
    Blum MS, Walker JR, Callahan PS, Novak AF. 1958. Chemical, insecticidal, and antibiotic properties of fire ant venom. Science 128:3319306–7
    [Google Scholar]
  22. 22. 
    Bosque I, Gonzalez-Gomez JC, Loza MI, Brea J. 2014. Natural tetraponerines: a general synthesis and antiproliferative activity. J. Org. Chem. 79:93982–91
    [Google Scholar]
  23. 23. 
    Brand JM. 1978. Fire ant venom alkaloids: their contribution to chemosystematics and biochemical evolution. Biochem. Syst. Ecol. 6:4337–40
    [Google Scholar]
  24. 24. 
    Brand JM, Blum MS, Fales HM, MacConnell JG. 1972. Fire ant venoms: comparative analyses of alkaloidal components. Toxicon 10:3259–71
    [Google Scholar]
  25. 25. 
    Brand JM, Blum MS, Ross HH. 1973. Biochemical evolution in fire ant venoms. Insect Biochem 3:945–51
    [Google Scholar]
  26. 26. 
    Brand JM, Mpuru SP. 1993. Dufour's gland and poison gland chemistry of the myrmicine ant, Messor capensis (Mayr). J. Chem. Ecol. 19:71315–21
    [Google Scholar]
  27. 27. 
    Brown CA, Watkins JF, Eldridge DW. 1979. Repression of bacteria and fungi by the army ant secretion: skatole. J. Kans. Entomol. Soc. 1:119–22
    [Google Scholar]
  28. 28. 
    Burdfield-Steel ER, Schneider JM, Mappes J, Dobler S 2020. Testing the effectiveness of pyrazine defences against spiders. Chemoecology 30:4139–46
    [Google Scholar]
  29. 29. 
    Callahan PS, Blum MS, Walker JR. 1959. Morphology and histology of the poison glands and sting of the imported fire ant (Solenopsis saevissima v. richteri Forel). Ann. Entomol. Soc. Am. 52:5573–90
    [Google Scholar]
  30. 30. 
    Caro MR, Derbes VJ, Jung R. 1957. Skin responses to the sting of the imported fire ant (Solenopsis saevissima). AMA Arch. Dermatol. 75:4475–88
    [Google Scholar]
  31. 31. 
    Cavill GWK, Houghton E. 1974. Some pyrazine derivatives from the Argentine ant, Iridomyrmex humilis. Aust. J. Chem. 27:4879–89
    [Google Scholar]
  32. 32. 
    Cerdá X, van Oudenhove L, Bernstein C, Boulay RR. 2014. A list of and some comments about the trail pheromones of ants. Nat. Prod. Commun. 9:81115–22
    [Google Scholar]
  33. 33. 
    Chen J, Grodowitz MJ 2017. Tyramides in male alates of black imported fire ants Solenopsis richteri. Insect Sci 24:1169–72
    [Google Scholar]
  34. 34. 
    Chen J, Zhao Y, Li X-C, Zhao J-H. 2019. Pyridine alkaloids in the venom of imported fire ants. J. Agric. Food Chem. 67:4111388–95
    [Google Scholar]
  35. 35. 
    Chen L, Fadamiro HY 2009. Re-investigation of venom chemistry of Solenopsis fire ants. I. Identification of novel alkaloids in S. richteri. Toxicon 53:5469–78
    [Google Scholar]
  36. 36. 
    Chen L, Lu Y-Y, Hu Q, Fadamiro HY. 2012. Similarity in venom alkaloid chemistry of alate queens of imported fire ants: implication for hybridization between Solenopsis richteri and S. invicta in the Southern United States. Chem. Biodivers. 9:4702–13
    [Google Scholar]
  37. 37. 
    Chen L, Mullen GE, Le Roch M, Cassity CG, Gouault N et al. 2014. On the formation of a protic ionic liquid in nature. Angew. Chem. Int. Ed. 53:4411762–65
    [Google Scholar]
  38. 38. 
    Co JE, Jones TH, Hefetz A, Tinaut A, Snelling RR. 2003. The comparative exocrine chemistry of nine Old World species of Messor (Formicidae: Myrmicinae). Biochem. Syst. Ecol. 31:4367–73
    [Google Scholar]
  39. 39. 
    Conceição LG, Haddad V Jr., Loures FH. 2006. Pustular dermatosis caused by fire ant (Solenopsis invicta) stings in a dog. Vet. Dermatol. 17:6453–55
    [Google Scholar]
  40. 40. 
    Cross JH, Byler RC, Ravid U, Silverstein RM, Robinson SW et al. 1979. The major component of the trail pheromone of the leaf-cutting ant, Atta sexdens rubropilosa Forel. J. Chem. Ecol. 5:2187–203
    [Google Scholar]
  41. 41. 
    Czaczkes TJ, Grüter C, Ratnieks FLW. 2015. Trail pheromones: an integrative view of their role in social insect colony organization. Annu. Rev. Entomol. 60:581–99
    [Google Scholar]
  42. 42. 
    Daly JW, Garraffo HM, Jain P, Spande TF, Snelling RR et al. 2000. Arthropod-frog connection: decahydroquinoline and pyrrolizidine alkaloids common to microsympatric myrmicine ants and dendrobatid frogs. J. Chem. Ecol. 26:173–85
    [Google Scholar]
  43. 43. 
    de Carvalho DB, Fox EGP, dos Santos DG, de Sousa JS, Freire DMG et al. 2019. Fire ant venom alkaloids inhibit biofilm formation. Toxins 11:7420
    [Google Scholar]
  44. 44. 
    Deslippe RJ, Guo YJ. 2000. Venom alkaloids of fire ants in relation to worker size and age. Toxicon 38:2223–32
    [Google Scholar]
  45. 45. 
    Devijver C, Braekman JC, Daloze D, Pasteels JM 1997. Biosynthesis of tetraponerine-6: evidence that two different pathways are operating in the biosynthesis of the two tetraponerine skeletons. Chem. Commun. 7:661–62
    [Google Scholar]
  46. 46. 
    Dickschat JS, Wickel S, Bolten CJ, Nawrath T, Schulz S, Wittmann C. 2010. Pyrazine biosynthesis in Corynebacterium glutamicum. Eur. J. Org. Chem. 2010.142687–95
    [Google Scholar]
  47. 47. 
    Dossey AT. 2010. Insects and their chemical weaponry: new potential for drug discovery. Nat. Prod. Rep. 27:121737–57
    [Google Scholar]
  48. 48. 
    Drukewitz SH, von Reumont BM 2019. The significance of comparative genomics in modern evolutionary venomics. Front. Ecol. Evol. 7:263
    [Google Scholar]
  49. 49. 
    Eliyahu D, Ross KG, Haight KL, Keller L, Liebig J. 2011. Venom alkaloid and cuticular hydrocarbon profiles are associated with social organization, queen fertility status, and queen genotype in the fire ant Solenopsis invicta. J. Chem. Ecol. 37:111242–54
    [Google Scholar]
  50. 50. 
    Escoubas P, Blum MS 1990. The biological activities of ant-derived alkaloids. Applied Myrmecology: A World Perspective RK Vander Meer, K Jaffe, A Cedeno 482–89 Boulder, CO: Westview Press
    [Google Scholar]
  51. 51. 
    Evershed RP, Morgan ED, Cammaerts MC 1982. 3-Ethyl-2,5-dimethylpyrazine, the trail pheromone from the venom gland of eight species of Myrmica ants. Insect Biochem 12:4383–91
    [Google Scholar]
  52. 52. 
    Faircloth BC, Branstetter MG, White ND, Brady SG. 2015. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol. Ecol. Resour. 15:3489–501
    [Google Scholar]
  53. 53. 
    Fales HM, Blum MS, Southwick EW, Williams DL, Roller PP, Don AW. 1988. Structure and synthesis of tetrasubstituted pyrazines in ants in the genus Mesoponera. Tetrahedron 44:165045–50
    [Google Scholar]
  54. 54. 
    Fox EGP, Bueno OC, Yabuki AT, Massuretti de Jesus C, Solis DR et al. 2010. General morphology and ultrastructure of the venom apparatus and convoluted gland of the fire ant, Solenopsis saevissima. J. Insect Sci. 10:2424
    [Google Scholar]
  55. 55. 
    Fox EGP, Pianaro A, Solis DR, Delabie JHC, Vairo BC et al. 2012. Intraspecific and intracolonial variation in the profile of venom alkaloids and cuticular hydrocarbons of the fire ant Solenopsis saevissima Smith (Hymenoptera: Formicidae). Psyche 2012.398061
    [Google Scholar]
  56. 56. 
    Fox EGP, Solis DR, Lazoski C, MacKay WP. 2017. Weaving through a cryptic species: comparing the Neotropical ants Camponotus senex and Camponotus textor (Hymenoptera: Formicidae). Micron 99:56–66
    [Google Scholar]
  57. 57. 
    Fox EGP, Wu X, Wang L, Chen L, Lu Y-Y, Xu Y. 2019. Queen venom isosolenopsin A delivers rapid incapacitation of fire ant competitors. Toxicon 158:77–83
    [Google Scholar]
  58. 58. 
    Fox EGP, Xu M, Wang L, Chen L, Lu Y-Y 2018. Gas-chromatography and UV-spectroscopy of Hymenoptera venoms obtained by trivial centrifugation. Data Brief 18:992–98
    [Google Scholar]
  59. 59. 
    Garraffo HM, Jain P, Spande TF, Daly JW, Jones TH et al. 2001. Structure of alkaloid 275A, a novel 1-azabicyclo[5.3.0]decane from a dendrobatid frog, Dendrobates lehmanni: synthesis of the tetrahydrodiastereomers. J. Nat. Prod. 64:4421–27
    [Google Scholar]
  60. 60. 
    Guilford T, Nicol C, Rothschild M, Moore BP 2008. The biological roles of pyrazines: evidence for a warning odour function. Biol. J. Linn. Soc. Lond. 31:2113–28
    [Google Scholar]
  61. 61. 
    Haight KL. 2006. Defensiveness of the fire ant, Solenopsis invicta, is increased during colony rafting. Insectes Soc 53:132–36
    [Google Scholar]
  62. 62. 
    Haight KL, Tschinkel WR. 2003. Patterns of venom synthesis and use in the fire ant, Solenopsis invicta. Toxicon 42:6673–82
    [Google Scholar]
  63. 63. 
    Haulotte E, Laurent P, Braekman J-C 2012. Biosynthesis of defensive coccinellidae alkaloids: incorporation of fatty acids in adaline, coccinelline, and harmonine. Eur. J. Org. Chem. 2012:101907–12
    [Google Scholar]
  64. 64. 
    Hoffman DR. 2010. Ant venoms. Curr. Opin. Allergy Clin. Immunol. 10:4342–46
    [Google Scholar]
  65. 65. 
    Hölldobler B. 1973. Chemical strategy during foraging in Solenopsis fugax Latr. and Monomorium pharaonis L. Oecologia 11:4371–80
    [Google Scholar]
  66. 66. 
    Hölldobler B, Morgan ED, Oldham NJ, Liebig J. 2001. Recruitment pheromone in the harvester ant genus Pogonomyrmex. J. Insect Physiol. 47:369–74
    [Google Scholar]
  67. 67. 
    Howard RW, Blomquist GJ. 1982. Chemical ecology and biochemistry of insect hydrocarbons. Annu. Rev. Entomol. 27:149–72
    [Google Scholar]
  68. 68. 
    Howell G, Butler J, DeShazo RD, Farley JM, Liu HL et al. 2005. Cardiodepressant and neurologic actions of Solenopsis invicta (imported fire ant) venom alkaloids. Ann. Allergy Asthma Immunol. 94:3380–86
    [Google Scholar]
  69. 69. 
    Hu L, Balusu RR, Zhang W-Q, Ajayi OS, Lu Y-Y et al. 2018. Intra- and inter-specific variation in alarm pheromone produced by Solenopsis fire ants. Bull. Entomol. Res. 108:5667–73
    [Google Scholar]
  70. 70. 
    Jackson DE, Martin SJ, Ratnieks FLW, Holcombe M. 2007. Spatial and temporal variation in pheromone composition of ant foraging trails. Behav. Ecol. 18:2444–50
    [Google Scholar]
  71. 71. 
    Janssen E, Bestmann HJ, Hölldobler B, Kern F. 1995. N,N-dimethyluracil and actinidine, two pheromones of the ponerine ant Megaponera foetens (Fab.) (Hymenoptera: Formicidae). J. Chem. Ecol. 21:121947–55
    [Google Scholar]
  72. 72. 
    Javors MA, Zhou W, Maas JW, Jr., Han S, Keenan RW. 1993. Effects of fire ant venom alkaloids on platelet and neutrophil function. Life Sci 53:141105–12
    [Google Scholar]
  73. 73. 
    Jones TH, Garraffo HM, Spande TF, Andriamaharavo NR, Gorman JST et al. 2010. Caste-specific tyramides from Myrmicine ants. J. Nat. Prod. 73:3313–16
    [Google Scholar]
  74. 74. 
    Jones TH, Gorman JST, Snelling RR, Delabie JHC, Blum MS et al. 1999. Further alkaloids common to ants and frogs: decahydroquinolines and a quinolizidine. J. Chem. Ecol. 25:51179–93
    [Google Scholar]
  75. 75. 
    Jones TH, Stahly SM, Don AW, Blum MS 1988. Chemotaxonomic implications of the venom chemistry of some Monomorium “antarcticum” populations. J. Chem. Ecol. 14:122197–212
    [Google Scholar]
  76. 76. 
    Jones TH, Torres JA, Spande TF, Garraffo HM, Blum MS, Snelling RR. 1996. Chemistry of venom alkaloids in some Solenopsis (Diplorhoptrum) species from Puerto Rico. J. Chem. Ecol. 22:71221–36
    [Google Scholar]
  77. 77. 
    Jones TH, Zottig VE, Robertson HG, Snelling RR. 2003. The venom alkaloids from some African Monomorium species. J. Chem. Ecol. 29:122721–27
    [Google Scholar]
  78. 78. 
    Jouvenaz DP, Blum MS, MacConnell JG. 1972. Antibacterial activity of venom alkaloids from the imported fire ant, Solenopsis invicta Buren. Antimicrob. Agents Chemother. 2:4291–93
    [Google Scholar]
  79. 79. 
    Karlsson I, Zhou X, Thomas R, Smith AT, Bonner MY et al. 2015. Solenopsin A and analogs exhibit ceramide-like biological activity. Vasc. Cell 7:5
    [Google Scholar]
  80. 80. 
    Lai L-C, Chang Y-Y, Hua K-H, Wu W-J, Huang R-N. 2010. Comparative toxicity of three fire ant (Hymenoptera: Formicidae) venoms to Spodoptera litura larvae. Sociobiology 56:3653–63
    [Google Scholar]
  81. 81. 
    Law JH, Wilson EO, McCloskey JA 1965. Biochemical polymorphism in ants. Science 149:3683544–45
    [Google Scholar]
  82. 82. 
    Le Breton J, Chazeau J, Dejean A 2002. Field experiments to assess the use of repellent substances by Wasmannia auropunctata (Formicidae: Myrmicinae) during food exploitation. Sociobiology 40:2437–42
    [Google Scholar]
  83. 83. 
    Lebrun B, Cattaert D. 1997. Slow inhibition of Na+ current in crayfish axons by 2-(1non-8 enyl)-5-(1non-8enyl) pyrrolidine (Pyr9), a synthetic derivative of an ant venom alkaloid. J. Exp. Biol. 200:Pt. 152097–106
    [Google Scholar]
  84. 84. 
    Lebrun EG, Jones NT, Gilbert LE. 2014. Chemical warfare among invaders: A detoxification interaction facilitates an ant invasion. Science 343:61741014–17
    [Google Scholar]
  85. 85. 
    Leclercq S, Braekman JC, Daloze D, Pasteels JM 2000. The defensive chemistry of ants. Fortschr. Chem. Org. Naturst. 79:115–229
    [Google Scholar]
  86. 86. 
    Leclercq S, Braekman JC, Daloze D, Pasteels JM, Van der Meer RK. 1996. Biosynthesis of the solenopsins, venom alkaloids of the fire ants. Naturwissenschaften 83:15222–25
    [Google Scholar]
  87. 87. 
    Lemaire M, Lange C, Bazire M, Cassier P, Clément JL et al. 1988. Alkaloid venom of European ants in the genus Monomorium: site of synthesis, identification and quantification. Exp. Biol. 48:27–40
    [Google Scholar]
  88. 88. 
    Lenoir A, Devers S. 2018. Alkaloid secretion inhibited by antibiotics in Aphaenogaster ants. C. R. Biol. 341:6358–61
    [Google Scholar]
  89. 89. 
    Li S, Jin X, Chen J 2012. Effects of piperidine and piperideine alkaloids from the venom of red imported fire ants, Solenopsis invicta Buren, on Pythium ultimum Trow growth in vitro and the application of piperideine alkaloids to control cucumber damping-off in the greenhouse. Pest Manag. Sci. 68:121546–52
    [Google Scholar]
  90. 90. 
    Li Y-Y, Liu D, Chen L. 2019. Electrophysiological and alarm responses of Solenopsis invicta Buren (Hymenoptera: Formicidae) to 2-ethyl-3,5-dimethylpyrazine. Insects 10:12451
    [Google Scholar]
  91. 91. 
    Lind NK. 1982. Mechanism of action of fire ant (Solenopsis) venoms. I. Lytic release of histamine from mast cells. Toxicon 20:5831–40
    [Google Scholar]
  92. 92. 
    MacConnell JG, Blum MS, Buren WF, Williams RN, Fales HM 1976. Fire ant venoms: chemotaxonomic correlations with alkaloidal compositions. Toxicon 14:169–78
    [Google Scholar]
  93. 93. 
    MacConnell JG, Blum MS, Fales HM, Tidwell WD, Rushforth SR, Reveal JL. 1970. Alkaloid from fire ant venom: identification and synthesis. Science 168:3933840–41
    [Google Scholar]
  94. 94. 
    Maga JA, Sizer CE. 1973. Pyrazines in foods. Rev. J. Agric. Food Chem. 21:122–30
    [Google Scholar]
  95. 95. 
    McClendon WD, Yi GB, Desaiah D 2003. Selective inhibition of neuronal nitric oxide synthase by venom alkaloids from the imported fire ant (Solenopsis invicta). J. Investig. Med. 51:S281
    [Google Scholar]
  96. 96. 
    Merlin P, Braekman JC, Daloze D, Pasteels JM 1988. Tetraponerines, toxic alkaloids in the venom of the Neo-Guinean pseudomyrmecine ant Tetraponera sp. J. Chem. Ecol. 14:2517–27
    [Google Scholar]
  97. 97. 
    Moore BP, Brown WV, Rothschild M. 1990. Methylalkylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology 1:243–51
    [Google Scholar]
  98. 98. 
    Moreira R, Pereira DM, Valentão P, Andrade PB. 2018. Pyrrolizidine alkaloids: chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 19:61668–78
    [Google Scholar]
  99. 99. 
    Moreno M, Giralt E. 2015. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins 7:41126–50
    [Google Scholar]
  100. 100. 
    Morgan ED. 2008. Chemical sorcery for sociality: exocrine secretions of ants (Hymenoptera: Formicidae). Myrmecol. News 11:79–90
    [Google Scholar]
  101. 101. 
    Morgan ED, Do Nascimento RR, Keegans SJ, Billen J. 1999. Comparative study of mandibular gland secretions of workers of Ponerine ants. J. Chem. Ecol. 25:61395–409
    [Google Scholar]
  102. 102. 
    Morgan ED, Mandava NB. 1988. Handbook of Natural Pesticides, Vol. 4: Pheromono Boca Raton, FL: CRC Press
    [Google Scholar]
  103. 103. 
    Nawrath T, Dickschat JS, Kunze B, Schulz S 2010. The biosynthesis of branched dialkylpyrazines in myxobacteria. Chem. Biodivers. 7:92129–44
    [Google Scholar]
  104. 104. 
    Numata A, Ibuka T. 1987. Alkaloids from ants and other insects. Alkaloids Chem. Pharmacol. 31:193–315
    [Google Scholar]
  105. 105. 
    Obin MS, Meer RKV. 1985. Gaster flagging by fire ants (Solenopsis spp.): functional significance of venom dispersal behavior. J. Chem. Ecol. 11:121757–68
    [Google Scholar]
  106. 106. 
    Ondrus AE, Kaniskan , Movassaghi M. 2010. Dimerization of functional pyrroloindolizines for the synthesis of complex myrmicarin alkaloids. Tetrahedron 66:264784–95
    [Google Scholar]
  107. 107. 
    Pelletier SW 1983. The nature and definition of an alkaloid. Alkaloids: Chemical and Biological Perspectives 1 SW Pelletier 1–31 Amsterdam: Elsevier
    [Google Scholar]
  108. 108. 
    Pianaro A, Fox EGP, Bueno OC, Marsaioli AJ. 2012. Rapid configuration analysis of the solenopsins. Tetrahedron Asymmetry 23:9635–42
    [Google Scholar]
  109. 109. 
    Pokorny T, Sieber L-M, Hofferberth JE, Bernadou A, Ruther J. 2020. Age-dependent release of and response to alarm pheromone in a ponerine ant. J. Exp. Biol. 223:jeb218040
    [Google Scholar]
  110. 110. 
    Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. 2017. Retrospective analysis of natural products provides insights for future discovery trends. PNAS 114:225601–6
    [Google Scholar]
  111. 111. 
    Rakich PM, Latimer KS, Mispagel ME, Steffens WL. 1993. Clinical and histologic characterization of cutaneous reactions to stings of the imported fire ant (Solenopsis invicta) in dogs. Vet. Pathol. 30:6555–59
    [Google Scholar]
  112. 112. 
    Rashid T, Chen J, McLeod P 2013. Toxicity of newly isolated piperideine alkaloids from the red imported fire ant, Solenopsis invicta Buren, against the green peach aphid, Myzus persicae (Sulzer). Adv. Entomol. 1:220–23
    [Google Scholar]
  113. 113. 
    Reder E, Veith HJ, Buschinger A. 1995. Neuartige Alkaloide aus dem Giftdrüsensekret sozialparasitischer Ameisen (Myrmicinae: Leptothoracini). Helv. Chim. Acta 78:173–79
    [Google Scholar]
  114. 114. 
    Renson B, Merlin P, Daloze D, Braekman JC, Roisin Y, Pasteels JM. 1994. Biosynthesis of tetraponerine-8, a defence alkaloid of the ant Tetraponera sp. Can. J. Chem. 72:1105–9
    [Google Scholar]
  115. 115. 
    Rojas B, Burdfield-Steel E, Pakkanen H, Suisto K, Maczka M et al. 2017. How to fight multiple enemies: target-specific chemical defences in an aposematic moth. Proc. Biol. Sci. 284: 1863.20171424
    [Google Scholar]
  116. 116. 
    Ronzani N, Lajat M. 1995. Acetylcholinesterase inhibition by alkaloids of the ant's venom Monomorium minutum. Bioorg. Med. Chem. Lett. 5:111131–32
    [Google Scholar]
  117. 117. 
    Rowe C, Guilford T 1999. The evolution of multimodal warning displays. Evol. Ecol. 13:7655–71
    [Google Scholar]
  118. 118. 
    Saporito RA, Garraffo HM, Donnelly MA, Edwards AL, Longino JT, Daly JW. 2004. Formicine ants: an arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. PNAS 101:218045–50
    [Google Scholar]
  119. 119. 
    Saporito RA, Norton RA, Andriamaharavo NR, Garraffo HM, Spande TF. 2011. Alkaloids in the mite Scheloribates laevigatus: further alkaloids common to oribatid mites and poison frogs. J. Chem. Ecol. 37:2213–18
    [Google Scholar]
  120. 120. 
    Saporito RA, Spande TF, Garraffo HM, Donnelly MA. 2009. Arthropod alkaloids in poison frogs: a review of the “Dietary Hypothesis. .” Heterocycles 79:1277–97
    [Google Scholar]
  121. 121. 
    Shi Q-H, Hu L, Wang W-K, Meer RKV, Porter SD, Chen L. 2015. Workers and alate queens of Solenopsis geminata share qualitatively similar but quantitatively different venom alkaloid chemistry. Front. Ecol. Evol. 3:76
    [Google Scholar]
  122. 122. 
    Showalter DN, Troyer EJ, Aklu M, Jang EB, Siderhurst MS. 2010. Alkylpyrazines: alarm pheromone components of the little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera, Formicidae). Insectes Soc 57:2223–32
    [Google Scholar]
  123. 123. 
    Silva RCMC, Fox EGP, Gomes FM, Feijó DF, Ramos I et al. 2020. Venom alkaloids against Chagas disease parasite: search for effective therapies. Sci. Rep. 10:10642
    [Google Scholar]
  124. 124. 
    Silva-Junior EA, Ruzzini AC, Paludo CR, Nascimento FS, Currie CR et al. 2018. Pyrazines from bacteria and ants: convergent chemistry within an ecological niche. Sci. Rep. 8:2595
    [Google Scholar]
  125. 125. 
    Sozanski K, Mularo AJ, Sadowski VA, Jones TH, Adams RMM. 2020. Venom function of a new species of Megalomyrmex Forel, 1885 (Hymenoptera: Formicidae). Toxins 12:11679
    [Google Scholar]
  126. 126. 
    Storey GK, Vander Meer RK, Boucias DG, McCoy CW 1991. Effect of fire ant (Solenopsis invicta) venom alkaloids on the in vitro germination and development of selected entomogenous fungi. J. Invertebr. Pathol. 58:188–95
    [Google Scholar]
  127. 127. 
    Sullivan DC, Flowers H, Rockhold R, Herath HMTB, Nanayakkara NPD. 2009. Antibacterial activity of synthetic fire ant venom: the solenopsins and isosolenopsins. Am. J. Med. Sci. 338:4287–91
    [Google Scholar]
  128. 128. 
    Talman E, Ritter FJ, Verwiel PEJ 1974. Structure elucidation of pheromones produced by the pharaoh's ant, Monomorium pharaonis L. Mass Spectrometry in Biochemistry and Medicine A Frigerio, JN Castagnoli 197–217 New York: Raven Press
    [Google Scholar]
  129. 129. 
    Tang JJ, Fang P, Xia HL, Tu ZC, Hou BY et al. 2015. Constituents from the edible Chinese black ants (Polyrhachis dives) showing protective effect on rat mesangial cells and anti-inflammatory activity. Food Res. Int. 67:163–68
    [Google Scholar]
  130. 130. 
    Tomalski MD, Blum MS, Jones TH, Fales HM. 1987. Chemistry and functions of exocrine secretions of the ants. J. Chem. Ecol. 13:2253–63
    [Google Scholar]
  131. 131. 
    Torres JA, Zottig VE, Co JE, Jones TH, Snelling RR. 2001. Caste specific alkaloid chemistry of Solenopsis maboya and S. torresi (Hymenoptera: Formicidae). Sociobiology 37:3B579–83
    [Google Scholar]
  132. 132. 
    Touchard A, Aili SR, Fox EGP, Escoubas P, Orivel J et al. 2016. The biochemical toxin arsenal from ant venoms. Toxins 8:130–40
    [Google Scholar]
  133. 133. 
    Trigo JR. 2010. Effects of pyrrolizidine alkaloids through different trophic levels. Phytochem. Rev. 10:183–98
    [Google Scholar]
  134. 134. 
    Tschinkel WR. 2013. The Fire Ants Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  135. 135. 
    Tumlinson JH, Silverstein RM, Moser JC, Brownlee RG, Ruth JM. 1971. Identification of the trail pheromone of a leaf-cutting ant, Atta texana. Nature 234:5328348–49
    [Google Scholar]
  136. 136. 
    Uko NE, Güner OF, Bowen JP, Matesic DF. 2019. Akt pathway inhibition of the solenopsin analog, 2-dodecylsulfanyl-1,-4,-5,-6-tetrahydropyrimidine. Anticancer Res 39:105329–38
    [Google Scholar]
  137. 137. 
    Vander Meer RK. 2012. Ant interactions with soil organisms and associated semiochemicals. J. Chem. Ecol. 38:6728–45
    [Google Scholar]
  138. 138. 
    Vander Meer RK, Lofgren CS. 1988. Use of chemical characters in defining populations of fire ants, Solenopsis saevissima complex (Hymenoptera: Formicidae). Fla. Entomol 71:3323–32
    [Google Scholar]
  139. 139. 
    Vander Meer RK, Morel L. 1995. Ant queens deposit pheromones and antimicrobial agents on eggs. Naturwissenschaften 82:293–95
    [Google Scholar]
  140. 140. 
    Vander Meer RK, Preston CA, Choi MY 2010. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta. J. Chem. Ecol. 36:2163–70
    [Google Scholar]
  141. 141. 
    Ward PS. 2009. The ant genus Tetraponera in the Afrotropical region: synopsis of species groups and revision of the T. grandidieri group (Hymenoptera: Formicidae). J. Hymenopt. Res. 18:2285–304
    [Google Scholar]
  142. 142. 
    Ward PS, Brady SG, Fisher BL, Schultz TR. 2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40:161–81
    [Google Scholar]
  143. 143. 
    Watkins JF II, Gehlbach FR, Kroll JC. 1969. Attractant-repellent secretions of blind snakes (Leptotyphlops dulcis) and their army ant prey (Neivamyrmex nigrescens). Ecology 50:61098–102
    [Google Scholar]
  144. 144. 
    Westermann FL, McPherson IS, Jones TH, Milicich L, Lester PJ 2015. Toxicity and utilization of chemical weapons: Does toxicity and venom utilization contribute to the formation of species communities?. Ecol. Evol. 5:153103–13
    [Google Scholar]
  145. 145. 
    Wheeler JW, Avery J, Olubajo O, Shamin MT, Storm CB, Duffield RM. 1982. Alkylpyrazines from Hymenoptera: isolation, identification and synthesis of 5-methyl-3-n-propyl-2-(1-butenyl) pyrazine from Aphaenogaster ants (Formicidae). Tetrahedron 38:131939–48
    [Google Scholar]
  146. 146. 
    Wheeler JW, Blum MS. 1973. Alkylpyrazine alarm pheromones in ponerine ants. Science 182:4111501–3
    [Google Scholar]
  147. 147. 
    Wilson EO, Hölldobler B 2005. The rise of the ants: a phylogenetic and ecological explanation. PNAS 102:217411–14
    [Google Scholar]
  148. 148. 
    Xu S, Errabeli R, Feener DH, Noble K, Attygalle AB 2018. Alkyl-dimethylpyrazines in mandibular gland secretions of four Odontomachus ant species (Formicidae: Ponerinae). J. Chem. Ecol. 44:5444–51
    [Google Scholar]
  149. 149. 
    Yan Y, An Y, Wang X, Chen Y, Jacob MR et al. 2017. Synthesis and antimicrobial evaluation of fire ant venom alkaloid based 2-methyl-6-alkyl-Δ1,6-piperideines. J. Nat. Prod. 80:102795–98
    [Google Scholar]
  150. 150. 
    Yu YT, Wei HY, Fadamiro HY, Chen L. 2014. Quantitative analysis of alkaloidal constituents in imported fire ants by gas chromatography. J. Agric. Food Chem. 62:255907–15
    [Google Scholar]
  151. 151. 
    Zamith-Miranda D, Fox EGP, Monteiro AP, Gama D, Poublan LE et al. 2018. The allergic response mediated by fire ant venom proteins. Sci. Rep. 8:14427
    [Google Scholar]
  152. 152. 
    Zhao R, Lu L, Shi Q, Chen J, He Y 2018. Volatile terpenes and terpenoids from workers and queens of Monomorium chinense (Hymenoptera: Formicidae). Molecules 23:112838–48
    [Google Scholar]
  153. 153. 
    Ziegler I, Harmsen R. 1970. The biology of pteridines in insects. Adv. Insect Physiol. 6:139–203
    [Google Scholar]
/content/journals/10.1146/annurev-ento-072821-063525
Loading
/content/journals/10.1146/annurev-ento-072821-063525
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error