1932

Abstract

Integrated pest management (IPM) is an educated and systematic effort to use multiple control techniques to reduce pest damage to economically acceptable levels while minimizing negative environmental impacts. Although its benefits are widely acknowledged, IPM is not universally practiced by farmers. Potato farming, which produces one of the most important staple crops in the world, provides a good illustration of the issues surrounding IPM adoption. Potatoes are attacked by a complex of insect pests that can inflict catastrophic crop losses. Potato production has gone through the processes of consolidation and intensification, which are linked to increased pest problems, particularly selection for insecticide-resistant pest populations. While use of insecticides remains the most common method of pest control in potatoes, other techniques, including crop rotation and natural enemies, are also available. In addition, there are effective monitoring techniques for many potato pests. However, reliable economic thresholds are often lacking. Potato ecosystems are complex and diverse; therefore, the knowledge necessary for developing ecologically based pest management is not easily obtained or transferable. Furthermore, potato systems change with the arrival of new pest species and the evolution of existing pests. Modern technological advances, such as remote sensing and molecular biotechnology, are likely to improve potato IPM. However, these tools are not going to solve all problems. IPM is not just about integrating different techniques; it is also about integrating the efforts and concerns of all stakeholders. The collaboration of farmers and scientists in agricultural research is needed to foster the development of IPM systems that are appropriate for grower implementation and thus more likely to be adopted. Additional emphasis also needs to be placed on the fact that not only does IPM decrease degradation of the environment, but it also improves the economic well-being of its practitioners.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120523-023156
2025-01-28
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-120523-023156.html?itemId=/content/journals/10.1146/annurev-ento-120523-023156&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alwang J, Norton G, Larochelle C. 2019.. Obstacles to widespread diffusion of IPM in developing countries: lessons from the field. . J. Integr. Pest Manag. 10::10
    [Crossref] [Google Scholar]
  2. 2.
    Alyokhin A. 2009.. Colorado potato beetle management on potatoes: current challenges and future prospects. . Fruit Veg. Cereal Sci. Biotechnol. 3::1019
    [Google Scholar]
  3. 3.
    Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E. 2008.. Colorado potato beetle resistance to insecticides. . Am. J. Potato Res. 85::395413
    [Crossref] [Google Scholar]
  4. 4.
    Alyokhin A, Chen YH. 2017.. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. . Curr. Opin. Insect Sci. 21::3338
    [Crossref] [Google Scholar]
  5. 5.
    Alyokhin A, Chen YH, Udalov M, Benkovskaya G, Lindström L. 2022.. Evolutionary considerations in potato pest management. . See Reference 10 , pp. 42950
  6. 6.
    Alyokhin A, Dively G, Patterson M, Rogers D, Mahoney M, et al. 2006.. Susceptibility of imidacloprid-resistant Colorado potato beetles to non-neonicotinoid insecticides in the laboratory and field trials. . Am. J. Potato Res. 83::48594
    [Crossref] [Google Scholar]
  7. 7.
    Alyokhin A, Gao Y. 2022.. Potato ladybirds. . See Reference 10 , pp. 18998
  8. 8.
    Alyokhin A, Kryukov V. 2022.. Ecology of a potato field. . See Reference 10 , pp. 45162
  9. 9.
    Alyokhin A, Mota-Sanchez D, Baker M, Snyder WE, Menasha S, et al. 2015.. Red Queen on a potato field: IPM versus chemical dependency in Colorado potato beetle control. . Pest Manag. Sci. 71::34356
    [Crossref] [Google Scholar]
  10. 10.
    Alyokhin A, Rondon SI. 2022.. Insect Pests of Potato: Global Perspectives on Biology and Management. Oxford, UK:: Academic. , 2nd ed..
    [Google Scholar]
  11. 11.
    Alyokhin A, Rondon SI, Gao YL. 2022.. Potatoes and their pests: setting the stage. . See Reference 10 , pp. 35
  12. 12.
    Alyokhin A, Udalov M, Benkovskaya G. 2022.. Colorado potato beetle. . See Reference 10 , pp. 2938
  13. 13.
    Andrivon D. 2017.. Potato facing global challenges: How, how much, how well?. Potato Res. 60::389400
    [Crossref] [Google Scholar]
  14. 14.
    Arends B, Reisig DD, Gundry S, Huseth AS, Reay-Jones FP, et al. 2021.. Effectiveness of the natural resistance management refuge for Bt-cotton is dominated by local abundance of soybean and maize. . Sci. Rep. 11::17601
    [Crossref] [Google Scholar]
  15. 15.
    Ashouri A. 2004.. Transgenic-Bt potato plant resistance to the Colorado potato beetle affect the aphid parasitoid Aphidius nigripes. . Commun. Agric. Appl. Biol. Sci. 69::18589
    [Google Scholar]
  16. 16.
    Ashouri A, Michaud D, Cloutier C. 2001.. Recombinant and classically selected factors of potato plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata, variously affect the potato aphid parasitoid Aphidius nigripes. . Biocontrol 46::40118
    [Crossref] [Google Scholar]
  17. 17.
    Baker MB, Alyokhin A, Porter AH, Ferro DN, Dastur SR, et al. 2007.. Persistence and inheritance of costs of resistance to imidacloprid in Colorado potato beetle. . J. Econ. Entomol. 100::187179
    [Crossref] [Google Scholar]
  18. 18.
    Bethke PC, Halterman DA, Jansky S. 2017.. Are we getting better at using wild potato species in light of new tools?. Crop Sci. 57::124158
    [Crossref] [Google Scholar]
  19. 19.
    Buchman JL, Heilman BE, Munyaneza JE. 2011.. Effects of Liberibacter-infective Bactericera cockerelli (Hemiptera: Triozidae) density on zebra chip potato disease incidence, potato yield, and tuber processing quality. . J. Econ. Entomol. 104::178392
    [Crossref] [Google Scholar]
  20. 20.
    Bueno A, Panizzi A, Hunt T, Dourado P, Pitta R, et al. 2021.. Challenges for adoption of integrated pest management (IPM): the soybean example. . Neotrop. Entomol. 50::520
    [Crossref] [Google Scholar]
  21. 21.
    Butler CD, Gonzalez B, Manjunath KL, Lee RF, Novy RG, et al. 2011.. Behavioral responses of adult potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), to potato germplasm and transmission of Candidatus Liberibacter psyllaurous. . Crop Prot. 30::123338
    [Crossref] [Google Scholar]
  22. 22.
    Butler CD, Trumble JT. 2012.. Spatial dispersion and binomial sequential sampling for the potato psyllid (Hemiptera: Triozidae) on potato. . Pest Manag. Sci. 68::86569
    [Crossref] [Google Scholar]
  23. 23.
    Carrión Yaguana V, Alwang J, Norton G, Barrera V. 2016.. Does IPM have staying power? Revisiting a potato-producing area years after formal training ended. . J. Agric. Econ. 67::30823
    [Crossref] [Google Scholar]
  24. 24.
    Cerna E, Ochoa Y, Aguirre L, Flores M, Landeros J. 2013.. Determination of insecticide resistance in four populations of potato psillid Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae). . Phyton 82::6368
    [Crossref] [Google Scholar]
  25. 25.
    Chavez GL, Raman KV. 1987.. Evaluation of trapping and trap types to reduce damage to potatoes by the leafminer, Liriomyza huidobrensis (Diptera, Agromyzidae). . Int. J. Trop. Insect Sci. Appl. 8::36972
    [Crossref] [Google Scholar]
  26. 26.
    Clements J, Schoville S, Clements A, Amezian D, Davis T, et al. 2018.. Agricultural fungicides inadvertently influence the fitness of Colorado potato beetles, Leptinotarsa decemlineata, and their susceptibility to insecticides. . Sci. Rep. 8::13282
    [Crossref] [Google Scholar]
  27. 27.
    Coll M, Gavish S, Dori I. 2000.. Population biology of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae), in two potato cropping systems in Israel. . Bull. Entomol. Res. 90::30915
    [Crossref] [Google Scholar]
  28. 28.
    Crossley MS, Che YH, Groves RL, Schoville SD. 2017.. Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides. . Mol. Ecol. 26::6284300
    [Crossref] [Google Scholar]
  29. 29.
    Crossley MS, Rondon SI, Schoville SD. 2019.. Patterns of genetic differentiation in Colorado potato beetle correlate with contemporary, not historic, potato land cover. . Evol. Appl. 12::80414
    [Crossref] [Google Scholar]
  30. 30.
    da Silva ÍW, Malaquias MF, Nogueira DC, Rocha EAA, Silva RM, et al. 2023.. Pest monitoring reduces costs and increases revenue in the Solanum tuberosum potato crop. . Potato Res. 67::33955
    [Crossref] [Google Scholar]
  31. 31.
    Davidson-Lowe E, Ali JG. 2021.. Herbivore-induced plant volatiles mediate behavioral interactions between a leaf-chewing and a phloem-feeding herbivore. . Basic Appl. Ecol. 53::3948
    [Crossref] [Google Scholar]
  32. 32.
    Deguine JP, Aubertot JN, Flor RJ, Lescourret F, Wyckhuys KA, et al. 2021.. Integrated pest management: good intentions, hard realities. A review. . Agron. Sustain. Dev. 41::38
    [Crossref] [Google Scholar]
  33. 33.
    Douches DS, Kisha TJ, Coombs JJ, Li W, Pett WL, et al. 2001.. Effectiveness of natural and engineered host plant resistance in potato to the Colorado potato beetle. . HortScience 36::96770
    [Crossref] [Google Scholar]
  34. 34.
    Ehler LE. 2006.. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. . Pest Manag. Sci. 62::78789
    [Crossref] [Google Scholar]
  35. 35.
    Ehler LE, Bottrell DG. 2000.. The illusion of integrated pest management. . Issues Sci. Technol. 16::6164
    [Google Scholar]
  36. 36.
    Eyer JR, Crawford RF. 1933.. Observations on the feeding habits of the potato psyllid (Paratrioza cockerelli Sulc.) and the pathological history of the “psyllid yellows” which it produces. . J. Econ. Entomol. 26::84650
    [Crossref] [Google Scholar]
  37. 37.
    Flanders KL, Hawkes JG, Radcliffe EB, Lauer FI. 1992.. Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. . Euphytica 61::83111
    [Crossref] [Google Scholar]
  38. 38.
    Forrester NW, Cahill M, Bird LJ, Layland JK. 1993.. Management of pyrethroid and endosulfan resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. . Bull. Entomol. Res. 1::1132
    [Google Scholar]
  39. 39.
    Fuglie KO. 2007.. Priorities for potato research in developing countries: results of a survey. . Am. J. Potato Res. 84::35365
    [Crossref] [Google Scholar]
  40. 40.
    Gao YL, Alyokhin A, Nauen R, Guedes R, Palli SR. 2022.. Special issue on challenges and opportunities in managing insect pests of potato. . Pest Manag. Sci. 78::372930
    [Crossref] [Google Scholar]
  41. 41.
    Ghosh SK, Chakraborty G. 2012.. Integrated field management of Henosepilachna vigintioctopunctata (Fabr.) on potato using botanical and microbial pesticides. . J. Biopestic. 5::15154
    [Crossref] [Google Scholar]
  42. 42.
    Gillespie DR, Quiring DJM, Foottit RG, Foster SP, Acheampong S. 2008.. Implications of phenotypic variation of Myzus persicae (Hemiptera: Aphididae) for biological control on greenhouse pepper plants. . J. Appl. Entomol. 133::50511
    [Crossref] [Google Scholar]
  43. 43.
    Ginzberg I, Tokuhisa JG, Veilleux RE. 2009.. Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. . Potato Res. 52::115
    [Crossref] [Google Scholar]
  44. 44.
    Giri YP, Thapa RB, Shrestha SM, Pradhan SB, Maharjan R, et al. 2014.. Pesticide use pattern and awareness of pesticides users with special reference to potato growers in Nepal. . Int. J. Dev. Res. 4::2297302
    [Google Scholar]
  45. 45.
    Godtland EM, Elisabeth S, de Alain J, Rinku M, Oscar O. 2004.. The impact of farmer field schools on knowledge and productivity: a study of potato farmers in the Peruvian Andes. . Econ. Dev. Cult. Change 53::6392
    [Crossref] [Google Scholar]
  46. 46.
    Gong Y, Baylis K, Kozak R, Bull G. 2016.. Farmers’ risk preferences and pesticide use decisions: evidence from field experiments in China. . Agric. Econ. 47::41121
    [Crossref] [Google Scholar]
  47. 47.
    Graft JE. 1917.. The potato tubermoth. Tech. Bull. 427 , US Dep. Agric., Washington, DC:
    [Google Scholar]
  48. 48.
    Greenway G. 2022.. Estimating economic impacts of beet leafhopper on potato and carrot crops in the Columbia Basin region of Oregon and Washington. . Southwest. Entomol. 47::8996
    [Google Scholar]
  49. 49.
    Greenway GA, Asiseh F, Quaicoe O. 2021.. A cost benefit analysis of IPM decision support tools for potato psyllids in Idaho, Oregon, and Washington. . Am. J. Potato Res. 98::12229
    [Crossref] [Google Scholar]
  50. 50.
    Greenway GA, Rondon S. 2018.. Economic impacts of zebra chip in Idaho, Oregon, and Washington. . Am. J. Potato Res. 95::36267
    [Crossref] [Google Scholar]
  51. 51.
    Gross J, Gündermann G. 2016.. Principles of IPM in cultivated crops and implementation of innovative strategies for sustainable plant protection. . In Advances in Insect Control and Resistance Management, ed. AR Horowitz, I Ishaaya , pp. 926. Berlin:: Springer
    [Google Scholar]
  52. 52.
    Gutiérrez Illán J, Bloom EH, Wohleb CH, Wenninger EJ, Rondon SI, et al. 2020.. Landscape structure and climate drive population dynamics of an insect vector within intensely managed agroecosystems. . Ecol. Appl. 30::e02109
    [Crossref] [Google Scholar]
  53. 53.
    Halterman D, Guenthner J, Collinge S, Butler N, Douches D. 2016.. Biotech potatoes in the 21st century: 20 years since the first biotech potato. . Am. J. Potato Res. 93::120
    [Crossref] [Google Scholar]
  54. 54.
    Hansen AK, Trumble JT, Stouthamer R, Paine TD. 2008.. A new huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). . Appl. Environ. Microbiol. 74::586265
    [Crossref] [Google Scholar]
  55. 55.
    Hare JD. 1990.. Ecology and management of the Colorado potato beetle. . Annu. Rev. Entomol. 35::81100
    [Crossref] [Google Scholar]
  56. 56.
    He W, Xu W, Xu L, Fu K, Guo W, et al. 2020.. Length-dependent accumulation of double-stranded RNAs in plastids affects RNA interference efficiency in the Colorado potato beetle. . J. Exp. Bot. 71::267077
    [Crossref] [Google Scholar]
  57. 57.
    Heisswolf S, Houlding BJ, Deuter PL. 1997.. A decade of integrated pest management (IPM) in Brassica vegetable crops-the role of farmer participation in its development in southern Queensland, Australia. . In The Management of Diamondback Moth and Other Crucifer Pests: Proceedings of the 3rd International Workshop, Kuala Lumpur, Malaysia, ed. A Sivapragasam, WH Loke, AK Hussan, GS Lim , pp. 22832. Kuala Lumpur:: Malays. Agric. Res. Dev. Inst.
    [Google Scholar]
  58. 58.
    Herzog J, Muller CB, Vorburger C. 2007.. Strong parasitoid-mediated selection in experimental populations of aphids. . Biol. Lett. 3::66769
    [Crossref] [Google Scholar]
  59. 59.
    Hijmans RJ. 2003.. The effect of climate change on global potato production. . Am. J. Potato Res. 80::27179
    [Crossref] [Google Scholar]
  60. 60.
    Huseth AS, Chappell TM, Chitturi A, Jacobson AL, Kennedy GG. 2018.. Insecticide resistance signals negative consequences of widespread neonicotinoid use on multiple field crops in the US cotton belt. . Environ. Sci. Technol. 52::231422
    [Crossref] [Google Scholar]
  61. 61.
    Huseth AS, Groves RL, Chapman SA, Alyokhin A, Kuhar TP, et al. 2014.. Managing Colorado potato beetle insecticide resistance: new tools and strategies for the next decade of pest control in potato. . J. Integr. Pest Manag. 5::A18
    [Crossref] [Google Scholar]
  62. 62.
    Huseth AS, Petersen JD, Poveda K, Szendrei Z, Nault BA, et al. 2015.. Spatial and temporal potato intensification drives insecticide resistance in the specialist herbivore, Leptinotarsa decemlineata. . PLOS ONE 10::e0127576
    [Crossref] [Google Scholar]
  63. 63.
    Hunt ER, Rondon SI. 2017.. Detection of potato beetle damage using remote sensing from small unmanned aircraft systems. . J. Appl. Remote Sens. 11::026013
    [Crossref] [Google Scholar]
  64. 64.
    Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, et al. 2016.. Reinventing potato as a diploid inbred line-based crop. . Crop Sci. 56::141222
    [Crossref] [Google Scholar]
  65. 65.
    Jansky SH, Simon R, Spooner DM. 2009.. A test of taxonomic predictivity: resistance to the Colorado potato beetle in wild relatives of cultivated potato. . J. Econ. Entomol. 102::42231
    [Crossref] [Google Scholar]
  66. 66.
    Jansson R, Seal D. 1994.. Biology and management of wireworm on potato. . In Advances in Potato Pest Biology and Management, ed. G Zehnder, M Powelson, R Jansson, K Raman , pp. 3153. St. Paul, MN:: Am. Phytopathol. Soc.
    [Google Scholar]
  67. 67.
    Kaniewski WK, Thomas PE. 2004.. The potato story. . AgBioForum 7::4146
    [Google Scholar]
  68. 68.
    Kaplan I, Dively GP, Denno RF. 2009.. The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. . Ecol. Appl. 19::86472
    [Crossref] [Google Scholar]
  69. 69.
    Karlsson Green K, Stenberg JA, Lankinen A. 2020.. Making sense of integrated pest management (IPM) in the light of evolution. . Evol. Appl. 13::1791805
    [Crossref] [Google Scholar]
  70. 70.
    Koss AM, Jensen AS, Schreiber A, Pike KS, Snyder WE. 2005.. Comparison of predator and pest communities in Washington potato fields treated with broad-spectrum, selective, or organic insecticides. . Environ. Entomol. 34::8795
    [Crossref] [Google Scholar]
  71. 71.
    Kromann P, Miethbauer T, Ortiz O, Forbes GA. 2014.. Review of potato biotic constraints and experiences with integrated pest management interventions. . In Integrated Pest Management: Current Concepts and Ecological Perspective, ed. DP Abrol , pp. 24568. Berlin:: Springer
    [Google Scholar]
  72. 72.
    Kroschel J, Mujica N, Alcazar J, Canedo V, Zegarra O. 2012.. Developing integrated pest management for potato: experiences and lessons from two distinct potato production systems of Peru. . In Sustainable Potato Production: Global Case Studies, ed. Z He, R Larken, W Honeycutt , pp. 41950. Berlin:: Springer
    [Google Scholar]
  73. 73.
    Kroschel J, Mujica N, Okonya J, Alyokhin A. 2020.. Insect pests affecting potatoes in tropical, subtropical, and temperate regions. . In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind, ed. H Campos, O Ortiz , pp. 251306. Berlin:: Springer
    [Google Scholar]
  74. 74.
    Kroschel J, Sporleder M, Tonnang HEZ, Juarez H, Carhuapoma P, et al. 2013.. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. . Agric. Forest Meteorol. 170::22841
    [Crossref] [Google Scholar]
  75. 75.
    Kumar S, Sah U, Deka C, Baishya L, Pandey N, et al. 2008.. Farmer participatory research for design and delivery of situation specific potato production technology in Meghalya. . Potato J. 35::7884
    [Google Scholar]
  76. 76.
    Kwon M, Kim J, Maharjan R. 2018.. Effect of Liriomyza huidobrensis (Diptera: Agromyzidae) density on foliar leaf damage and yield loss in potato. . Appl. Entomol. Zool. 53::41118
    [Crossref] [Google Scholar]
  77. 77.
    Lane DE, Walker TJ, Grantham DG. 2023.. IPM adoption and impacts in the United States. . J. Integr. Pest Manag. 14::1
    [Crossref] [Google Scholar]
  78. 78.
    Levine E, Oloumi-Sadeghi H, Fisher JR. 1992.. Discovery of multiyear diapause in Illinois and South Dakota Northern corn rootworm (Coleoptera: Cerambycidae) eggs and incidence of the prolonged diapause trait in Illinois. . J. Econ. Entomol. 85::26267
    [Crossref] [Google Scholar]
  79. 79.
    Liu D, Trumble JT. 2007.. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). . Entomol. Exp. Appl. 123::3542
    [Crossref] [Google Scholar]
  80. 80.
    Liu D, Trumble JT, Stouthamer R. 2006.. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. . Entomol. Exp. Appl. 118::17783
    [Crossref] [Google Scholar]
  81. 81.
    MacKenzie TDB, Arju I, Poirier R, Singh M. 2018.. A genetic survey of pyrethroid insecticide resistance in aphids in New Brunswick, Canada, with particular emphasis on aphids as vectors of Potato virus Y. . J. Econ. Entomol. 111::136168
    [Crossref] [Google Scholar]
  82. 82.
    MacRae I, Baker T, Thompson A. 2021.. Notes on UAS and remote sensing of insect damage. . Am. J. Potato Res. 98::1623
    [Crossref] [Google Scholar]
  83. 83.
    Marsh TL, Huffaker RG, Long GE. 2000.. Optimal control of vector-virus-plant interactions: the case of potato leafroll virus net necrosis. . Am. J. Agric. Econ. 82::55669
    [Crossref] [Google Scholar]
  84. 84.
    Masetti A, Butturini A, Lanzoni A, De Luigi V, Burgio G. 2015.. Area-wide monitoring of potato tuberworm (Phthorimaea operculella) by pheromone trapping in Northern Italy: phenology, spatial distribution and relationships between catches and tuber damage. . Agric. Forest Entomol. 17::13845
    [Crossref] [Google Scholar]
  85. 85.
    Menapace L, Colson G, Raffaelli R. 2013.. Risk aversion, subjective beliefs, and farmer risk management strategies. . Am. J. Agric. Econ. 95::38489
    [Crossref] [Google Scholar]
  86. 86.
    Mhatre PH, Thube SH, Navik O, Venkatasalam EP, Sharma S, et al. 2022.. Outbreak and management of serpentine leaf miner, Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae), on potato (Solanum tuberosum L.) crop in India. . Potato Res. 65::80927
    [Crossref] [Google Scholar]
  87. 87.
    Mishra S, Jurat-Fuentes JL. 2022.. Insecticidal RNA interference (RNAi) for control of potato pests. . See Reference 10 , pp. 21929
  88. 88.
    Mota-Sanchez D, Hollingworth RM, Grafius EJ, Moyer DD. 2006.. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). . Pest Manag. Sci. 62::3037
    [Crossref] [Google Scholar]
  89. 89.
    Mujica N, Kroschel J. 2013.. Pest intensity-crop loss relationships for the leafminer fly Liriomyza huidobrensis (Blanchard) in different potato (Solanum tuberosum L.) varieties. . Crop Prot. 47::616
    [Crossref] [Google Scholar]
  90. 90.
    Mujica N, Kroschel J. 2019.. Ecological, economic, and environmental assessments of integrated pest management in potato: a case study from the Cañete Valley, Peru. . Food Energy Secur. 8::e00153
    [Crossref] [Google Scholar]
  91. 91.
    Munyaneza JE. 2012.. Zebra chip disease of potato: biology, epidemiology, and management. . Am. J. Potato Res. 89::32950
    [Crossref] [Google Scholar]
  92. 92.
    Munyaneza JE. 2015.. Zebra chip disease, Candidatus Liberibacter, and potato psyllid: a global threat to the potato industry. . Am. J. Potato Res. 92::23035
    [Crossref] [Google Scholar]
  93. 93.
    Munyaneza JE, Crosslin JM, Upton JE. 2006.. Beet leafhopper (Hemiptera: Cicadellidae) transmits the Columbia Basin potato purple top phytoplasma to potatoes, beets, and weeds. . J. Econ. Entomol. 99::26872
    [Crossref] [Google Scholar]
  94. 94.
    Nicholson CC, Williams NM. 2021.. Cropland heterogeneity drives frequency and intensity of pesticide use. . Environ. Res. Lett. 16::074008
    [Crossref] [Google Scholar]
  95. 95.
    Norton GA, Adamson D, Aitken LG, Bilston L, Foster J, et al. 1999.. Facilitating IPM: the role of participatory workshops. . Int. J. Pest Manag. 45::8590
    [Crossref] [Google Scholar]
  96. 96.
    Norton GW, Rajotte EG, Luther GC. 2005.. The participatory integrated pest management (PIPM) process. . In Globalizing Integrated Pest Management: A Participatory Research Process, ed. GW Norton, EA Heinrichs, GC Luther, ME Irwin , pp. 1326. Ames, IA:: Blackwell
    [Google Scholar]
  97. 97.
    Okonya JS, Kroschel J. 2015.. A cross-sectional study of pesticide use and knowledge of smallholder potato farmers in Uganda. . Biomed. Res. Int. 2015::759049
    [Crossref] [Google Scholar]
  98. 98.
    Ortiz O. 2006.. Evolution of agricultural extension and information dissemination in Peru: an historical perspective focusing on potato-related pest control. . Agric. Hum. Values 23::47789
    [Crossref] [Google Scholar]
  99. 99.
    Pallis S, Alyokhin A, Manley B, Rodrigues TB, Buzza A, et al. 2022.. Toxicity of a novel dsRNA-based insecticide to the Colorado potato beetle in laboratory and field trials. . Pest Manag. Sci. 78::383648
    [Crossref] [Google Scholar]
  100. 100.
    Parker WE, Howard JJ. 2001.. The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the U.K. . Agric. For. Entomol. 3::8598
    [Crossref] [Google Scholar]
  101. 101.
    Parsa S, Ccanto R, Rosenheim JA. 2011.. Resource concentration dilutes a key pest in Indigenous potato agriculture. . Ecol. Appl. 21::53946
    [Crossref] [Google Scholar]
  102. 102.
    Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, et al. 1993.. Genetically improved potatoes: protection from damage by Colorado potato beetles. . Plant Mol. Biol. 22::31321
    [Crossref] [Google Scholar]
  103. 103.
    Philips CR, Rogers MA, Kuhar TP. 2014.. Understanding farmscapes and their potential for improving IPM programs. . J. Integr. Pest Manag. 5::C19
    [Google Scholar]
  104. 104.
    Piwowar A. 2021.. The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. . Environ. Sci. Pollut. Res. 28::2662842
    [Crossref] [Google Scholar]
  105. 105.
    Pletsch DJ. 1942.. The effect of some insecticides on the immature stages of the potato and tomato psyllid, Paratrioza cockerelli (Sulc). . J. Econ. Entomol. 35::5860
    [Crossref] [Google Scholar]
  106. 106.
    Poveda K, Martínez E, Kersch-Becker MF, Bonilla MA, Tscharntke T. 2012.. Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. . J. Appl. Ecol. 49::51322
    [Crossref] [Google Scholar]
  107. 107.
    Prager SM, Cohen A, Cooper WR, Novy R, Rashed A, et al. 2022.. A comprehensive review of zebra chip disease in potato and its management through breeding for resistance/tolerance to ‘Candidatus Liberibacter solanacearum’ and its insect vector. . Pest Manag. Sci. 78::373145
    [Crossref] [Google Scholar]
  108. 108.
    Prager SM, Trumble JT. 2018.. Psyllids: biology, ecology, and management. . In Sustainable Management of Arthropod Pests of Tomato, ed. W Wakil, GE Brust, TM Perring , pp. 16381. Oxford, UK:: Academic
    [Google Scholar]
  109. 109.
    Prager SM, Vindiola B, Kund GS, Byrne FJ, Trumble JT. 2013.. Considerations for the use of neo-nicotinoid pesticides in management of Bactericera cockerelli (Šulk) (Hemiptera: Triozidae). . Crop Prot. 54::8491
    [Crossref] [Google Scholar]
  110. 110.
    Prokopy RJ. 1993.. Stepwise progress towards IPM and sustainable agriculture. . IPM Pract. 15::14
    [Google Scholar]
  111. 111.
    Radcliffe EB. 1982.. Insect pests of potato. . Annu. Rev. Entomol. 27::173204
    [Crossref] [Google Scholar]
  112. 112.
    Radcliffe EB, Ragsdale DW. 2002.. Aphid-transmitted potato viruses: the importance of understanding vector biology. . Am. J. Potato Res. 79::35386
    [Crossref] [Google Scholar]
  113. 113.
    Rajotte EG, Norton GW, Luther GC, Barrera V, Heong KL. 2005.. IPM transfer and adoption. . In Globalizing Integrated Pest Management: A Participatory Research Process, ed. GW Norton, EA Heinrichs, GC Luther, ME Irwin , pp. 14157. Ames, IA:: Blackwell
    [Google Scholar]
  114. 114.
    Rashidi M, Novy RG, Wallis CM, Rashed A. 2017.. Characterization of host plant resistance to zebra chip disease from species-derived potato genotypes and the identification of new sources of zebra chip resistance. . PLOS ONE 12::e0183283
    [Crossref] [Google Scholar]
  115. 115.
    Reed GL, Jensen AS, Riebe J, Head G, Duan JJ. 2001.. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: comparative efficacy and non-target impacts. . Entomol. Exp. Appl. 100::89100
    [Crossref] [Google Scholar]
  116. 116.
    Richards BL, Blood HL, Linford MB. 1927.. Destructive outbreak of unknown potato disease in Utah. . Plant Dis. Rep. 11::9394
    [Google Scholar]
  117. 117.
    Rincon DF, Vasquez DF, Rivera-Trujillo HF, Beltrán C, Borrero-Echeverry F. 2019.. Economic injury levels for the potato yellow vein disease and its vector, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), affecting potato crops in the Andes. . Crop Prot. 119::5258
    [Crossref] [Google Scholar]
  118. 118.
    Rodrigues TB, Mishra SK, Sridharan K, Barnes ER, Alyokhin A, et al. 2021.. First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata). . Front. Plant Sci. 12::728652
    [Crossref] [Google Scholar]
  119. 119.
    Rondon SI, Gao YL. 2018.. The journey of the potato tuberworm around the world. . In Moths: Pests of Potato, Maize and Sugar Beet, ed. K Perveen , pp. 1752. London:: InTech Open
    [Google Scholar]
  120. 120.
    Rondon SI, Hane DC, Brown CR, Vales MI, Dogramaci M. 2009.. Resistance of potato germplasm to the potato tuberworm (Lepidoptera: Gelechiidae). . J. Econ. Entomol. 102::164953
    [Crossref] [Google Scholar]
  121. 121.
    Sanford LL, Deahl KL, Sinden SL, Ladd TL. 1992.. Glycoalkaloid contents in tubers from Solanum tuberosum populations selected for potato leafhopper resistance. . Am. Potato J. 69::693703
    [Crossref] [Google Scholar]
  122. 122.
    Sarkar SC, Hatt S, Philips A, Akter M, Milroy SP, et al. 2023.. Tomato potato psyllid Bactericera cockerelli (Hemiptera: Triozidae) in Australia: incursion, potential impact and opportunities for biological control. . Insects 14::263
    [Crossref] [Google Scholar]
  123. 123.
    Sengoda VG, Munyaneza JE, Crosslin JM, Buchman JL, Pappu HR. 2010.. Phenotypic and etiological differences between psyllid yellows and zebra chip diseases of potato. . Am. J. Potato Res. 87::4149
    [Crossref] [Google Scholar]
  124. 124.
    Sexson DL, Wyman JA. 2005.. Effect of crop rotation distance on populations of Colorado potato beetle (Coleoptera: Chrysomelidae): development of areawide Colorado potato beetle pest management strategies. . J. Econ. Entomol. 98::71624
    [Crossref] [Google Scholar]
  125. 125.
    Sexton SE, Lei Z, Zilberman D. 2007.. The economics of pesticides and pest control. . Int. Rev. Environ. Resource Econ. 1::271326
    [Crossref] [Google Scholar]
  126. 126.
    Smith RF, Allen WW. 1954.. Insect control and the balance of nature. . Sci. Am. 190::3892
    [Crossref] [Google Scholar]
  127. 127.
    Snapp SS, DeDecker J, Davis AS. 2019.. Farmer participatory research advances sustainable agriculture: lessons from Michigan and Malawi. . Agron. J. 111::268191
    [Crossref] [Google Scholar]
  128. 128.
    Stern VM, Smith RF, Van Den Bosch R, Hagen KS. 1959.. The integrated control concept. . Hilgardia 29::81101
    [Crossref] [Google Scholar]
  129. 129.
    Storer NP, Peck SL, Gould F, Van Duyn JW, Kennedy GG. 2003.. Spatial processes in the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton in a mixed agroecosystem: a biology-rich stochastic simulation model. . J. Econ. Entomol. 96::15672
    [Crossref] [Google Scholar]
  130. 130.
    Sulewski P, Kłoczko-Gajewska A. 2014.. Farmers’ risk perception, risk aversion and strategies to cope with production risk: an empirical study from Poland. . Stud. Agric. Econ. 116::14047
    [Crossref] [Google Scholar]
  131. 131.
    Szczepaniec A, Varela KA, Kiani M, Paetzold L, Rush CM. 2019.. Incidence of resistance to neonicotinoid insecticides in Bactericera cockerelli across Southwest U.S. . Crop Prot. 116::18895
    [Crossref] [Google Scholar]
  132. 132.
    Szendrei Z, Grafius E, Byrne A, Ziegler A. 2012.. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). . Pest Manag. Sci. 68::94146
    [Crossref] [Google Scholar]
  133. 133.
    Tai HH, Vickruck J. 2022.. Potato resistance against insect herbivores. . In Insect Pests of Potato: Global Perspectives on Biology and Management, ed. A Alyokhin, SI Rondon, YL Gao , pp. 27796. Oxford, UK:: Academic. , 2nd ed..
    [Google Scholar]
  134. 134.
    Taylor AS, Dawson P. 2021.. Major constraints to potato production in Indonesia: a review. . Am. J. Potato Res. 98::17186
    [Crossref] [Google Scholar]
  135. 135.
    Teulon D, Hill M. 2015.. Responding to the establishment of new pests and diseases: what can be learnt from tomato potato psyllid and Candidatus Liberibacter solanacearum in New Zealand. . N. Z. Plant Prot. 68::7684
    [Google Scholar]
  136. 136.
    Toevs EA, Guenthner JF, Johnson A, McIntosh C, Thornton MK. 2011.. An industry perspective of all-native and transgenic potatoes. . AgBioForum 14::1419
    [Google Scholar]
  137. 137.
    Ullah R, Shivakoti GP, Ali G. 2015.. Factors effecting farmers’ risk attitude and risk perceptions: the case of Khyber Pakhtunkhwa, Pakistan. . Int. J. Disaster Risk Reduct. 13::15157
    [Crossref] [Google Scholar]
  138. 138.
    Vereijssen J, Smith GR, Weintraub PG. 2018.. Bactericera cockerelli (Hemiptera: Triozidae) and Candidatus Liberibacter solanacearum in potatoes in New Zealand: biology, transmission, and implications for management. . J. Integr. Pest Manag. 9::13
    [Crossref] [Google Scholar]
  139. 139.
    Vernon R, van Herk W. 2017.. Wireworm and flea beetle IPM in potatoes in Canada: implications for managing emergent problems in Europe. . Potato Res. 60::26985
    [Crossref] [Google Scholar]
  140. 140.
    Weintraub PG, Scheffer SJ, Visser D, Valladares G, Soares Correa A, et al. 2017.. The invasive Liriomyza huidobrensis (Diptera: Agromyzidae): understanding its pest status and management globally. . J. Insect Sci. 17::28
    [Crossref] [Google Scholar]
  141. 141.
    Wenninger EJ, Rashed A. 2024.. Biology, ecology, and management of the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), and zebra chip disease in potato. . Annu. Rev. Entomol. 69::13957
    [Crossref] [Google Scholar]
  142. 142.
    Wenninger EJ, Rashed A, Rondon SI, Alyokhin A, Alvarez JM. 2020.. Insect pests and their management. . In Potato Production Systems, ed. J Stark, M Thornton, P Nolte , pp. 283345. Berlin:: Springer
    [Google Scholar]
  143. 143.
    Wilson C, Tisdell C. 2001.. Why farmers continue to use pesticides despite environmental, health and sustainability costs. . Ecol. Econ. 39::44962
    [Crossref] [Google Scholar]
  144. 144.
    Wise MJ, Rausher MD. 2016.. Costs of resistance and correlational selection in the multiple-herbivore community of Solanum carolinense. . Evolution 70::241120
    [Crossref] [Google Scholar]
  145. 145.
    Wohleb CH, Waters TD, Crowder DW. 2021.. Decision support for potato growers using a pest monitoring network. . Am. J. Potato Res. 98::511
    [Crossref] [Google Scholar]
  146. 146.
    Yang F, Crossley MS, Schrader L, Dubovskiy IM, Wei SJ, et al. 2022.. Polygenic adaptation contributes to the invasive success of the Colorado potato beetle. . Mol. Ecol. 31::556880
    [Crossref] [Google Scholar]
  147. 147.
    Zalom FG. 1993.. Reorganizing to facilitate the development and use of integrated pest management. . Agric. Ecosyst. Environ. 46::24556
    [Crossref] [Google Scholar]
  148. 148.
    Zalucki MP, Adamson D, Furlong MJ. 2009.. The future of IPM: whither or wither?. Aust. J. Entomol. 48::8596
    [Crossref] [Google Scholar]
  149. 149.
    Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. 2015.. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. . Science 347::99194
    [Crossref] [Google Scholar]
  150. 150.
    Zhang MD, Yan JJ, Ali A, Gao YL. 2022.. Potato plant variety affects the performance and oviposition preference of Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). . Pest Manag. Sci. 78::391219
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-120523-023156
Loading
/content/journals/10.1146/annurev-ento-120523-023156
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error