1932

Abstract

All social insects defend their colony from predators, parasites, and pathogens. In Oster and Wilson's classic work, they posed one of the key paradoxes about defense in social insects: Given the universal necessity of defense, why then is there so much diversity in mechanisms? Ecological factors undoubtedly are important: Predation and usurpation have imposed strong selection on eusocial insects, and active defense by colonies is a ubiquitous feature of all social insects. The description of diverse insect groups with castes of sterile workers whose main duty is defense has broadened the purview of social evolution in insects, in particular with respect to caste and behavior. Defense is one of the central axes along which we can begin to organize and understand sociality in insects. With the establishment of social insect models such as the honey bee, new discoveries are emerging regarding the endocrine, neural, and gene regulatory mechanisms underlying defense in social insects. The mechanisms underlying morphological and behavioral defense traits may be shared across diverse groups, providing opportunities for identifying both conserved and novel mechanisms at work. Emerging themes highlight the context dependency of and interaction between factors that regulate defense in social insects.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Defense in Social Insects: Diversity, Division of Labor, and Evolution
Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-082521-072638
2022-01-07
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-082521-072638.html?itemId=/content/journals/10.1146/annurev-ento-082521-072638&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbot P. 2015. The physiology and genomics of social transitions in aphids. Adv. Insect Physiol. 48:163–88
    [Google Scholar]
  2. 2. 
    Alaux C, Sinha S, Hasadsri L, Hunt GJ, Guzmán-Novoa E et al. 2009. Honey bee aggression supports a link between gene regulation and behavioral evolution. PNAS 106:15400–5
    [Google Scholar]
  3. 3. 
    Amsalem E, Grozinger CM, Padilla M, Hefetz A. 2015. The physiological and genomic bases of bumble bee social behaviour. Adv. Insect Physiol. 48:37–93
    [Google Scholar]
  4. 4. 
    Amsalem E, Teal P, Grozinger CM, Hefetz A. 2014. Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters sterility signal production in bumble bee (Bombus terrestris) workers. J. Exp. Biol. 217:Pt. 173178–85
    [Google Scholar]
  5. 5. 
    Anholt RRH, Mackay TFC. 2015. Dissecting the genetic architecture of behavior in Drosophila melanogaster. Curr. Opin. Behav. Sci. 2:1–7
    [Google Scholar]
  6. 6. 
    Aoki S, Kurosu U. 2020. Social aphids. Encyclopedia of Social Insects C Starr Berlin: Springer https://doi.org/10.1007/978-3-319-90306-4_107-1
    [Crossref] [Google Scholar]
  7. 7. 
    Aonuma H. 2020. Serotonergic control in initiating defensive responses to unexpected tactile stimuli in the trap-jaw ant Odontomachus kuroiwae. J. Exp. Biol. 223:(Pt. 19)jeb228874
    [Google Scholar]
  8. 8. 
    Avalos A, Fang M, Pan H, Ramirez Lluch A, Lipka AE et al. 2020. Genomic regions influencing aggressive behavior in honey bees are defined by colony allele frequencies. PNAS 117:17135–41
    [Google Scholar]
  9. 9. 
    Baudier KM, Ostwald MM, Grüter C, Segers FHID, Roubik DW et al. 2019. Changing of the guard: mixed specialization and flexibility in nest defense (Tetragonisca angustula). Behav. Ecol. 30:1041–49
    [Google Scholar]
  10. 10. 
    Beshers SN, Fewell JH. 2001. Models of division of labor in social insects. Annu. Rev. Entomol. 46:413–40
    [Google Scholar]
  11. 11. 
    Blanchard BD, Moreau CS. 2017. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants. Evolution 71:315–28
    [Google Scholar]
  12. 12. 
    Boomsma JJ. 2013. Beyond promiscuity: mate-choice commitments in social breeding. Philos. Trans. R. Soc. B 368:161320120050
    [Google Scholar]
  13. 13. 
    Boomsma JJ, Gawne R. 2018. Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol. Rev. Camb. Philos. Soc. 93:28–54
    [Google Scholar]
  14. 14. 
    Bourke 1999. Colony size, social complexity and reproductive conflict in social insects. J. Evol. Biol. 12:245–57
    [Google Scholar]
  15. 15. 
    Brady SG, Fisher BL, Schultz TR, Ward PS. 2014. The rise of army ants and their relatives: diversification of specialized predatory doryline ants. BMC Evol. Biol. 14:93
    [Google Scholar]
  16. 16. 
    Breed MD, Guzmán-Novoa E, Hunt GJ 2004. Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49:271–98
    [Google Scholar]
  17. 17. 
    Buschinger A. 2009. Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol. News 12:219–35
    [Google Scholar]
  18. 18. 
    Chouvenc T, Šobotnık J, Engel MS, Bourguignon T. 2021. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78:2749–69
    [Google Scholar]
  19. 19. 
    Costa JT. 2006. The Other Insect Societies Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  20. 20. 
    Cremer S, Pull CD, Fürst MA. 2018. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63:105–23
    [Google Scholar]
  21. 21. 
    Crespi B, Abbot P. 1999. The behavioral ecology and evolution of kleptoparasitism in Australian gall thrips. Fla. Entomol. 82:147–64
    [Google Scholar]
  22. 22. 
    Crespi BJ. 1994. Three conditions for the evolution of eusociality: Are they sufficient?. Insectes Soc 41:395–400
    [Google Scholar]
  23. 23. 
    Crespi BJ, Morris DC, Mound LA 2004. Ecology and evolution of Australian acacia thrips. Evolution of Ecological and Behavioural Diversity: Australian Acacia Thrips as Model Organisms11–89 Canberra: Aust. Biol. Res. Study/Aust. Nat. Insect Collect.
    [Google Scholar]
  24. 24. 
    da Silva M, Mateus S, Noll FB 2021. Castes and polymorphisms in Neotropical social wasps. Neotropical Social Wasps: Basic and Applied Aspects F Prezoto, FS Nascimento, BC Barbosa, A Somavilla 99–125 Berlin: Springer
    [Google Scholar]
  25. 25. 
    De Facci M, Svensson GP, Chapman TW, Anderbrant O. 2013. Evidence for caste differences in anal droplet alarm pheromone production and responses in the eusocial thrips Kladothrips intermedius. Ethology 119:1118–25
    [Google Scholar]
  26. 26. 
    Dornhaus A, Powell T 2010. Foraging and defence strategies. Ant Ecology L Lach, C Parr, K Abbott 210–30 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  27. 27. 
    Dornhaus A, Powell S, Bengston S 2012. Group size and its effects on collective organization. Annu. Rev. Entomol. 57:123–41
    [Google Scholar]
  28. 28. 
    Dukas R. 2001. Effects of perceived danger on flower choice by bees. Ecol. Lett. 4:327–33
    [Google Scholar]
  29. 29. 
    Eggleton P 2011. An introduction to termites: biology, taxonomy and functional morphology. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 1–26 Berlin: Springer
    [Google Scholar]
  30. 30. 
    Feldhaar H 2011. Predators as prey: top-down effects on predatory Hymenoptera. Predation in the Hymenoptera: An Evolutionary Perspective C Polidori 218–45. Kerala, India: Transworld Res. Netw.
    [Google Scholar]
  31. 31. 
    Ferguson-Gow H, Sumner S, Bourke AFG, Jones KE. 2014. Colony size predicts division of labour in attine ants. Proc. R. Soc. B 281:179320141411
    [Google Scholar]
  32. 32. 
    Fjerdingstad EJ, Crozier RH. The evolution of worker caste diversity in social insects. Am. Nat. 167:390–400
    [Google Scholar]
  33. 33. 
    Foster WA, Rhoden PK. 1998. Soldiers effectively defend aphid colonies against predators in the field. Anim. Behav. 55:761–65
    [Google Scholar]
  34. 34. 
    Friedman NR, Lecroq Bennet B, Fischer G, Sarnat EM, Huang J-P et al. 2020. Macroevolutionary integration of phenotypes within and across ant worker castes. Ecol. Evol. 10:9371–83
    [Google Scholar]
  35. 35. 
    Froggatt WW. 1907. Australian Insects Sydney, Aust: William Brooks Co.
    [Google Scholar]
  36. 36. 
    Gadagkar R. 1991. Demographic predisposition to the evolution of eusociality: a hierarchy of models. PNAS 88:10993–97
    [Google Scholar]
  37. 37. 
    Gallant JR, O'Connell LA. 2020. Studying convergent evolution to relate genotype to behavioral phenotype. J. Exp. Biol. 223:Pt. Suppl. 1jeb213447
    [Google Scholar]
  38. 38. 
    Giray T, Giovanetti M, West-Eberhard MJ. 2005. Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes canadensis. . PNAS 102:3330–35
    [Google Scholar]
  39. 39. 
    Glastad KM, Graham RJ, Ju L, Roessler J, Brady CM, Berger SL. 2020. Epigenetic regulator coREST controls social behavior in ants. Mol. Cell 77:338–51.e6
    [Google Scholar]
  40. 40. 
    Gordon SD, Strand MR. 2009. The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation. Dev. Genes Evol. 219:9–10445–54
    [Google Scholar]
  41. 41. 
    Gotwald WH Jr. 1995. Army Ants: The Biology of Social Predation Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  42. 42. 
    Goulson D, O'Connor S, Park KJ 2018. Causes of colony mortality in bumblebees. Anim. Conserv. 21:45–53
    [Google Scholar]
  43. 43. 
    Grantham ME, Shingleton AW, Dudley E, Brisson JA 2020. Expression profiling of winged- and wingless-destined pea aphid embryos implicates insulin/insulin growth factor signaling in morph differences. Evol. Dev. 22:257–68
    [Google Scholar]
  44. 44. 
    Grume GJ, Biedenbender SP, Rittschof CC. 2021. Honey robbing causes coordinated changes in foraging and nest defence in the honey bee, Apis mellifera. Anim. Behav. 173:53–65
    [Google Scholar]
  45. 45. 
    Grüter C. 2020. Stingless Bees: Their Behaviour, Ecology and Evolution Berlin: Springer
    [Google Scholar]
  46. 46. 
    Grüter C, Segers FHID, Menezes C, Vollet-Neto A, Falcón T et al. 2017. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees. Nat. Commun. 8:4
    [Google Scholar]
  47. 47. 
    Hamilton AR, Shpigler H, Bloch G, Wheeler DE, Robinson GE 2017. Endocrine influences on insect societies. Hormones, Brain and Behavior 2 Non-Mammalian Hormone-Behavior Systems DW Pfaff, AP Arnold, AM Etgen, SE Fahrbach, RT Rubin 421–51 Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  48. 48. 
    Hammel B, Vollet-Neto A, Menezes C, Nascimento FS, Engels W, Grüter C 2016. Soldiers in a stingless bee: Work rate and task repertoire suggest they are an elite force. Am. Nat. 187:120–29
    [Google Scholar]
  49. 49. 
    Hartfelder K, Emlen DJ 2012. Endocrine control of insect polyphenism. Insect Endocrinology LI Gilbert 464–522 Cambridge, MA: Academic
    [Google Scholar]
  50. 50. 
    Harvey JA, Corley LS, Strand MR. 2000. Competition induces adaptive shifts in caste ratios of a polyembryonic wasp. Nature 406:6792183–86
    [Google Scholar]
  51. 51. 
    Hattori A, Sugime Y, Sasa C, Miyakawa H, Ishikawa Y et al. 2013. Soldier morphogenesis in the damp-wood termite is regulated by the insulin signaling pathway. J. Exp. Zool. B 320:295–306
    [Google Scholar]
  52. 52. 
    Hefetz A, Grozinger CM 2017. Hormonal regulation of behavioral and phenotypic plasticity in bumblebees. Hormones, Brain and Behavior, Vol 2 Non-Mammalian Hormone-Behavior Systems DW Pfaff, AP Arnold, AM Etgen, SE Fahrbach, RT Rubin 453–64 Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  53. 53. 
    Hermann HR. 1984. Defensive Mechanisms in Social Insects Westport, CT: Praeger
    [Google Scholar]
  54. 54. 
    Holland JG, Bloch G. 2020. The complexity of social complexity: a quantitative multidimensional approach for studies of social organization. Am. Nat. 196:525–40
    [Google Scholar]
  55. 55. 
    Hölldobler B, Wilson EO. 1990. The Ants Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  56. 56. 
    Huang MH, Wheeler DE. 2011. Colony demographics of rare soldier-polymorphic worker caste systems in Pheidole ants (Hymenoptera, Formicidae). Insectes Soc 58:539–49
    [Google Scholar]
  57. 57. 
    Ijichi N, Shibao H, Miura T, Matsumoto T, Fukatsu T 2005. Comparative analysis of caste differentiation during embryogenesis of social aphids whose soldier castes evolved independently. Insectes Soc 52:177–85
    [Google Scholar]
  58. 58. 
    Ishikawa A, Miura T. 2013. Transduction of high-density signals across generations in aphid wing polyphenism. Physiol. Entomol. 38:150–56
    [Google Scholar]
  59. 59. 
    Ishikawa Y, Aonuma H, Sasaki K, Miura T. 2016. Tyraminergic and octopaminergic modulation of defensive behavior in termite soldier. PLOS ONE 11:e0154230
    [Google Scholar]
  60. 60. 
    Jandt JM, Detoni M, Loope KJ, Santoro D. 2020. Vespula wasps show consistent differences in colony-level aggression over time and across contexts. Insectes Soc 67:367–81
    [Google Scholar]
  61. 61. 
    Jandt JM, Huang E, Dornhaus A. 2009. Weak specialization of workers inside a bumble bee (Bombus impatiens) nest. Behav. Ecol. Sociobiol. 63:1829–36
    [Google Scholar]
  62. 62. 
    Jandt JM, Toth AL. 2015. Physiological and genomic mechanisms of social organization in wasps (Family: Vespidae). Adv. Insect Physiol. 48:95–130
    [Google Scholar]
  63. 63. 
    Jeanne RL. 1991. The swarm-founding Polistinae. The Social Biology of Waspsed. KG Ross, RW Matthews191–231 Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  64. 64. 
    Jeanne RL. 2016. Division of labor is not a process or a misleading concept. Behav. Ecol. Sociobiol. 70:1109–12
    [Google Scholar]
  65. 65. 
    Jernigan CM, Birgiolas J, McHugh C, Roubik DW, Wcislo WT, Smith BH. 2018. Colony-level non-associative plasticity of alarm responses in the stingless honey bee, Tetragonisca angustula. Behav. Ecol. Sociobiol. 72:58
    [Google Scholar]
  66. 66. 
    Jones BM, Rao VD, Gernat T, Jagla T, Cash-Ahmed AC et al. 2020. Individual differences in honey bee behavior enabled by plasticity in brain gene regulatory networks. eLife 9:e62850
    [Google Scholar]
  67. 67. 
    Judd TM. 2000. Division of labour in colony defence against vertebrate predators by the social wasp Polistes fuscatus. Anim. Behav. 60:55–61
    [Google Scholar]
  68. 68. 
    Kajobe R, Roubik DW. 2006. Honey-making bee colony abundance and predation by apes and humans in a Uganda forest reserve. Biotropica 38:210–18
    [Google Scholar]
  69. 69. 
    Kamhi JF, Arganda S, Moreau CS, Traniello JFA. 2017. Origins of aminergic regulation of behavior in complex insect social systems. Front. Syst. Neurosci. 11:74
    [Google Scholar]
  70. 70. 
    Kamhi JF, Nunn K, Robson SKA, Traniello JFA. 2015. Polymorphism and division of labour in a socially complex ant: neuromodulation of aggression in the Australian weaver ant, Oecophylla smaragdina. Proc. R. Soc. B 282:181120150704
    [Google Scholar]
  71. 71. 
    Kamhi JF, Traniello JFA. 2013. Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav. Evol. 82:220–36
    [Google Scholar]
  72. 72. 
    Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM. 2014. Reproductive status, endocrine physiology and chemical signaling in the Neotropical, swarm-founding eusocial wasp Polybia micans. J. Exp. Biol. 217:Pt. 132399–410
    [Google Scholar]
  73. 73. 
    Kirkendall LR 1997. Interactions among males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behavior. The Evolution of Social Behavior in Insects and Arachnids JC Choe, BJ Crespi 181–215 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  74. 74. 
    Konishi T, Matsuura K. 2021. Royal presence promotes worker and soldier aggression against non-nestmates in termites. Insectes Soc 68:15–21
    [Google Scholar]
  75. 75. 
    Korb J. 2015. Juvenile hormone: a central regulator of termite caste polyphenism. Adv. Insect Physiol. 48:131–61
    [Google Scholar]
  76. 76. 
    Korb J, Belles X. 2017. Juvenile hormone and hemimetabolan eusociality: a comparison of cockroaches with termites. Curr. Opin. Insect Sci. 22:109–16
    [Google Scholar]
  77. 77. 
    Korb J, Heinze J. 2008. Ecology of Social Evolution Berlin: Springer
    [Google Scholar]
  78. 78. 
    Korb J, Heinze J. 2016. Major hurdles for the evolution of sociality. Annu. Rev. Entomol. 61:297–316
    [Google Scholar]
  79. 79. 
    Kozyra KB, Baraniak E. 2016. Causes of mortality of Polistes nimpha colonies. Insectes Soc 63:481–82
    [Google Scholar]
  80. 80. 
    Kronauer DJ, Libbrecht R. 2018. Back to the roots: the importance of using simple insect societies to understand the molecular basis of complex social life. Curr. Opin. Insect Sci. 28:33–39
    [Google Scholar]
  81. 81. 
    Kutsukake M, Moriyama M, Shigenobu S, Meng X-Y, Nikoh N et al. 2019. Exaggeration and cooption of innate immunity for social defense. PNAS 116:8950–59
    [Google Scholar]
  82. 82. 
    LaPolla JS, Mueller UG, Seid M, Cover SP. 2002. Predation by the army ant Neivamyrmex rugulosus on the fungus-growing ant Trachymyrmex arizonensis. Insectes Soc 49:251–56
    [Google Scholar]
  83. 83. 
    Lawson SP, Sigle LT, Lind AL, Legan AW, Mezzanotte JN et al. 2017. An alternative pathway to eusociality: exploring the molecular and functional basis of fortress defense. Evolution 71:1986–98
    [Google Scholar]
  84. 84. 
    Lillico-Ouachour A, Abouheif E. 2017. Regulation, development, and evolution of caste ratios in the hyperdiverse ant genus Pheidole. Curr. Opin. Insect Sci. 19:43–51
    [Google Scholar]
  85. 85. 
    Liu H, Robinson GE, Jakobsson E 2016. Conservation in mammals of genes associated with aggression-related behavioral phenotypes in honey bees. PLOS Comput. Biol. 12:e1004921
    [Google Scholar]
  86. 86. 
    Llandres AL, Gonzálvez FG, Rodrıguez-Gironés MA. 2013. Social but not solitary bees reject dangerous flowers where a conspecific has recently been attacked. Anim. Behav. 85:97–102
    [Google Scholar]
  87. 87. 
    Londe S, Molet M, Fisher BL, Monnin T. 2016. Reproductive and aggressive behaviours of queen-worker intercastes in the ant Mystrium rogeri and caste evolution. Anim. Behav. 120:67–76
    [Google Scholar]
  88. 88. 
    Longhurst C, Johnson RA, Wood TG 1979. Foraging, recruitment and predation by Decamorium uelense (Sanstchi) (Formicidae: Myrmicinae) on termites in Southern Guinea Savanna, Nigeria. Oecologia 38:83–91
    [Google Scholar]
  89. 89. 
    Longrich NR, Currie PJ. 2009. Albertonykus borealis, a new alvarezsaur (Dinosauria: Theropoda) from the Early Maastrichtian of Alberta, Canada: implications for the systematics and ecology of the Alvarezsauridae. Cretaceous Res 30:239–52
    [Google Scholar]
  90. 90. 
    Masuoka Y, Maekawa K. 2016. Ecdysone signaling regulates soldier-specific cuticular pigmentation in the termite Zootermopsis nevadensis. FEBS Lett 590:1694–703
    [Google Scholar]
  91. 91. 
    Masuoka Y, Yaguchi H, Suzuki R, Maekawa K. 2015. Knockdown of the juvenile hormone receptor gene inhibits soldier-specific morphogenesis in the damp-wood termite Zootermopsis nevadensis (Isoptera: Archotermopsidae). Insect Biochem. Mol. Biol. 64:25–31
    [Google Scholar]
  92. 92. 
    Matsunami M, Nozawa M, Suzuki R, Toga K, Masuoka Y et al. 2019. Caste-specific microRNA expression in termites: insights into soldier differentiation. Insect Mol. Biol. 28:86–98
    [Google Scholar]
  93. 93. 
    McGlynn TP. 2012. The ecology of nest movement in social insects. Annu. Rev. Entomol. 57:291–308
    [Google Scholar]
  94. 94. 
    Michener CD. 1974. The Social Behavior of the Bees: A Comparative Study Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  95. 95. 
    Minakuchi C, Tanaka M, Miura K, Tanaka T 2011. Developmental profile and hormonal regulation of the transcription factors broad and Krüppel homolog 1 in hemimetabolous thrips. Insect Biochem. Mol. Biol. 41:125–34
    [Google Scholar]
  96. 96. 
    Miura T. 2019. Juvenile hormone as a physiological regulator mediating phenotypic plasticity in pancrustaceans. Dev. Growth Differ. 61:85–96
    [Google Scholar]
  97. 97. 
    Miura T, Maekawa K. 2020. The making of the defensive caste: physiology, development, and evolution of the soldier differentiation in termites. Evol. Dev. 22:425–37
    [Google Scholar]
  98. 98. 
    Molet M, Wheeler DE, Peeters C 2012. Evolution of novel mosaic castes in ants: modularity, phenotypic plasticity, and colonial buffering. Am. Nat. 180:328–41
    [Google Scholar]
  99. 99. 
    Moore AJ, Benowitz KM. 2019. From phenotype to genotype: the precursor hypothesis predicts genetic influences that facilitate transitions in social behavior. Curr. Opin. Insect Sci. 34:91–96
    [Google Scholar]
  100. 100. 
    Moreau CS. 2008. Unraveling the evolutionary history of the hyperdiverse ant genus Pheidole (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 48:224–39
    [Google Scholar]
  101. 101. 
    Nijhout HF. 2019. Larval development: making ants into soldiers. Curr. Biol. 29:R32–34
    [Google Scholar]
  102. 102. 
    Nijhout HF, Wheeler DE. 1982. Juvenile hormone and the physiological basis of insect polymorphisms. Q. Rev. Biol. 57:109–33
    [Google Scholar]
  103. 103. 
    Norman VC, Hughes WOH. 2016. Behavioural effects of juvenile hormone and their influence on division of labour in leaf-cutting ant societies. J. Exp. Biol. 219:Pt. 18–11
    [Google Scholar]
  104. 104. 
    Nouvian M, Breed MD. 2020. Colony defense, survival and reproduction. Encyclopedia of Social Insects C Starr Berlin: Springer https://doi.org/10.1007/978-3-319-90306-4_25-2
    [Crossref] [Google Scholar]
  105. 105. 
    Nouvian M, Deisig N, Reinhard J, Giurfa M 2018. Seasonality, alarm pheromone and serotonin: insights on the neurobiology of honeybee defence from winter bees. Biol. Lett. 14:20180337
    [Google Scholar]
  106. 106. 
    Nouvian M, Mandal S, Jamme C, Claudianos C, d'Ettorre P et al. 2018. Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain. Proc. Biol. Sci. 285:187120172653
    [Google Scholar]
  107. 107. 
    Nouvian M, Reinhard J, Giurfa M 2016. The defensive response of the honeybee Apis mellifera. J. Exp. Biol. 219:Pt. 223505–17
    [Google Scholar]
  108. 108. 
    O'Connell LA, Hofmann HA. 2011. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J. Comp. Neurol. 519:3599–639
    [Google Scholar]
  109. 109. 
    Ode PJ, Keasar T, Segoli M. 2018. Lessons from the multitudes: insights from polyembryonic wasps for behavioral ecology. Curr. Opin. Insect Sci. 27:32–37
    [Google Scholar]
  110. 110. 
    O'Donnell S. 1998. Reproductive caste determination in eusocial wasps (Hymenoptera: Vespidae). Annu. Rev. Entomol. 43:323–46
    [Google Scholar]
  111. 111. 
    O'Donnell S, Reichardt M, Foster R 2000. Individual and colony factors in bumble bee division of labor (Bombus bifarius nearcticus Handl; Hymenoptera, Apidae). Insectes Soc. 47:164–70
    [Google Scholar]
  112. 112. 
    Oi CA, Oliveira RC, van Zweden JS, Mateus S, Millar JG et al. 2019. Do primitively eusocial wasps use queen pheromones to regulate reproduction? A case study of the paper wasp Polistes satan. Front. Ecol. Evol. 7:199
    [Google Scholar]
  113. 113. 
    Oster GF, Wilson EO. 1978. Caste and Ecology in the Social Insects Monogr. Popul. Biol. 12 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  114. 114. 
    Pandey A, Bloch G. 2015. Juvenile hormone and ecdysteroids as major regulators of brain and behavior in bees. Curr. Opin. Insect Sci. 12:26–37
    [Google Scholar]
  115. 115. 
    Pandey A, Motro U, Bloch G. 2020. Juvenile hormone interacts with multiple factors to modulate aggression and dominance in groups of orphan bumble bee (Bombus terrestris) workers. Horm. Behav. 117:104602
    [Google Scholar]
  116. 116. 
    Parker J, Grimaldi DA 2014. Specialized myrmecophily at the ecological dawn of modern ants. Curr. Biol. 24:2428–34
    [Google Scholar]
  117. 117. 
    Pearce AN, Huang ZY, Breed MD. 2001. Juvenile hormone and aggression in honey bees. J. Insect Physiol. 47:1243–47
    [Google Scholar]
  118. 118. 
    Peeters C, Ito F. 2015. Wingless and dwarf workers underlie the ecological success of ants (Hymenoptera: Formicidae). Myrmecol. News 21:117–30
    [Google Scholar]
  119. 119. 
    Powell S. 2008. Ecological specialization and the evolution of a specialized caste in Cephalotes ants. Funct. Ecol. 22:902–11
    [Google Scholar]
  120. 120. 
    Powell S, Peretz C 2021. Reexamining how ecology shapes the ontogeny of colony size and caste composition in social insects: insights from turtle ants in the arboreal realm. Insect. Soc. In press
  121. 121. 
    Powell S, Price SL, Kronauer DJC. 2020. Trait evolution is reversible, repeatable, and decoupled in the soldier caste of turtle ants. PNAS 117:6608–15
    [Google Scholar]
  122. 122. 
    Prestwich GD. 1984. Defense mechanisms of termites. Annu. Rev. Entomol. 29:201–32
    [Google Scholar]
  123. 123. 
    Queller DC, Strassmann JE. 1998. Kin selection and social insects. Bioscience 48:165–75
    [Google Scholar]
  124. 124. 
    Rajakumar R, Koch S, Couture M, Favé M-J, Lillico-Ouachour A et al. 2018. Social regulation of a rudimentary organ generates complex worker-caste systems in ants. Nature 562:7728574–77
    [Google Scholar]
  125. 125. 
    Rajakumar R, San Mauro D, Dijkstra MB, Huang MH, Wheeler DE et al. 2012. Ancestral developmental potential facilitates parallel evolution in ants. Science 335:606479–82
    [Google Scholar]
  126. 126. 
    Redford KH, Dorea JG 2009. The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J. Zool. 203:385–95
    [Google Scholar]
  127. 127. 
    Requier F, Rome Q, Chiron G, Decante D, Marion S et al. 2019. Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. J. Pest Sci. 92:567–78
    [Google Scholar]
  128. 128. 
    Richards MH. 2019. Social trait definitions influence evolutionary inferences: a phylogenetic approach to improving social terminology for bees. Curr. Opin. Insect Sci. 34:97–104
    [Google Scholar]
  129. 129. 
    Rillich J, Stevenson PA. 2018. Serotonin mediates depression of aggression after acute and chronic social defeat stress in a model insect. Front. Behav. Neurosci. 12:233
    [Google Scholar]
  130. 130. 
    Rittschof CC, Grozinger CM 2021. The fundamental role of aggression and conflict in the evolution and organization of social groups. Cooperation and Conflict: The Interaction of Opposites in Shaping Social Behavior W Wilczynski, SF Brosnan 212–33 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  131. 131. 
    Rittschof CC, Robinson GE. 2013. Manipulation of colony environment modulates honey bee aggression and brain gene expression. Genes Brain Behav 12:802–11
    [Google Scholar]
  132. 132. 
    Rittschof CC, Vekaria HJ, Palmer JH, Sullivan PG 2019. Biogenic amines and activity levels alter the neural energetic response to aggressive social cues in the honey bee Apis mellifera. J. Neurosci. Res. 97:991–1003
    [Google Scholar]
  133. 133. 
    Roisin Y. 1999. Philopatric reproduction, a prime mover in the evolution of termite sociality?. Insectes Soc 46:297–305
    [Google Scholar]
  134. 134. 
    Roisin Y, Korb J 2011. Social organisation and the status of workers in termites. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 133–64 Berlin: Springer
    [Google Scholar]
  135. 135. 
    Romero GQ, Antiqueira PAP, Koricheva J. 2011. A meta-analysis of predation risk effects on pollinator behaviour. PLOS ONE 6:e20689
    [Google Scholar]
  136. 136. 
    Rossi N, d'Ettorre P, Giurfa M. 2018. Pheromones modulate responsiveness to a noxious stimulus in honey bees. J. Exp. Biol. 221:Pt. 5jeb172270
    [Google Scholar]
  137. 137. 
    Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W et al. 2020. Genome-enabled insights into the biology of thrips as crop pests. BMC Biol 18:142
    [Google Scholar]
  138. 138. 
    Rubenstein DR, Abbot P 2017. Comparative Social Evolution Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  139. 139. 
    Sasaki K, Harada M. 2020. Dopamine production in the brain is associated with caste-specific morphology and behavior in an artificial intermediate honey bee caste. PLOS ONE 15:e0244140
    [Google Scholar]
  140. 140. 
    Scharf ME, Buckspan CE, Grzymala TL, Zhou X. 2007. Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors. J. Exp. Biol. 210:Pt. 244390–98
    [Google Scholar]
  141. 141. 
    Schöning C, Ellis D, Fowler A, Sommer V 2007. Army ant prey availability and consumption by chimpanzees (Pan troglodytes vellerosus) at Gashaka (Nigeria). J. Zool. 271:125–33
    [Google Scholar]
  142. 142. 
    Schwarz MP, Bull NJ, Hogendoorn K. 1998. Evolution of sociality in the allodapine bees: a review of sex allocation, ecology and evolution. Insectes Soc 45:349–68
    [Google Scholar]
  143. 143. 
    Shackleton K, Alves DA, Ratnieks FLW. 2018. Organization enhances collective vigilance in the hovering guards of Tetragonisca angustula bees. Behav. Ecol. 29:1105–12
    [Google Scholar]
  144. 144. 
    Shibao H, Kutsukake M, Fukatsu T 2021. Temporal division of labor in an aphid social system. Sci. Rep. 11:1183
    [Google Scholar]
  145. 145. 
    Shibao H, Kutsukake M, Matsuyama S, Fukatsu T, Shimada M. 2010. Mechanisms regulating caste differentiation in an aphid social system. Commun. Integr. Biol. 3:1–5
    [Google Scholar]
  146. 146. 
    Shimoji H, Aonuma H, Miura T, Tsuji K, Sasaki K, Okada Y. 2017. Queen contact and among-worker interactions dually suppress worker brain dopamine as a potential regulator of reproduction in an ant. Behav. Ecol. Sociobiol. 71:35
    [Google Scholar]
  147. 147. 
    Shorter JR, Rueppell O. 2012. A review on self-destructive defense behaviors in social insects. Insect Soc 59:1–10
    [Google Scholar]
  148. 148. 
    Shorter JR, Tibbetts EA. 2008. The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. Insectes Soc 56:7–13
    [Google Scholar]
  149. 149. 
    Shpigler HY, Saul MC, Murdoch EE, Cash-Ahmed AC, Seward CH et al. 2017. Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees: biological embedding of social experience in honey bees. Genes Brain Behav 16:579–91
    [Google Scholar]
  150. 150. 
    Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C et al. 2016. Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science 351:6268aac6633
    [Google Scholar]
  151. 151. 
    Smith AR, O'Donnell S, Jeanne RL 2001. Correlated evolution of colony defence and social structure: a comparative analysis in eusocial wasps (Hymenoptera: Vespidae). Evol. Ecol. Res. 3:331–44
    [Google Scholar]
  152. 152. 
    Smith AR, Wcislo WT, O'Donnell S. 2003. Assured fitness returns favor sociality in a mass-provisioning sweat bee, Megalopta genalis (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 54:14–21
    [Google Scholar]
  153. 153. 
    Smith SM, Kent DS, Boomsma JJ, Stow AJ. 2018. Monogamous sperm storage and permanent worker sterility in a long-lived ambrosia beetle. Nat. Ecol. Evol. 2:1009–18
    [Google Scholar]
  154. 154. 
    Šobotník J, Jirošová A, Hanus R 2010. Chemical warfare in termites. J. Insect Physiol. 56:1012–21
    [Google Scholar]
  155. 155. 
    Sokolowski MB. 2010. Social interactions in “simple” model systems. Neuron 65:780–94
    [Google Scholar]
  156. 156. 
    Starr CK. 1985. Enabling mechanisms in the origin of sociality in the Hymenoptera—the sting's the thing. Ann. Entomol. Soc. Am. 78:836–40
    [Google Scholar]
  157. 157. 
    Starr CK 1991. The nest as the locus of social life. The Social Biology of Wasps KG Ross, RW Matthews 520–39 Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  158. 158. 
    Strait SG. 2014. Myrmecophagous microwear: implications for diet in the hominin fossil record. J. Hum. Evol. 71:87–93
    [Google Scholar]
  159. 159. 
    Strand MR, Baehrecke EH, Wong EA. 1991. The role of host endocrine factors in the development of polyembryonic parasitoids. Biol. Control 1:144–52
    [Google Scholar]
  160. 160. 
    Strassmann JE, Queller DC, Hughes CR. 1988. Predation and the evolution of sociality in the paper wasp Polistes bellicosus. Ecology 69:1497–505
    [Google Scholar]
  161. 161. 
    Sun P, Yu S, Merchant A, Lei C, Zhou X, Huang Q. 2019. Downregulation of Orco and 5-HTT alters nestmate discrimination in the subterranean termite Odontotermes formosanus (Shiraki). Front. Physiol. 10:714
    [Google Scholar]
  162. 162. 
    Szczuka A, Korczyńska J, Wnuk A, Symonowicz B, Gonzalez Szwacka A et al. 2013. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol. Exp. 73:495–520
    [Google Scholar]
  163. 163. 
    Tarver MR, Zhou X, Scharf ME. 2010. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol. Biol. 11:28
    [Google Scholar]
  164. 164. 
    Tian L, Zhou X. 2014. The soldiers in societies: defense, regulation, and evolution. Int. J. Biol. Sci. 10:296–308
    [Google Scholar]
  165. 165. 
    Tibbetts EA, Huang ZY. 2010. The challenge hypothesis in an insect: juvenile hormone increases during reproductive conflict following queen loss in Polistes wasps. Am. Nat. 176:123–30
    [Google Scholar]
  166. 166. 
    Tibbetts EA, Izzo A, Huang ZY. 2011. Behavioral and physiological factors associated with juvenile hormone in Polistes wasp foundresses. Behav. Ecol. Sociobiol. 65:1123–31
    [Google Scholar]
  167. 167. 
    Tibbetts EA, Laub EC, Mathiron AGE, Goubault M. 2020. The challenge hypothesis in insects. Horm. Behav. 123:104533
    [Google Scholar]
  168. 168. 
    Tierney SM, Smith JA, Chenoweth L, Schwarz MP. 2008. Phylogenetics of allodapine bees: a review of social evolution, parasitism and biogeography. Apidologie 39:3–15
    [Google Scholar]
  169. 169. 
    Truman JW, Riddiford LM 2019. The evolution of insect metamorphosis: a developmental and endocrine view. Philos. Trans. R. Soc. Lond. B 374:20190070
    [Google Scholar]
  170. 170. 
    Trumbo ST. 2018. Juvenile hormone and parental care in subsocial insects: implications for the role of juvenile hormone in the evolution of sociality. Curr. Opin. Insect Sci. 28:13–18
    [Google Scholar]
  171. 171. 
    Trumbo ST. 2019. The physiology of insect families: a door to the study of social evolution. Adv. Insect Physiol. 56:203–50
    [Google Scholar]
  172. 172. 
    Tuma J, Eggleton P, Fayle TM. 2020. Ant-termite interactions: an important but under-explored ecological linkage. Biol. Rev. 95:555–72
    [Google Scholar]
  173. 173. 
    Turillazzi S, West-Eberhard MJ. 1996. Natural History and Evolution of Paper-Wasps Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  174. 174. 
    Urbani CB, Passera L. 1996. Origin of ant soldiers. Nature 383:6597223
    [Google Scholar]
  175. 175. 
    Vea IM, Minakuchi C. 2020. Atypical insects: molecular mechanisms of unusual life history strategies. Curr. Opin. Insect Sci. 43:46–53
    [Google Scholar]
  176. 176. 
    Vellichirammal NN, Gupta P, Hall TA, Brisson JA. 2017. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. PNAS 114:1419–23
    [Google Scholar]
  177. 177. 
    Ward PS. 1997. Ant soldiers are not modified queens. Nature 385:6616494–95
    [Google Scholar]
  178. 178. 
    Watanabe D, Gotoh H, Miura T, Maekawa K 2011. Soldier presence suppresses presoldier differentiation through a rapid decrease of JH in the termite Reticulitermes speratus. J. Insect Physiol. 57:791–95
    [Google Scholar]
  179. 179. 
    West-Eberhard MJ. 2003. Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  180. 180. 
    Wheeler DE, Buck NA, Evans JD. 2014. Expression of insulin/insulin-like signalling and TOR pathway genes in honey bee caste determination: insulin pathway genes in caste determination. Insect Mol. Biol. 23:113–21
    [Google Scholar]
  181. 181. 
    Wiernasz DC, Cole BA, Cole BJ 2014. Defending the nest: variation in the alarm aggression response and nest mound damage in the harvester ant Pogonomyrmex occidentalis. Insectes Soc 61:273–79
    [Google Scholar]
  182. 182. 
    Wills BD, Powell S, Rivera MD, Suarez AV. 2018. Correlates and consequences of worker polymorphism in ants. Annu. Rev. Entomol. 63:575–98
    [Google Scholar]
  183. 183. 
    Wilson EO. 1971. The Insect Societies Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  184. 184. 
    Wray MK, Mattila HR, Seeley TD. 2011. Collective personalities in honeybee colonies are linked to colony fitness. Anim. Behav. 81:559–68
    [Google Scholar]
  185. 185. 
    Yaguchi H, Inoue T, Sasaki K, Maekawa K. 2016. Dopamine regulates termite soldier differentiation through trophallactic behaviours. R. Soc. Open Sci. 3:150574
    [Google Scholar]
  186. 186. 
    Yakovlev IK. 2018. Effects of octopamine on aggressive behavior in red wood ants. Neurosci. Behav. Physiol. 48:279–88
    [Google Scholar]
  187. 187. 
    Zhang C-X, Brisson JA, Xu H-J. 2019. Molecular mechanisms of wing polymorphism in insects. Annu. Rev. Entomol. 64:297–314
    [Google Scholar]
  188. 188. 
    Zhurov V, Terzin T, Grbić M. 2004. Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 432:7018764–69
    [Google Scholar]
/content/journals/10.1146/annurev-ento-082521-072638
Loading
/content/journals/10.1146/annurev-ento-082521-072638
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error