1932

Abstract

Insect pests and insect pest management tactics impose risks to the environment. Environmental risk assessment is a formalized paradigm for the objective evaluation of risk in which assumptions and uncertainties are clearly presented. Therefore, a better understanding of the environmental risks and especially the comparative risks posed by insect pests and management tactics will improve integrated pest management. Risk assessments for insect pest management tactics are much more common for pesticides and genetically engineered crops than for biological control, cultural control, and semiochemicals. The reasons for this discrepancy include evidence of deleterious effects and data availability for pesticides and genetically engineered crops, public perceptions of tactics, and politics. Regardless of the regulatory oversight and frequency of risk assessments, all tactics should be subject to the risk assessment paradigm to assist in societal decisions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-121123-021252
2025-01-28
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/ento/70/1/annurev-ento-121123-021252.html?itemId=/content/journals/10.1146/annurev-ento-121123-021252&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ammann K. 2014.. Genomic misconception: a fresh look at the biosafety of transgenic and conventional crops. A plea for a process agnostic regulation. . New Biotechnol. 31:(1):117
    [Crossref] [Google Scholar]
  2. 2.
    Andow DA, Hilbeck A. 2004.. Science-based risk assessment for nontarget effects of transgenic crops. . BioScience 54:(7):63749
    [Crossref] [Google Scholar]
  3. 3.
    Antwi FB, Shama LM, Peterson RKD. 2008.. Risk assessments for the insect repellents DEET and picaridin. . Regul. Toxicol. Pharmacol. 51:(1):3136
    [Crossref] [Google Scholar]
  4. 4.
    Aronson D, Weeks J, Meylan B, Guiney PD, Howard PH. 2012.. Environmental release, environmental concentrations, and ecological risk of N,N-diethyl-m-toluamide (DEET). . Integr. Environ. Assess. Manag. 8:(1):13566
    [Crossref] [Google Scholar]
  5. 5.
    Bargar TA. 2012.. Risk assessment for adult butterflies exposed to the mosquito control pesticide naled. . Environ. Toxicol. Chem. 31:(4):88591
    [Crossref] [Google Scholar]
  6. 6.
    Bargar TA, Anderson C, Sowers A. 2020.. Mortality and cholinesterase inhibition in butterflies following aerial naled applications for mosquito control on the National Key Deer Refuge. . Arch. Environ. Contam. Toxicol. 79:(2):23345
    [Crossref] [Google Scholar]
  7. 7.
    Barratt BIP, Meenken ED, Withers TM. 2023.. Characterising uncertainty in risk assessments for biological control: using case studies from New Zealand to inform future research. . BioControl 68:(2):10115
    [Crossref] [Google Scholar]
  8. 8.
    Behrer AP, Lobell D. 2022.. Higher levels of no-till agriculture associated with lower PM2.5 in the Corn Belt. . Environ. Res. Lett. 17:(9):094012
    [Crossref] [Google Scholar]
  9. 9.
    Boyce WM, Lawler SP, Schultz JM, McCauley SJ, Kimsey LS, et al. 2007.. Nontarget effects of the mosquito adulticide pyrethrin applied aerially during a West Nile virus outbreak in an urban California environment. . J. Am. Mosq. Control Assoc. 23:(3):33539
    [Crossref] [Google Scholar]
  10. 10.
    Breidenbaugh MS, de Szalay FA. 2010.. Effects of aerial applications of naled on nontarget insects at Parris Island, South Carolina. . Environ. Entomol. 39:(2):59199
    [Crossref] [Google Scholar]
  11. 11.
    Brown CR. 2017.. Natural Enemy Abundance and Biological Control in Bt Maize Using Simulations of Predator-Prey Interactions. Bozeman:: Montana State Univ.
    [Google Scholar]
  12. 12.
    Buchori D, Mawan A, Nurhayati I, Aryati A, Kusnanto H, Hadi UK. 2022.. Risk assessment on the release of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia. . Insects 13:(10):924
    [Crossref] [Google Scholar]
  13. 13.
    Campos D, Gravato C, Quintaneiro C, Soares AMVM, Pestana JLT. 2016.. Responses of the aquatic midge Chironomus riparius to DEET exposure. . Aquat. Toxicol. 172::8085
    [Crossref] [Google Scholar]
  14. 14.
    Caron DM. 1979.. Effects of some ULV mosquito abatement insecticides on honey bees. . J. Econ. Entomol. 72:(1):14851
    [Crossref] [Google Scholar]
  15. 15.
    Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, et al. 2015.. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. . PLOS Negl. Trop. Dis. 9:(7):e0003864
    [Crossref] [Google Scholar]
  16. 16.
    Chaskopoulou A, Thrasyvoulou A, Goras G, Tananaki C, Latham MD, et al. 2014.. Nontarget effects of aerial mosquito adulticiding with water-based unsynergized pyrethroids on honey bees and other beneficial insects in an agricultural ecosystem of north Greece. . J. Med. Entomol. 51:(3):72024
    [Crossref] [Google Scholar]
  17. 17.
    Comas C, Lumbierres B, Pons X, Albajes R. 2014.. No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. . Transgenic Res. 23:(1):13543
    [Crossref] [Google Scholar]
  18. 18.
    Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C, et al. 2021.. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. . Malar. J. 20:(1):170
    [Crossref] [Google Scholar]
  19. 19.
    Cox LA, Babayev D, Huber W. 2005.. Some limitations of qualitative risk rating systems. . Risk Anal. 25:(3):65162
    [Crossref] [Google Scholar]
  20. 20.
    Cristale J, Silva FS, Zocolo GJ, Marchi MRR. 2012.. Influence of sugarcane burning on indoor/outdoor PAH air pollution in Brazil. . Environ. Pollut. 169::21016
    [Crossref] [Google Scholar]
  21. 21.
    Davis RS, Peterson RKD. 2008.. Effects of single and multiple applications of mosquito insecticides on nontarget arthropods. . J. Am. Mosq. Control Assoc. 24:(2):27080
    [Crossref] [Google Scholar]
  22. 22.
    Davis RS, Peterson RKD, Macedo PA. 2007.. An ecological risk assessment for insecticides used in adult mosquito management. . Integr. Environ. Assess. Manag. 3:(3):37382
    [Crossref] [Google Scholar]
  23. 23.
    DeBach P, Rosen D. 1991.. Biological Control by Natural Enemies. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  24. 24.
    DeVries ZC, Santangelo RG, Barbarin AM, Schal C. 2018.. Histamine as an emergent indoor contaminant: accumulation and persistence in bed bug infested homes. . PLOS ONE 13:(2):e0192462
    [Crossref] [Google Scholar]
  25. 25.
    Drake JM, Drury KLS, Lodge DM, Blukacz A, Yan ND, Dwyer G. 2006.. Demographic stochasticity, environmental variability, and windows of invasion risk for Bythotrephes longimanus in North America. . Biol. Invasions 8:(4):84361
    [Crossref] [Google Scholar]
  26. 26.
    Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY. 2008.. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). . PLOS ONE 3:(1):e1415
    [Crossref] [Google Scholar]
  27. 27.
    Dyck VA, Hendrichs J, Robinson AS, eds. 2021.. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Boca Raton, FL:: CRC Press. , 2nd ed..
    [Google Scholar]
  28. 28.
    EFSA (Eur. Food Safety Auth.). 2010.. Guidance on the environmental risk assessment of genetically modified plants. . EFSA J. 8:(11):1879
    [Crossref] [Google Scholar]
  29. 29.
    EFSA (Eur. Food Safety Auth.), Devos Y, Bonsall MB, Nogué F, Paraskevopoulos K, et al. 2020.. Outcome of a public consultation on the draft adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. . EFSA Support. Publ. 17:(11):EN1939
    [Google Scholar]
  30. 30.
    Eriksson D, Custers R, Edvardsson Björnberg K, Hansson SO, Purnhagen K, et al. 2020.. Options to reform the European Union legislation on GMOs: post-authorization and beyond. . Trends Biotechnol. 38:(5):46567
    [Crossref] [Google Scholar]
  31. 31.
    Fischer D, Moriarty T, eds. 2014.. Pesticide Risk Assessment for Pollinators. Hoboken, NJ:: Wiley
    [Google Scholar]
  32. 32.
    Gacem H, Bendali-Saoudi F, Serradj N, Houmani M, Soltani N. 2023.. Risk assessment of the neo-nicotinoid insecticide acetamiprid on two non-target species, Daphnia magna Straus, 1820 (Crustacea, Cladocera) and Plea minutissima Leach, 1817 (Insecta, Heteroptera). . Appl. Ecol. Environ. Res. 21:(2):114355
    [Crossref] [Google Scholar]
  33. 33.
    Gatehouse AMR, Ferry N, Edwards MG, Bell HA. 2011.. Insect-resistant biotech crops and their impacts on beneficial arthropods. . Philos. Trans. R. Soc. B 366:(1569):143852
    [Crossref] [Google Scholar]
  34. 34.
    Gentile JH, Harwell MA. 2001.. Strategies for assessing cumulative ecological risks. . Hum. Ecol. Risk Assess. Int. J. 7:(2):23946
    [Crossref] [Google Scholar]
  35. 35.
    Giddings JM, Solomon KR, Maund SJ. 2001.. Probabilistic risk assessment of cotton pyrethroids: II. Aquatic mesocosm and field studies. . Environ. Toxicol. Chem. 20:(3):66068
    [Crossref] [Google Scholar]
  36. 36.
    Giesy JP, Solomon KR, Coats JR, Dixon KR, Giddings JM, Kenaga EE. 1999.. Chlorpyrifos: ecological risk assessment in North American aquatic environments. . Rev. Environ. Contam. Toxicol. 160::1129
    [Google Scholar]
  37. 37.
    Giordano BV, McGregor BL, Runkel AE, Burkett-Cadena ND. 2021.. Distance diminishes the effect of deltamethrin exposure on the monarch butterfly, Danaus plexippus. . J. Am. Mosq. Control Assoc. 36:(3):18188
    [Crossref] [Google Scholar]
  38. 38.
    Goetz DW. 2009.. Seasonal inhalant insect allergy: Harmonia axyridis ladybug. . Curr. Opin. Allergy Clin. Immunol. 9:(4):32933
    [Crossref] [Google Scholar]
  39. 39.
    Hallman A, Lowenberg-DeBoer J. 1999.. Cost, average returns, and risk of switching to narrow row corn. . J. Prod. Agric. 12:(4):68591
    [Crossref] [Google Scholar]
  40. 40.
    Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, et al. 2011.. Field performance of engineered male mosquitoes. . Nat. Biotechnol. 29:(11):103437
    [Crossref] [Google Scholar]
  41. 41.
    Hendley P, Holmes C, Kay S, Maund SJ, Travis KZ, Zhang M. 2001.. Probabilistic risk assessment of cotton pyrethroids: III. A spatial analysis of the Mississippi, USA, cotton landscape. . Environ. Toxicol. Chem. 20:(3):66978
    [Crossref] [Google Scholar]
  42. 42.
    Herman RA, Storer NP, Anderson JA, Amijee F, Cnudde F, Raybould A. 2021.. Transparency in risk-disproportionate regulation of modern crop-breeding techniques. . GM Crops Food 12:(1):37681
    [Crossref] [Google Scholar]
  43. 43.
    Hester PG, Shaffer KR, Tietze NS, Zhong H, Griggs NL. 2001.. Efficacy of ground-applied ultra-low-volume malathion on honey bee survival and productivity in open and forest areas. . J. Am. Mosq. Control Assoc. 17:(1):27
    [Google Scholar]
  44. 44.
    Hoang TC, Pryor RL, Rand GM, Frakes RA. 2011.. Use of butterflies as nontarget insect test species and the acute toxicity and hazard of mosquito control insecticides. . Environ. Toxicol. Chem. 30:(4):9971005
    [Crossref] [Google Scholar]
  45. 45.
    Hoang TC, Rand GM. 2015.. Acute toxicity and risk assessment of permethrin, naled, and dichlorvos to larval butterflies via ingestion of contaminated foliage. . Chemosphere 120::71421
    [Crossref] [Google Scholar]
  46. 46.
    Hoang TC, Rand GM. 2015.. Mosquito control insecticides: a probabilistic ecological risk assessment on drift exposures of naled, dichlorvos (naled metabolite) and permethrin to adult butterflies. . Sci. Total Environ. 502::25265
    [Crossref] [Google Scholar]
  47. 47.
    Hokkanen HMT. 1991.. Trap cropping in pest management. . Annu. Rev. Entomol. 36::11938
    [Crossref] [Google Scholar]
  48. 48.
    Howarth FG. 1991.. Environmental impacts of classical biological control. . Annu. Rev. Entomol. 36::485509
    [Crossref] [Google Scholar]
  49. 49.
    Jensen T, Lawler SP, Dritz D. 1999.. Effects of ultra-low volume pyrethrin, malathion, and permethrin on nontarget invertebrates, sentinel mosquitoes, and mosquitofish in seasonally impounded wetlands. . J. Am. Mosq. Control Assoc. 15:(3):33038
    [Google Scholar]
  50. 50.
    Kaplan S, Garrick BJ, Apostolakis G. 1981.. Advances in quantitative risk assessment—the maturing of a discipline. . IEEE Trans. Nucl. Sci. 28:(1):94446
    [Crossref] [Google Scholar]
  51. 51.
    Kido MH, Asquith A, Vargas RI. 1996.. Nontarget insect attraction to methyl eugenol traps used in male annihilation of the oriental fruit fly (Diptera: Tephritidae) in riparian Hawaiian stream habitat. . Environ. Entomol. 25:(6):127989
    [Crossref] [Google Scholar]
  52. 52.
    Kim D, Burkett-Cadena ND, Reeves LE. 2022.. Pollinator biological traits and ecological interactions mediate the impacts of mosquito-targeting malathion application. . Sci. Rep. 12::17039
    [Crossref] [Google Scholar]
  53. 53.
    Koch FH, Yemshanov D, Haack RA, Magarey RD. 2014.. Using a network model to assess risk of forest pest spread via recreational travel. . PLOS ONE 9:(7):e102105
    [Crossref] [Google Scholar]
  54. 54.
    Koch RL, Burkness EC, Burkness SJW, Hutchison WD. 2004.. Phytophagous preferences of the multicolored Asian lady beetle (Coleoptera: Coccinellidae) for autumn-ripening fruit. . J. Econ. Entomol. 97:(2):53944
    [Crossref] [Google Scholar]
  55. 55.
    Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM. 1999.. The second Silent Spring?. Nature 400:(6745):61112
    [Crossref] [Google Scholar]
  56. 56.
    Kwan JA, Novak MG, Hyles TS, Niemela MK. 2009.. Mortality of nontarget arthropods from an aerial application of pyrethrins. . J. Am. Mosq. Control Assoc. 25:(2):21820
    [Crossref] [Google Scholar]
  57. 57.
    Lafond V, Lingua F, Lumnitz S, Paradis G, Srivastava V, Griess VC. 2020.. Challenges and opportunities in developing decision support systems for risk assessment and management of forest invasive alien species. . Environ. Rev. 28:(3):21845
    [Crossref] [Google Scholar]
  58. 58.
    Landis WG, Wiegers JA. 1997.. Design considerations and a suggested approach for regional and comparative ecological risk assessment. . Hum. Ecol. Risk Assess. Int. J. 3:(3):28797
    [Crossref] [Google Scholar]
  59. 59.
    Linkov I, Bakr Ramadan A, eds. 2004.. Comparative Risk Assessment and Environmental Decision Making. Dordrecht, Neth.:: Kluwer
    [Google Scholar]
  60. 60.
    Liu Q, Yang X, Tzin V, Peng Y, Romeis J, Li Y. 2020.. Plant breeding involving genetic engineering does not result in unacceptable unintended effects in rice relative to conventional cross-breeding. . Plant J. 103:(6):223649
    [Crossref] [Google Scholar]
  61. 61.
    Losey JE, Rayor LS, Carter ME. 1999.. Transgenic pollen harms monarch larvae. . Nature 399:(6733):214
    [Crossref] [Google Scholar]
  62. 62.
    Louda SM, Pemberton RW, Johnson MT, Follett PA. 2003.. Nontarget effects—the Achilles' heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. . Annu. Rev. Entomol. 48::36596
    [Crossref] [Google Scholar]
  63. 63.
    Marvier M, McCreedy C, Regetz J, Kareiva P. 2007.. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. . Science 316:(5830):147577
    [Crossref] [Google Scholar]
  64. 64.
    Maund SJ, Travis KZ, Hendley P, Giddings JM, Solomon KR. 2001.. Probabilistic risk assessment of cotton pyrethroids: V. Combining landscape-level exposures and ecotoxicological effects data to characterize risks. . Environ. Toxicol. Chem. 20:(3):68792
    [Crossref] [Google Scholar]
  65. 65.
    Mbaya H, Lillico S, Kemp S, Simm G, Raybould A. 2022.. Regulatory frameworks can facilitate or hinder the potential for genome editing to contribute to sustainable agricultural development. . Front. Bioeng. Biotechnol. 10::959236
    [Crossref] [Google Scholar]
  66. 66.
    McGregor BL, Giordano BV, Runkel AE, Nigg HN, Nigg HL, Burkett-Cadena ND. 2021.. Comparison of the effect of insecticides on bumble bees (Bombus impatiens) and mosquitoes (Aedes aegypti and Culex quinquefasciatus) by standard mosquito research methods. . J. Econ. Entomol. 114:(1):2432
    [Crossref] [Google Scholar]
  67. 67.
    MCTI-CTNBio. 2014.. Request for opinion on commercial release of genetically modified microorganism. Tech. Opin. 3964/2014 , Natl. Biosafety Tech. Comm., Brasilia:
    [Google Scholar]
  68. 68.
    Meissle M, Naranjo SE, Romeis J. 2022.. Does the growing of Bt maize change abundance or ecological function of non-target animals compared to the growing of non-GM maize? A systematic review. . Environ. Evid. 11::21
    [Crossref] [Google Scholar]
  69. 69.
    Meurisse N, Marcot BG, Woodberry O, Barratt BIP, Todd JH. 2022.. Risk analysis frameworks used in biological control and introduction of a novel Bayesian network tool. . Risk Anal. 42:(6):125576
    [Crossref] [Google Scholar]
  70. 70.
    Milam C, Farris J, Wilhide J. 2000.. Evaluating mosquito control pesticides for effect on target and nontarget organisms. . Arch. Environ. Contam. Toxicol. 39:(3):32428
    [Crossref] [Google Scholar]
  71. 71.
    Nagel P, Peveling R. 2021.. Environment and the sterile insect technique. . In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, ed. VA Dyck, J Hendrichs, AS Robinson , pp. 75380. Boca Raton, FL:: CRC Press. , 2nd ed..
    [Google Scholar]
  72. 72.
    NAPPO. 2015.. Guidelines for petition for first release of non-indigenous entomophagous biological control agents. RSPM Rep., 12 , Secr. North Am. Plant Prot. Org., Ottawa:
    [Google Scholar]
  73. 73.
    Natl. Acad. Sci. Eng. Med. 2016.. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  74. 74.
    Nicolia A, Manzo A, Veronesi F, Rosellini D. 2014.. An overview of the last 10 years of genetically engineered crop safety research. . Crit. Rev. Biotechnol. 34:(1):7788
    [Crossref] [Google Scholar]
  75. 75.
    Norderud ED, Powell SL, Peterson RKD. 2021.. Risk assessment for the establishment of Vespa mandarinia (Hymenoptera: Vespidae) in the Pacific Northwest, United States. . J. Insect Sci. 21:(4):10
    [Crossref] [Google Scholar]
  76. 76.
    NRC (Natl. Res. Counc.). 1983.. Risk Assessment in the Federal Government: Managing the Process. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  77. 77.
    NRC (Natl. Res. Counc.). 1996.. Understanding Risk: Information Decisions in a Democratic Society. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  78. 78.
    NRC (Natl. Res. Counc.). 2009.. Science and Decisions: Advancing Risk Assessment. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  79. 79.
    Oberhauser KS, Manweiler SA, Lelich R, Blank M, Batalden RV, de Anda A. 2009.. Impacts of ultra-low volume resmethrin applications on non-target insects. . J. Am. Mosq. Control Assoc. 25:(1):8393
    [Crossref] [Google Scholar]
  80. 80.
    O'Callaghan M, Glare TR, Burgess EPJ, Malone LA. 2005.. Effects of plants genetically modified for insect resistance on nontarget organisms. . Annu. Rev. Entomol. 50::27192
    [Crossref] [Google Scholar]
  81. 81.
    Onstad DW, Crain PR. 2020.. Economics of Integrated Pest Management of Insects. Boston:: CABI
    [Google Scholar]
  82. 82.
    Pedigo LP, Hutchins SH, Higley LG. 1986.. Economic injury levels in theory and practice. . Annu. Rev. Entomol. 31::34168
    [Crossref] [Google Scholar]
  83. 83.
    Pedigo LP, Rice ME, Krell RK. 2021.. Entomology and Pest Management. Long Grove, IL:: Waveland Press. , 7th ed..
    [Google Scholar]
  84. 84.
    Peterson RKD. 1996.. Public perceptions of agricultural biotechnology and pesticides: recent understandings and implications for risk communication. . Am. Entomol. 46:(1):816
    [Crossref] [Google Scholar]
  85. 85.
    Peterson RKD. 2006.. Comparing ecological risks of pesticides: the utility of a risk quotient ranking approach across refinements of exposure. . Pest. Manag. Sci. 62:(1):4656
    [Crossref] [Google Scholar]
  86. 86.
    Peterson RKD. 2008.. Pesticide risk. . In Encyclopedia of Quantitative Risk Assessment and Analysis, Vol. 3, ed. EL Melnick, BS Everitt , pp. 127173. Hoboken, NJ:: Wiley
    [Google Scholar]
  87. 87.
    Peterson RKD. 2010.. Mosquito management and risk. . Wing Beats 21:(3):2831
    [Google Scholar]
  88. 88.
    Peterson RKD, Arntzen CJ. 2004.. On risk and plant-based biopharmaceuticals. . Trends Biotechnol. 22:(2):6466
    [Crossref] [Google Scholar]
  89. 89.
    Peterson RKD, Higley LG, Pedigo LP. 2018.. Whatever happened to IPM?. Am. Entomol. 64:(3):14650
    [Crossref] [Google Scholar]
  90. 90.
    Peterson RKD, Macedo PA, Davis RS. 2006.. A human-health risk assessment for West Nile virus and insecticides used in mosquito management. . Environ. Health Perspect. 114:(3):36672
    [Crossref] [Google Scholar]
  91. 91.
    Peterson RKD, Meyer SJ, Wolf AT, Wolt JD, Davis PM. 2006.. Genetically engineered plants, endangered species, and risk: a temporal and spatial exposure assessment for Karner blue butterfly larvae and Bt maize pollen. . Risk Anal. 26:(3):84558
    [Crossref] [Google Scholar]
  92. 92.
    Peterson RKD, Preftakes CJ, Bodin JL, Brown CR, Piccolomini AM, Schleier JJ. 2016.. Determinants of acute mortality of Hippodamia convergens (Coleoptera: Coccinellidae) to ultra-low volume permethrin used for mosquito management. . PeerJ 4::e2167
    [Crossref] [Google Scholar]
  93. 93.
    Peterson RKD, Rolston MG. 2022.. Larval mosquito management and risk to aquatic ecosystems: a comparative approach including current tactics and gene-drive Anopheles techniques. . Transgenic Res. 31::489504. . 2022.. Transgenic Res. 31::505
    [Google Scholar]
  94. 94.
    Peterson RKD, Schleier JJ. 2014.. A probabilistic analysis reveals fundamental limitations with the environmental impact quotient and similar systems for rating pesticide risks. . PeerJ 2::e364
    [Crossref] [Google Scholar]
  95. 95.
    Peterson RKD, Schleier JJ, Barber LM. 2011.. Net risk: a risk assessment of long-lasting insecticide bed nets used for malaria management. . Am. J. Trop. Med. Hyg. 84:(6):95156
    [Crossref] [Google Scholar]
  96. 96.
    Peterson RKD, Shama LM. 2005.. A comparative risk assessment of genetically engineered, mutagenic, and conventional wheat production systems. . Transgenic Res. 14:(6):85975
    [Crossref] [Google Scholar]
  97. 97.
    Piccolomini AM, Flenniken ML, O'Neill KM, Peterson RKD. 2018.. The effects of an ultra-low-volume application of etofenprox for mosquito management on Megachile rotundata (Hymenoptera: Megachilidae) larvae and adults in an agricultural setting. . J. Econ. Entomol. 111:(1):3338
    [Crossref] [Google Scholar]
  98. 98.
    Pleasants JM, Hellmich RL, Dively GP, Sears MK, Stanley-Horn DE, et al. 2001.. Corn pollen deposition on milkweeds in and near cornfields. . PNAS 98:(21):1191924
    [Crossref] [Google Scholar]
  99. 99.
    Pokhrel V, DeLisi NA, Danka RG, Walker TW, Ottea JA, Healy KB. 2018.. Effects of truck-mounted, ultra low volume mosquito adulticides on honey bees (Apis mellifera) in a suburban field setting. . PLOS ONE 13:(3):e0193535
    [Crossref] [Google Scholar]
  100. 100.
    Raybould A. 2020.. Hypothesis-led ecological risk assessment of GM crops to support decision-making about product use. . In GMOs, Vol. 19, ed. A Chaurasia, DL Hawksworth, M Pessoa de Miranda , pp. 30542. Berlin:: Springer
    [Google Scholar]
  101. 101.
    Raybould A, Caron-Lormier G, Bohan DA. 2011.. Derivation and interpretation of hazard quotients to assess ecological risks from the cultivation of insect-resistant transgenic crops. . J. Agric. Food Chem. 59:(11):587785
    [Crossref] [Google Scholar]
  102. 102.
    Raybould A, Holt K, Kimber I. 2019.. Using problem formulation to clarify the meaning of weight of evidence and biological relevance in environmental risk assessments for genetically modified crops. . GM Crops Food 10:(2):6376
    [Crossref] [Google Scholar]
  103. 103.
    Raybould A, Macdonald P. 2018.. Policy-led comparative environmental risk assessment of genetically modified crops: Testing for increased risk rather than profiling phenotypes leads to predictable and transparent decision-making. . Front. Bioeng. Biotechnol. 6::43
    [Crossref] [Google Scholar]
  104. 104.
    Rinkevich FD, Margotta JW, Pokhrel V, Walker TW, Vaeth RH, et al. 2017.. Limited impacts of truck-based ultra-low-volume applications of mosquito adulticides on mortality in honey bees (Apis mellifera). . Bull. Entomol. Res. 107:(6):72433
    [Crossref] [Google Scholar]
  105. 105.
    Romeis J, Collatz J, Glandorf DCM, Bonsall MB. 2020.. The value of existing regulatory frameworks for the environmental risk assessment of agricultural pest control using gene drives. . Environ. Sci. Policy 108::1936
    [Crossref] [Google Scholar]
  106. 106.
    Romeis J, Meissle M. 2020.. Stacked Bt proteins pose no new risks to nontarget arthropods. . Trends Biotechnol. 38:(3):23436
    [Crossref] [Google Scholar]
  107. 107.
    Romeis J, Meissle M, Bigler F. 2006.. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. . Nat. Biotechnol. 24:(1):6371
    [Crossref] [Google Scholar]
  108. 108.
    Rowen EK, Regan KH, Barbercheck ME, Tooker JF. 2020.. Is tillage beneficial or detrimental for insect and slug management? A meta-analysis. . Agric. Ecosyst. Environ. 294::106849
    [Crossref] [Google Scholar]
  109. 109.
    Salvato MH. 2001.. Influence of mosquito control chemicals on butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the Lower Florida Keys. . J. Lepid. Soc. 55:(1):814
    [Google Scholar]
  110. 110.
    Schiemann J, Dietz-Pfeilstetter A, Hartung F, Kohl C, Romeis J, Sprink T. 2019.. Risk assessment and regulation of plants modified by modern biotechniques: current status and future challenges. . Annu. Rev. Plant Biol. 70::699726
    [Crossref] [Google Scholar]
  111. 111.
    Schleier JJ, Peterson RKD. 2010.. Deposition and air concentrations of permethrin and naled used for adult mosquito management. . Arch. Environ. Contam. Toxicol. 58:(1):10511
    [Crossref] [Google Scholar]
  112. 112.
    Schleier JJ, Peterson RKD. 2010.. Toxicity and risk of permethrin and naled to non-target insects after adult mosquito management. . Ecotoxicology 19:(6):114046
    [Crossref] [Google Scholar]
  113. 113.
    Schleier JJ, Peterson RKD. 2011.. Pyrethrins and pyrethroid insecticides. . In Green Trends in Insect Control, ed. Ó López, JG Fernández-Bolaños , pp. 94131. London: R. Soc. Chem:.
    [Google Scholar]
  114. 114.
    Schleier JJ, Peterson RKD. 2013.. A refined aquatic ecological risk assessment for a pyrethroid insecticide used for adult mosquito management. . Environ. Toxicol. Chem. 32:(4):94853
    [Crossref] [Google Scholar]
  115. 115.
    Schleier JJ, Peterson RKD, Macedo PA, Brown DA. 2008.. Environmental concentrations, fate, and risk assessment of pyrethrins and piperonyl butoxide after aerial ultralow-volume applications for adult mosquito management. . Environ. Toxicol. Chem. 27:(5):106368
    [Crossref] [Google Scholar]
  116. 116.
    Schleier JJ, Sing SE, Peterson RKD. 2008.. Regional ecological risk assessment for the introduction of Gambusia affinis (western mosquitofish) into Montana watersheds. . Biol. Invasions 10:(8):127787
    [Crossref] [Google Scholar]
  117. 117.
    Sears MK, Hellmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, et al. 2001.. Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. . PNAS 98:(21):1193742
    [Crossref] [Google Scholar]
  118. 118.
    SETAC. 1994.. Final report: Aquatic Risk Assessment and Mitigation Dialogue Group. Pensacola, FL:: SETAC Press
    [Google Scholar]
  119. 119.
    Sing SE, Peterson RKD. 2011.. Assessing environmental risks for established invasive weeds: Dalmatian (Linaria dalmatica) and yellow (L. vulgaris) toadflax in North America. . Int. J. Environ. Res. Public Health 8:(7):282853
    [Crossref] [Google Scholar]
  120. 120.
    Sing SE, Peterson RKD, Weaver DK, Hansen RW, Markin GP. 2005.. A retrospective analysis of known and potential risks associated with exotic toadflax-feeding insects. . Biol. Control 35:(3):27687
    [Crossref] [Google Scholar]
  121. 121.
    Solomon KR, Giddings JM, Maund SJ. 2001.. Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data. . Environ. Toxicol. Chem. 20:(3):65259
    [Crossref] [Google Scholar]
  122. 122.
    Stark JD. 2005.. How closely do acute lethal concentration estimates predict effects of toxicants on populations?. Integr. Environ. Assess. Manag. 1:(2):10913
    [Crossref] [Google Scholar]
  123. 123.
    Tabashnik BE, Mota-Sanchez D, Whalon ME, Hollingworth RM, Carrière Y. 2014.. Defining terms for proactive management of resistance to Bt crops and pesticides. . J. Econ. Entomol. 107:(2):496507
    [Crossref] [Google Scholar]
  124. 124.
    Teem JL, Ambali A, Glover B, Ouedraogo J, Makinde D, Roberts A. 2019.. Problem formulation for gene drive mosquitoes designed to reduce malaria transmission in Africa: results from four regional consultations 2016–2018. . Malar. J. 18:(1):347
    [Crossref] [Google Scholar]
  125. 125.
    Tietze NS, Hester PG, Shaffer KR, Wakefield FT. 1996.. Peridomestic deposition of ultra-low volume malathion applied as a mosquito adulticide. . Bull. Environ. Contam. Toxicol. 56:(2):21018
    [Crossref] [Google Scholar]
  126. 126.
    Tonui WK, Ahuja V, Beech CJ, Connolly JB, Dass B, et al. 2022.. Points to consider in seeking biosafety approval for research, testing, and environmental release of experimental genetically modified biocontrol products during research and development. . Transgenic Res. 31:(6):60723
    [Crossref] [Google Scholar]
  127. 127.
    Topping CJ, Aldrich A, Berny P. 2020.. Overhaul environmental risk assessment for pesticides. . Science 367:(6476):36063
    [Crossref] [Google Scholar]
  128. 128.
    Travis KZ, Hendley P. 2001.. Probabilistic risk assessment of cotton pyrethroids: IV. Landscape-level exposure characterization. . Environ. Toxicol. Chem. 20:(3):67986
    [Crossref] [Google Scholar]
  129. 129.
    US Environ. Prot. Agency. 1998.. Guidelines for ecological risk assessment. Rep. EPA/630/R-95/002F , US Environ. Prot. Agency, Washington, DC:
    [Google Scholar]
  130. 130.
    US Environ. Prot. Agency. 1998.. Reregistration eligibility decision: DEET (List A, Case 0002). Rep. , US Environ. Prot. Agency, Washington, DC:
    [Google Scholar]
  131. 131.
    US Environ. Prot. Agency. 1999.. Ecological risk assessment in the federal government. Rep. 12384 , US Environ. Prot. Agency, Washington, DC:
    [Google Scholar]
  132. 132.
    US Environ. Prot. Agency. 2005.. New pesticide fact sheet: picaridin. Rep. , US Environ. Prot. Agency, Washington, DC:
    [Google Scholar]
  133. 133.
    US Environ. Prot. Agency. 2020.. Human health and environmental risk assessment for the new product OX5034 containing the tetracycline-repressible transactivator protein variant (tTAV-OX5034; new active ingredient) protein, a DsRed2 protein variant (DsRed2-OX5034; new inert ingredient), and the genetic material (vector pOX5034) necessary for their production in OX5034 Aedes aegypti. Rep. 549240 , US Environ. Prot. Agency, Washington, DC:
    [Google Scholar]
  134. 134.
    US Environ. Prot. Agency. 2023.. Ecological Effects Test Guidelines, Ser. 850 . Washington, DC:: US Environ. Prot. Agency
    [Google Scholar]
  135. 135.
    US Environ. Prot. Agency. 2023.. Fate, Transport and Transformation Test Guidelines, Ser. 835 . Washington, DC:: US Environ. Prot. Agency
    [Google Scholar]
  136. 136.
    US Environ. Prot. Agency. 2023.. Pesticide Registration Manual. Washington, DC:: US Environ. Prot. Agency
    [Google Scholar]
  137. 137.
    US Food Drug Admin. 1992.. Statement of policy—foods derived from new plant varieties. Rep. 57 FR 22984 , US Food Drug Admin., Washington, DC:
    [Google Scholar]
  138. 138.
    US Food Drug Admin. 2016.. Finding of no significant impact (FONSI) in support of a proposed field trial of GE male Aedes aegypti mosquitoes of the line OX513A in Key Haven, Monroe County, Florida under an investigational new animal drug exemption. Rep. , US Food Drug Admin., Washington, DC:
    [Google Scholar]
  139. 139.
    van Lenteren JC, Bale J, Bigler F, Hokkanen HMT, Loomans AJM. 2006.. Assessing risks of releasing exotic biological control agents of arthropod pests. . Annu. Rev. Entomol. 51::60934
    [Crossref] [Google Scholar]
  140. 140.
    van Lenteren JC, Loomans AJM, Babendreier D, Bigler F. 2008.. Harmonia axyridis: an environmental risk assessment for Northwest Europe. . BioControl 53:(1):3754
    [Crossref] [Google Scholar]
  141. 141.
    Venette RC, Gordon DR, Juzwik J, Koch FH, Liebhold AM, et al. 2021.. Early intervention strategies for invasive species management: connections between risk assessment, prevention efforts, eradication, and other rapid responses. . In Invasive Species in Forests and Rangelands of the United States, ed. TM Poland, T Patel-Weynand, DM Finch, CF Miniat, DC Hayes, VM Lopez , pp. 11131. Berlin:: Springer
    [Google Scholar]
  142. 142.
    Wang YYL, Xiong J, Ohore OE, Cai Y-E, Fan H, et al. 2022.. Deriving freshwater guideline values for neonicotinoid insecticides: implications for water quality guidelines and ecological risk assessment. . Sci. Total Environ. 828::154569
    [Crossref] [Google Scholar]
  143. 143.
    Ward SF, Fei S, Liebhold AM. 2020.. Temporal dynamics and drivers of landscape-level spread by emerald ash borer. . J. Appl. Ecol. 57:(6):102030
    [Crossref] [Google Scholar]
  144. 144.
    Weeks J, Guiney P, Nikiforov A. 2012.. Assessment of the environmental fate and ecotoxicity of N,N-diethyl-m-toluamide (DEET). . Integr. Environ. Assess. Manag. 8:(1):12034
    [Crossref] [Google Scholar]
  145. 145.
    WHO (World Health Org.). 2017.. The Evaluation Process for Vector Control Products. Geneva:: WHO
    [Google Scholar]
  146. 146.
    Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS. 2008.. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. . PLOS ONE 3:(5):e2118
    [Crossref] [Google Scholar]
  147. 147.
    Wolt JD. 2019.. Current risk assessment approaches for environmental and food and feed safety assessment. . Transgenic Res. 28:(Suppl. 2):11117
    [Crossref] [Google Scholar]
  148. 148.
    Wolt JD, Conlan CA, Majima K. 2005.. An ecological risk assessment of Cry1F maize pollen impact to pale grass blue butterfly. . Environ. Biosafety Res. 4:(4):24351
    [Crossref] [Google Scholar]
  149. 149.
    Wolt JD, Keese P, Raybould A, Fitzpatrick JW, Burachik M, et al. 2010.. Problem formulation in the environmental risk assessment for genetically modified plants. . Transgenic Res. 19:(3):42536
    [Crossref] [Google Scholar]
  150. 150.
    Wolt JD, Peterson RKD. 2010.. Prospective formulation of environmental risk assessments: probabilistic screening for Cry1A(b) maize risk to aquatic insects. . Ecotoxicol. Environ. Safety 73:(6):118288
    [Crossref] [Google Scholar]
  151. 151.
    Wolt JD, Peterson RKD, Bystrak P, Meade T. 2003.. A screening level approach for nontarget insect risk assessment: transgenic Bt corn pollen and the monarch butterfly (Lepidoptera: Danaidae). . Environ. Entomol. 32:(2):23746
    [Crossref] [Google Scholar]
  152. 152.
    Wurzel S, Ford MA, Dority D, Tronstad L. 2020.. Evaluating the impact of permethrin on non-target invertebrates in an urban stream. . Hydrobiologia 847:(1):91104
    [Crossref] [Google Scholar]
  153. 153.
    Yemshanov D, Koch FH, Ducey MJ, Siltanen M, Wilson K, Koehler K. 2013.. Exploring critical uncertainties in pathway assessments of human-assisted introductions of alien forest species in Canada. . J. Environ. Manag. 129::17382
    [Crossref] [Google Scholar]
  154. 154.
    Yuan Y, Qin Y, Wang M, Xu W, Chen Y, et al. 2022.. Microplastics from agricultural plastic mulch films: a mini-review of their impacts on the animal reproductive system. . Ecotoxicol. Environ. Safety 244::114030
    [Crossref] [Google Scholar]
  155. 155.
    Zhong H, Hribar LJ, Daniels JC, Feken MA, Brock C, Trager MD. 2010.. Aerial ultra-low-volume application of naled: impact on nontarget imperiled butterfly larvae (Cyclargus thomasi bethunebakeri) and efficacy against adult mosquitoes (Aedes taeniorhynchus). . Environ. Entomol. 39:(6):196172
    [Crossref] [Google Scholar]
  156. 156.
    Zhong H, Latham M, Hester PG, Frommer RL, Brock C. 2003.. Impact of naled on honey bee Apis mellifera L. survival and productivity: aerial ULV application using a flat-fan nozzle system. . Arch. Environ. Contam. Toxicol. 45:(2):21620
    [Crossref] [Google Scholar]
  157. 157.
    Zhong H, Latham MD, Payne S, Brock C. 2004.. Minimizing the impact of the mosquito adulticide naled on honey bees, Apis mellifera (Hymenoptera: Apidae): aerial ultra-low-volume application using a high-pressure nozzle system. . J. Econ. Entomol. 97:(1):17
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ento-121123-021252
Loading
/content/journals/10.1146/annurev-ento-121123-021252
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error