1932

Abstract

Despite three decades of political efforts and a wealth of research on the causes and catastrophic impacts of climate change, global carbon dioxide emissions have continued to rise and are 60% higher today than they were in 1990. Exploring this rise through nine thematic lenses—covering issues of climate governance, the fossil fuel industry, geopolitics, economics, mitigation modeling, energy systems, inequity, lifestyles, and social imaginaries—draws out multifaceted reasons for our collective failure to bend the global emissions curve. However, a common thread that emerges across the reviewed literature is the central role of power, manifest in many forms, from a dogmatic political-economic hegemony and influential vested interests to narrow techno-economic mindsets and ideologies of control. Synthesizing the various impediments to mitigation reveals how delivering on the commitments enshrined in the Paris Agreement now requires an urgent and unprecedented transformation away from today's carbon- and energy-intensive development paradigm.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012220-011104
2021-10-18
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/energy/46/1/annurev-environ-012220-011104.html?itemId=/content/journals/10.1146/annurev-environ-012220-011104&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    World Bank 2020. Population, total. World Development Indicators https://data.worldbank.org/indicator/SP.POP.TOTL
    [Google Scholar]
  2. 2. 
    Kartha S, Kemp-Benedict E, Ghosh E, Nazareth A, Gore T. 2020. The carbon inequality era: an assessment of the global distribution of consumption emissions among individuals from 1990 to 2015 and beyond Rep., Stockh. Environ. Inst., Oxfam Int. Stockh., Oxford:
    [Google Scholar]
  3. 3. 
    Oreskes N, Conway E 2010. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming London: Bloomsbury
    [Google Scholar]
  4. 4. 
    Howe JP. 2014. Behind the Curve: Science and the Politics of Global Warming Seattle: Univ. Washington Press
    [Google Scholar]
  5. 5. 
    Dunlap RE. 1998. Lay perceptions of global risk: public views of global warming in cross-national context. Int. Sociol. 13:4473–98
    [Google Scholar]
  6. 6. 
    Brechin S. 2003. Comparative public opinion and knowledge on global climatic change and the Kyoto Protocol: the US versus the world?. Int. J. Sociol. Soc. Policy 23:10106–34
    [Google Scholar]
  7. 7. 
    Global Carbon Project 2019. Supplemental data of Global Carbon Budget 2019 (Version 1.0) [Data set]. Int. Carbon Obs. Syst. https://doi.org/10.18160/gcp-2019
    [Crossref] [Google Scholar]
  8. 8. 
    IPCC (Intergov. Panel Clim. Change) 2018. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty V Masson-Delmotte, P Zhai, HO Pörtner, D Roberts, J Skea et al. Geneva: IPCC
    [Google Scholar]
  9. 9. 
    UNEP (United Nations Environ. Progr.) 2020. Emissions Gap Report 2020 Nairobi: UNEP
    [Google Scholar]
  10. 10. 
    Anderson K, Broderick JF, Stoddard I. 2020. A factor of two: how the mitigation plans of ‘climate progressive’ nations fall far short of Paris-compliant pathways. Clim. Policy 20:101290–304
    [Google Scholar]
  11. 11. 
    Malhi Y. 2017. The concept of the Anthropocene. Annu. Rev. Environ. Resour. 42:77–104
    [Google Scholar]
  12. 12. 
    Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of the Anthropocene: the Great Acceleration. Anthropocene Rev 2:181–98
    [Google Scholar]
  13. 13. 
    Steffen W, Rockström J, Richardson K, Lenton TM, Folke C et al. 2018. Trajectories of the Earth system in the Anthropocene. PNAS 115:338252–59
    [Google Scholar]
  14. 14. 
    Baskin J. 2015. Paradigm dressed as epoch: the ideology of the Anthropocene. Environ. Values 24:9–29
    [Google Scholar]
  15. 15. 
    Lövbrand E, Mobjörk M, Söder R. 2020. The Anthropocene and the geo-political imagination: re-writing Earth as political space. Earth Syst. Gov. 4:100051
    [Google Scholar]
  16. 16. 
    Seto KC, Davis SJ, Mitchell RB, Stokes EC, Unruh G, Ürge-Vorsatz D. 2016. Carbon lock-in: types, causes, and policy implications. Annu. Rev. Environ. Resour. 41:42552
    [Google Scholar]
  17. 17. 
    Lamb WF, Mattioli G, Levi S, Roberts JT, Capstick S et al. 2020. Discourses of climate delay. Glob. Sustain. 3:e17
    [Google Scholar]
  18. 18. 
    Bai X, van der Leeuw S, O'Brien K, Berkhout F, Biermann F et al. 2016. Plausible and desirable futures in the Anthropocene: a new research agenda. Glob. Environ. Change 39:351–62
    [Google Scholar]
  19. 19. 
    Loorbach D, Frantzeskaki N, Avelino F. 2017. Sustainability transitions research: transforming science and practice for societal change. Annu. Rev. Environ. Resour. 42:599–626
    [Google Scholar]
  20. 20. 
    Machen R. 2020. Critical research impact: on making space for alternatives. Area 52:2329–41
    [Google Scholar]
  21. 21. 
    Krasner SD. 1982. Structural causes and regime consequences: regimes as intervening variables. Int. Organ. 36:2185–205
    [Google Scholar]
  22. 22. 
    Young OR. 1994. International Governance—Protecting the Environment in a Stateless Society London: Cornell Univ. Press
    [Google Scholar]
  23. 23. 
    Iacobuta G, Dubash NK, Upadhyaya P, Deribe M, Höhne N. 2018. National climate change mitigation legislation, strategy and targets: a global update. Clim. Policy 18:91114–32
    [Google Scholar]
  24. 24. 
    Shishlov I, Morel R, Bellassen V. 2016. Compliance of the Parties to the Kyoto Protocol in the first commitment period. Clim. Policy 16:6768–82
    [Google Scholar]
  25. 25. 
    United Nations 1992. United Nations Framework Convention of Climate Change New York: United Nations https://unfccc.int/resource/docs/convkp/conveng.pdf
    [Google Scholar]
  26. 26. 
    Prins G, Rayner S 2007. Time to ditch Kyoto. Nature 449:7165973–75
    [Google Scholar]
  27. 27. 
    Victor DG. 2011. Global Warming Gridlock: Creating More Effective Strategies for Protecting the Planet Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  28. 28. 
    Climate Policy Initiative 2019. Global Landscape of Climate Finance 2019 London: Clim. Policy Initat.
    [Google Scholar]
  29. 29. 
    Ciplet D, Fields S, Madden K, Mizan K, Roberts T. 2012. The eight unmet promises of fast-start climate finance Brief Pap., Int. Inst. Environ. Dev. http://pubs.iied.org/pdfs/17141IIED.pdf
    [Google Scholar]
  30. 30. 
    Vihma A. 2015. Climate of consensus: managing decision making in the UN climate change negotiations. Rev. Eur. Comp. Int. Environ. Law 24:158–68
    [Google Scholar]
  31. 31. 
    Falkner R. 2016. The Paris Agreement and the new logic of international climate politics. Int. Aff. 92:51107–25
    [Google Scholar]
  32. 32. 
    Depledge J. 2008. Striving for no: Saudi Arabia in the climate change regime. Glob. Environ. Politics 8:49–35
    [Google Scholar]
  33. 33. 
    Gupta J, Grubb MJ. 2000. Climate Change and European Leadership: A Sustainable Role for Europe? Berlin: Springer Sci. & Bus. Media
    [Google Scholar]
  34. 34. 
    Moe E. 2015. Renewable Energy Transformation or Fossil Fuel Backlash: Vested Interests in the Political Economy London: Palgrave Macmillan
    [Google Scholar]
  35. 35. 
    Dunlap RE, McCright AM. 2015. Challenging climate change: the denial countermovement. Climate Change and Society New York: Oxford Univ. Press
    [Google Scholar]
  36. 36. 
    Boon M. 2019. A climate of change? The oil industry and decarbonization in historical perspective. Bus. Hist. Rev. 93:1101–25
    [Google Scholar]
  37. 37. 
    Grasso M. 2019. Oily politics: a critical assessment of the oil and gas industry's contribution to climate change. Energy Res. Soc. Sci. 50:106–15
    [Google Scholar]
  38. 38. 
    Franta B. 2018. Early oil industry knowledge of CO2 and global warming. Nat. Clim. Change 8:1024–25
    [Google Scholar]
  39. 39. 
    Farrell J. 2016. Network structure and influence of the climate change counter-movement. Nat. Clim. Change 6:370–74
    [Google Scholar]
  40. 40. 
    Hudson M 2020. Enacted inertia: Australian fossil fuel incumbents’ strategies to undermine challengers. The Palgrave Handbook of Managing Fossil Fuels and Energy Transitions G Wood, K Baker 195–222 Cham, Switz: Palgrave Macmillan
    [Google Scholar]
  41. 41. 
    Brulle RJ, Aronczyk M, Carmichael J. 2020. Corporate promotion and climate change: an analysis of key variables affecting advertising spending by major oil corporations, 1986–2015. Clim. Change 159:87–101
    [Google Scholar]
  42. 42. 
    Young N, Coutinho A. 2013. Government, anti-reflexivity, and the construction of public ignorance about climate change: Australia and Canada compared. Glob. Environ. Politics 13:89–108
    [Google Scholar]
  43. 43. 
    Hultman M, Anshelm J 2017. Masculinities of climate change. Exploring examples of industrial-, ecomodern-, and ecological masculinities in the age of Anthropocene. Climate Change and Gender in Rich Countries M Cohen 19–34 London: Routledge
    [Google Scholar]
  44. 44. 
    Liu JC-E. 2015. Low carbon plot: climate change skepticism with Chinese characteristics. Environ. Sociol. 1:4280–92
    [Google Scholar]
  45. 45. 
    Krange O, Kaltenborn BP, Hultman M. 2019. Cool dudes in Norway: climate change denial among conservative Norwegian men. Environ. Sociol. 5:11–11
    [Google Scholar]
  46. 46. 
    Boussalis C, Coan TG. 2016. Text-mining the signals of climate change doubt. Glob. Environ. Change 36:89–100
    [Google Scholar]
  47. 47. 
    Hultman M, Björk A, Viinikka T 2019. The far right and climate change denial: denouncing environmental challenges via anti-establishment rhetoric, marketing of doubts, industrial/breadwinner masculinities enactments and ethno-nationalism. The Far Right and the Environment B Forchtner 121–35 London: Routledge
    [Google Scholar]
  48. 48. 
    Piggot G, Erickson P, van Asselt H, Lazarus M 2018. Swimming upstream: addressing fossil fuel supply under the UNFCCC. Clim. Policy 18:91189–202
    [Google Scholar]
  49. 49. 
    Dambacher BMR, Stilwell MT, McGee JS. 2019. Clearing the air: avoiding conflicts of interest within the United Nations Framework Convention on Climate Change. J. Environ. Law 32:153–81
    [Google Scholar]
  50. 50. 
    Cadman T, Radunsky K, Simonelli A, Maraseni T. 2018. From Paris to Poland. Int. J. Soc. Q. 8:227–46
    [Google Scholar]
  51. 51. 
    Nasiritousi N. 2017. Fossil fuel emitters and climate change: unpacking the governance activities of large oil and gas companies. Environ. Politics 26:4621–47
    [Google Scholar]
  52. 52. 
    Buxton N, Hayes B. 2015. The Secure and the Dispossessed: How the Military and Corporations Are Shaping a Climate-Changed World London: Pluto Press
    [Google Scholar]
  53. 53. 
    Hornborg A. 1998. Towards an ecological theory of unequal exchange: articulating world system theory and ecological economics. Ecol. Econ. 25:1127–36
    [Google Scholar]
  54. 54. 
    Kaldor M, Karl TL, Said Y. 2007. Oil Wars London: Pluto Press
    [Google Scholar]
  55. 55. 
    Fairhead J, Leach M, Scoones I. 2012. Green Grabbing: a new appropriation of nature?. J. Peasant Stud. 39:2237–61
    [Google Scholar]
  56. 56. 
    Atkinson G, Hamilton K, Ruta G, Van Der Mensbrugghe D. 2011. Trade in ‘virtual carbon’: empirical results and implications for policy. Glob. Environ. Change 21:2563–74
    [Google Scholar]
  57. 57. 
    Steichen L, Koshgarian L. 2020. No warming, no war: how militarism fuels the climate crisis—and vice versa Rep., Natl. Prior. Proj., Inst. Policy Stud. Washington, DC:
    [Google Scholar]
  58. 58. 
    Kester J, Sovacool BK. 2017. Torn between war and peace: critiquing the use of war to mobilize peaceful climate action. Energy Policy 104:50–55
    [Google Scholar]
  59. 59. 
    Crawford N. 2019. Pentagon fuel use: climate change and the costs of war Pap., Watson. Inst. Int. Pub. Aff., Brown Univ. Providence, RI:
    [Google Scholar]
  60. 60. 
    CNA (Cent. Nav. Anal.) 2007. National security and the threat of climate change Rep., CNA Alexandria, VA: https://www.cna.org/cna_files/pdf/national%20security%20and%20the%20threat%20of%20climate%20change.pdf
    [Google Scholar]
  61. 61. 
    Konyshev V, Sergunin A. 2012. The Arctic at the crossroads of geopolitical interests. Russ. Politics Law 50:234–54
    [Google Scholar]
  62. 62. 
    Barnett J, Adger WN. 2007. Climate change, human security and violent conflict. Political Geogr 26:6639–55
    [Google Scholar]
  63. 63. 
    Selby J. 2014. Positivist climate conflict research: a critique. Geopolitics 19:4829–56
    [Google Scholar]
  64. 64. 
    Stirling A 2020. Engineering and sustainability: control and care in unfoldings of modernity. Routledge Companion to Philosophy of Engineering DP Michelfelder, N Doorn 461–81 London: Routledge
    [Google Scholar]
  65. 65. 
    Stirling A. 2014. Transforming power: social science and the politics of energy choices. Energy Res. Soc. Sci. 1:83–95
    [Google Scholar]
  66. 66. 
    Burke S. 2014. Powering the Pentagon: creating a lean, clean fighting machine. Foreign Affairs May/June 33–37
    [Google Scholar]
  67. 67. 
    Cairns R, Stirling A. 2014.. ‘ Maintaining planetary systems’ or ‘concentrating global power?’ High stakes in contending framings of climate geoengineering. Glob. Environ. Change 28:25–38
    [Google Scholar]
  68. 68. 
    Fleming JR. 2010. Fixing the Sky: The Checkered History of Weather and Climate Control New York: Columbia Univ. Press
    [Google Scholar]
  69. 69. 
    Vaidyanathan G. 2015. Nuclear power must make a comeback for climate's sake: James Hansen and other climate scientists argue for more reactors to cut coal consumption. Scientific American Dec 4
    [Google Scholar]
  70. 70. 
    Jacobson MZ. 2020. 100% Clean, Renewable Energy and Storage for Everything Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  71. 71. 
    Sovacool BK, Schmid P, Stirling A, Walter G, MacKerron G. 2020. Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power. Nat. Energy 5:928–35
    [Google Scholar]
  72. 72. 
    Stirling A, Johnstone P 2018. Interdependencies between civil and military nuclear infrastructures: military interests as drivers for lifetime extension and new build?. World Nuclear Industry Status Report M Schneider, A Froggatt 173–86 Paris: Michael Schneider Consult.
    [Google Scholar]
  73. 73. 
    Haas T. 2019. Struggles in European Union energy politics: a gramscian perspective on power in energy transitions. Energy Res. Soc. Sci. 48:66–74
    [Google Scholar]
  74. 74. 
    Stirling A. 2019. How deep is incumbency? A ‘configuring fields’ approach to redistributing and reorienting power in socio-material change. Energy Res. Soc. Sci. 58:101239
    [Google Scholar]
  75. 75. 
    Spash CL, Ryan A. 2012. Economic schools of thought on the environment: investigating unity and division. Camb. J. Econ. 36:1091–121
    [Google Scholar]
  76. 76. 
    Spash CL 2017. Routledge Handbook of Ecological Economics: Nature and Society Abingdon, UK/New York: Routledge
    [Google Scholar]
  77. 77. 
    Mirowski P. 2014. Never Let a Serious Crisis Go to Waste: How Neoliberalism Survived the Financial Meltdown London: Verso
    [Google Scholar]
  78. 78. 
    Spash CL. 2002. Greenhouse Economics: Value and Ethics London: Routledge
    [Google Scholar]
  79. 79. 
    Spash CL. 2007. The economics of climate change impacts à la Stern: novel and nuanced or rhetorically restricted?. Ecol. Econ. 63:4706–13
    [Google Scholar]
  80. 80. 
    Stern N. 2007. The Economics of Climate Change: The Stern Review Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  81. 81. 
    Nordhaus WD. 1994. Managing the Global Commons: The Economics of Climate Change Cambridge, MA: MIT Press
    [Google Scholar]
  82. 82. 
    Bolton P, Després M, Pereira da Silva LA, Samama F, Svartzman R. 2020. The Green Swan: Central Banking and Financial Stability in the Age of Climate Change Basel: Bank Int. Settl.
    [Google Scholar]
  83. 83. 
    Keen S. 2020. The appallingly bad neoclassical economics of climate change. Globalizations https://doi.org/10.1080/14747731.2020.1807856
    [Crossref] [Google Scholar]
  84. 84. 
    Polanyi K 1957. The market as instituted process. Trade and Market in the Early Empires K Polanyi, C Arensberg, H Pearson 243–70 Chicago: Henry Regnery Co.
    [Google Scholar]
  85. 85. 
    Kapp K. 1978 [1963]. The Social Costs of Business Enterprise Nottingham, UK: Spokesman
    [Google Scholar]
  86. 86. 
    Cames M, Harthan RO, Füssler J, Lazarus M, Lee CM et al. 2016. How Additional Is the Clean Development Mechanism? Analysis of the Application of Current Tools and Proposed Alternatives Berlin: Öko-Institut
    [Google Scholar]
  87. 87. 
    Bouleau N. 2018. Le Mensonge de la Finance: Les Mathématiques, le Signal-Prix et la Planète Ivry-sur-Seine, Fr.: Ed Atelier
    [Google Scholar]
  88. 88. 
    Spash CL. 2010. The brave new world of carbon trading. New Political Econ 15:169–95
    [Google Scholar]
  89. 89. 
    Tapia Granados JA, Spash CL. 2019. Policies to reduce CO2 emissions: fallacies and evidence from the United States and California. Environ. Sci. Policy 94:262–66
    [Google Scholar]
  90. 90. 
    Hache F. 2020. 50 Shades of Green Part III: Sustainable Finance 2.0The Securitization of Climate and Biodiversity Policies Brussels: Green Finance Obs.
    [Google Scholar]
  91. 91. 
    Keucheyan R. 2018. Insuring climate change: new risks and the financialization of nature. Dev. Change 49:2484–501
    [Google Scholar]
  92. 92. 
    Spash CL. 2020. A tale of three paradigms: realising the revolutionary potential of ecological economics. Ecol. Econ. 169:106518
    [Google Scholar]
  93. 93. 
    Risbey J, Kandlikar M, Patwardhan A. 1996. Assessing integrated assessments. Clim. Change 34:369–95
    [Google Scholar]
  94. 94. 
    Keepin B, Wynne B. 1984. Technical analysis of IIASA energy scenarios. Nature 312:691–95
    [Google Scholar]
  95. 95. 
    Forster J, Vaughan NE, Gough C, Lorenzoni I, Chilvers J. 2020. Mapping feasibilities of greenhouse gas removal: key issues, gaps and opening up assessments. Glob. Environ. Change 63:102073
    [Google Scholar]
  96. 96. 
    Beck M, Krueger T. 2016. The epistemic, ethical, and political dimensions of uncertainty in integrated assessment modeling. Wiley Interdiscip. Rev. Clim. Change 7:5627–45
    [Google Scholar]
  97. 97. 
    Butnar I, Li P-H, Strachan N, Portugal Pereira J, Gambhir A, Smith P 2020. A deep dive into the modelling assumptions for biomass with carbon capture and storage (BECCS): a transparency exercise. Environ. Res. Lett. 15:084008
    [Google Scholar]
  98. 98. 
    Wilson C, Grubler A, Bento N, Healey S, De Stercke S, Zimm C. 2020. Granular technologies to accelerate decarbonization. Science 368:36–39
    [Google Scholar]
  99. 99. 
    Larkin A, Kuriakose J, Sharmina M, Anderson K 2018. What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Clim. Policy 18:6690–714
    [Google Scholar]
  100. 100. 
    Koelbl BS, van den Broek MA, Faaij APC, van Vuuren DP. 2014. Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise. Clim. Change 123:3461–76
    [Google Scholar]
  101. 101. 
    Dooley K, Christoff P, Nicholas KA. 2018. Co-producing climate policy and negative emissions: trade-offs for sustainable land-use. Glob. Sustain. 1:e3
    [Google Scholar]
  102. 102. 
    Smith P, Davis SJ, Creutzig F, Fuss S, Minx J et al. 2016. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6:142–50
    [Google Scholar]
  103. 103. 
    Low S, Schäfer S. 2020. Is bio-energy carbon capture and storage (BECCS) feasible? The contested authority of integrated assessment modeling. Energy Res. Soc. Sci. 60:101326
    [Google Scholar]
  104. 104. 
    Beck S, Mahony M. 2018. The politics of anticipation: the IPCC and the negative emissions technologies experience. Glob. Sustain. 1:e8
    [Google Scholar]
  105. 105. 
    van Vuuren DP, Stehfest E, Gernaat DEHJ, van den Berg M, Bijl DL et al. 2018. Alternative pathways to the 1.5°C target reduce the need for negative emission technologies. Nat. Clim. Change 8:5391–97
    [Google Scholar]
  106. 106. 
    Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V et al. 2018. A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. Nat. Energy 3:6515–27
    [Google Scholar]
  107. 107. 
    Laude A. 2020. Bioenergy with carbon capture and storage: are short-term issues set aside?. Mitig. Adapt. Strateg. Glob. Change 25:2185–203
    [Google Scholar]
  108. 108. 
    Geden O. 2016. The Paris Agreement and the inherent inconsistency of climate policymaking. Wiley Interdiscip. Rev. Clim. Change 7:6790–97
    [Google Scholar]
  109. 109. 
    Markusson N, McLaren D, Tyfield D. 2018. Towards a cultural political economy of mitigation deterrence by negative emissions technologies (NETs). Glob. Sustain. 1:e10
    [Google Scholar]
  110. 110. 
    Carton W, Asiyanbi A, Beck S, Buck HJ, Lund JF. 2020. Negative emissions and the long history of carbon removal. Wiley Interdiscip. Rev. Clim. Change 11:6e671
    [Google Scholar]
  111. 111. 
    McLaren D, Markusson N. 2020. The co-evolution of technological promises, modelling, policies and climate change targets. Nat. Clim. Change 10:5392–97
    [Google Scholar]
  112. 112. 
    GEA (Glob. Energy Assess.) 2012. Global Energy Assessment—Toward a Sustainable Future Cambridge, UK: Cambridge Univ. Press/Laxenburg, Austria: Int. Inst. Appl. Syst. Anal.
    [Google Scholar]
  113. 113. 
    Chum H, Faaij A, Moreira J, Berndes G, Dhamija P et al. 2011. Bioenergy. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change C von Stechow, G Hansen, K Seyboth, O Edenhofer, P Eickemeier et al.209–332 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  114. 114. 
    IEA (Int. Energy Agency) 2020. World Energy Outlook 2020 Paris: IEA
    [Google Scholar]
  115. 115. 
    Peters GP, Andrew RM, Canadell JG, Friedlingstein P, Jackson RB et al. 2020. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change 10:13–6
    [Google Scholar]
  116. 116. 
    Kramer GJ, Haigh M. 2009. No quick switch to low-carbon energy. Nature 462:7273568–69
    [Google Scholar]
  117. 117. 
    Clarke L, Jiang K, Akimoto K, Babiker M, Blanford G et al. 2014. Assessing transformation pathways. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.413–510 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  118. 118. 
    Rogelj J, Shindell D, Jiang K, Fifita S, Forster P et al. 2018. Mitigation pathways compatible with 1.5°C in the context of sustainable development. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty V Masson-Delmotte, P Zhai, HO Pörtner, D Roberts, J Skea et al.93–174 Geneva: IPCC
    [Google Scholar]
  119. 119. 
    Creutzig F, Agoston P, Goldschmidt JC, Luderer G, Nemet G, Pietzcker RC. 2017. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2:917140
    [Google Scholar]
  120. 120. 
    Fofrich R, Tong D, Calvin K, De Boer HS, Emmerling J et al. 2020. Early retirement of power plants in climate mitigation scenarios. Environ. Res. Lett. 15:9094064
    [Google Scholar]
  121. 121. 
    Tong D, Zhang Q, Zheng Y, Caldeira K, Shearer C et al. 2019. Committed emissions from existing energy infrastructure jeopardize 1.5°C climate target. Nature 572:7769373–77
    [Google Scholar]
  122. 122. 
    IEA (Int. Energy Agency) 2020. Energy Technology Perspectives 2020 Paris: IEA
    [Google Scholar]
  123. 123. 
    Bertram C, Johnson N, Luderer G, Riahi K, Isaac M, Eom J. 2015. Carbon lock-in through capital stock inertia associated with weak near-term climate policies. Technol. Forecast. Soc. Change 90:62–72
    [Google Scholar]
  124. 124. 
    Carton W 2020. Carbon unicorns and fossil futures: Whose emission reduction pathways is the IPCC performing?. Has It Come to This? The Promises and Perils of Geoengineering on the Brink J Sapinski, HJ Buck, A Malm 34–59 New Brunswick, NJ: Rutgers Univ. Press
    [Google Scholar]
  125. 125. 
    Pietzcker RC, Ueckerdt F, Carrara S, de Boer HS, Després J et al. 2017. System integration of wind and solar power in integrated assessment models: a cross-model evaluation of new approaches. Energy Econ 64:583–99
    [Google Scholar]
  126. 126. 
    Johnson N, Krey V, McCollum DL, Rao S, Riahi K, Rogelj J. 2015. Stranded on a low-carbon planet: implications of climate policy for the phase-out of coal-based power plants. Technol. Forecast. Soc. Change 90:89–102
    [Google Scholar]
  127. 127. 
    Anderson K, Peters G. 2016. The trouble with negative emissions. Science 354:6309182–83
    [Google Scholar]
  128. 128. 
    van Sluisveld MAE, Harmsen JHM, Bauer N, McCollum DL, Riahi K et al. 2015. Comparing future patterns of energy system change in 2°C scenarios with historically observed rates of change. Glob. Environ. Change 35:436–49
    [Google Scholar]
  129. 129. 
    Oswald Y, Owen A, Steinberger JK. 2020. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 5:3231–39
    [Google Scholar]
  130. 130. 
    Whyte K. 2020. Too late for indigenous climate justice: ecological and relational tipping points. Wiley Interdiscip. Rev. Clim. Change 11:1e603
    [Google Scholar]
  131. 131. 
    Sealey-Huggins L. 2017. ‘1.5°C to stay alive’: climate change, imperialism and justice for the Caribbean. Third World Q 38:112444–63
    [Google Scholar]
  132. 132. 
    Winkler H, Rajamani L. 2014. CBDR&RC in a regime applicable to all. Clim. Policy 14:1102–21
    [Google Scholar]
  133. 133. 
    Pachauri RK 2010. Foreword. Climate Ethics: Essential Readings SM Gardiner, S Caney, D Jamieson, H Shue vii–viii Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  134. 134. 
    Klinsky S, Roberts T, Huq S, Okereke C, Newell P et al. 2017. Why equity is fundamental in climate change policy research. Glob. Environ. Change 44:170–73
    [Google Scholar]
  135. 135. 
    United Nations 2015. The Paris Agreement. Paris: United Nations
    [Google Scholar]
  136. 136. 
    Okereke C, Coventry P. 2016. Climate justice and the international regime: before, during, and after Paris. Wiley Interdiscip. Rev. Clim. Change 7:6834–51
    [Google Scholar]
  137. 137. 
    Agyeman J. 2005. Sustainable Communities and the Challenge of Environmental Justice New York: New York Univ. Press
    [Google Scholar]
  138. 138. 
    Anguelovski I, Shi L, Chu E, Gallagher D, Goh K et al. 2016. Equity impacts of urban land use planning for climate adaptation: critical perspectives from the global north and south. J. Plan. Educ. Res. 36:3333–48
    [Google Scholar]
  139. 139. 
    Steil JP, Albright L, Rugh JS, Massey DS. 2018. The social structure of mortgage discrimination. Housing Stud 33:5759–76
    [Google Scholar]
  140. 140. 
    Tainter J. 1988. The Collapse of Complex Societies Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  141. 141. 
    Ostrom E. 2000. Collective action and the evolution of social norms. J. Econ. Perspect. 14:3137–58
    [Google Scholar]
  142. 142. 
    Huber R, Wicki M, Bernauer T. 2020. Public support for environmental policy depends on beliefs concerning effectiveness, intrusiveness, and fairness. Environ. Politics 29:4649–73
    [Google Scholar]
  143. 143. 
    Winkler H, Höhne N, Cunliffe G, Kuramochi T, April A, de Villafranca Casas MJ 2018. Countries start to explain how their climate contributions are fair: more rigour needed. Int. Environ. Agreem. Politics Law Econ. 18:199–115
    [Google Scholar]
  144. 144. 
    Young OR. 2013. Sugaring off: enduring insights from long-term research on environmental governance. Int. Environ. Agreem. Politics Law Econ. 13:187–105
    [Google Scholar]
  145. 145. 
    Supran G, Oreskes N. 2017. Assessing ExxonMobil's climate change communications (1977–2014). Environ. Res. Lett. 12:8084019
    [Google Scholar]
  146. 146. 
    Brulle RJ. 2018. The climate lobby: a sectoral analysis of lobbying spending on climate change in the USA, 2000 to 2016. Clim. Change 149:3289–303
    [Google Scholar]
  147. 147. 
    Grear A, Gearty C. 2014. Choosing a Future London: Edward Elgar Publ.
    [Google Scholar]
  148. 148. 
    Winkler H, Vorster S, Marquard A. 2009. Who picks up the remainder? Mitigation in developed and developing countries. Clim. Policy 9:6634–51
    [Google Scholar]
  149. 149. 
    Brulle RJ, Norgaard KM. 2019. Avoiding cultural trauma: climate change and social inertia. Environ. Politics 28:5886–908
    [Google Scholar]
  150. 150. 
    Stern T. 2011. United Nations Climate Change Conference in Durban, South Africa Spec. Brief, Spec. Envoy Clim. Change, US Dep. State Washington, DC: https://2009-2017.state.gov/r/pa/prs/ps/2011/12/178699.htm
    [Google Scholar]
  151. 151. 
    Capstick S, Whitmarsh L, Poortinga W, Pidgeon N, Upham P. 2015. International trends in public perceptions of climate change over the past quarter century. Wiley Interdiscip. Rev. Clim. Change 6:135–61
    [Google Scholar]
  152. 152. 
    Sörqvist P, Langeborg L. 2019. Why people harm the environment although they try to treat it well: an evolutionary-cognitive perspective on climate compensation. Front. Psychol. 10:348
    [Google Scholar]
  153. 153. 
    Newman TP, Nisbet EC, Nisbet MC. 2018. Climate change, cultural cognition, and media effects: Worldviews drive news selectivity, biased processing, and polarized attitudes. Public Underst. Sci. 27:8985–1002
    [Google Scholar]
  154. 154. 
    Clayton S, Devine-Wright P, Stern PC, Whitmarsh L, Carrico A et al. 2015. Psychological research and global climate change. Nat. Clim. Change 5:7640–46
    [Google Scholar]
  155. 155. 
    Shi J, Visschers VHM, Siegrist M, Arvai J. 2016. Knowledge as a driver of public perceptions about climate change reassessed. Nat. Clim. Change 6:8759–62
    [Google Scholar]
  156. 156. 
    Nielsen KS, Clayton S, Stern PC, Dietz T, Capstick S, Whitmarsh L. 2021. How psychology can help limit climate change. Am. Psychol. 76:1130–44
    [Google Scholar]
  157. 157. 
    Huddart Kennedy E, Krahn H, Krogman NT 2015. Are we counting what counts? A closer look at environmental concern, pro-environmental behaviour, and carbon footprint. Local Environ 20:2220–36
    [Google Scholar]
  158. 158. 
    Thøgersen J, Crompton T. 2009. Simple and painless? The limitations of spillover in environmental campaigning. J. Consumer Policy 32:2141–63
    [Google Scholar]
  159. 159. 
    Kurz T, Gardner B, Verplanken B, Abraham C. 2015. Habitual behaviors or patterns of practice? Explaining and changing repetitive climate-relevant actions. Wiley Interdiscip. Rev. Clim. Change 6:1113–28
    [Google Scholar]
  160. 160. 
    Labanca N, Pereira ÂG, Watson M, Krieger K, Padovan D et al. 2020. Transforming innovation for decarbonisation? Insights from combining complex systems and social practice perspectives. Energy Res. Soc. Sci. 65:101452
    [Google Scholar]
  161. 161. 
    Spurling N, Mcmeekin A 2015. Interventions in practice: sustainable mobility policies in England. Social Practices, Intervention and Sustainability: Beyond Behaviour Change Y Strengers, C Maller 78–94 Abingdon Oxon, UK: Routledge
    [Google Scholar]
  162. 162. 
    Welch D, Southerton D. 2019. After Paris: transitions for sustainable consumption. Sustain. Sci. Pract. Policy 15:131–44
    [Google Scholar]
  163. 163. 
    Kuijer L, Watson M. 2017.. ‘ That's when we started using the living room’: lessons from a local history of domestic heating in the United Kingdom. Energy Res. Soc. Sci. 28:77–85
    [Google Scholar]
  164. 164. 
    Watson M, Browne A, Evans D, Foden M, Hoolohan C, Sharp L. 2020. Challenges and opportunities for re-framing resource use policy with practice theories: the change points approach. Glob. Environ. Change 62:102072
    [Google Scholar]
  165. 165. 
    Hoolohan C, Browne AL. 2020. Design thinking for practice-based intervention: co-producing the change points toolkit to unlock (un)sustainable practices. Des. Stud. 67:102–32
    [Google Scholar]
  166. 166. 
    Glover A, Lewis T, Strengers Y. 2019. Overcoming remoteness: the necessity of air travel in Australian universities. Aust. Geogr. 50:4453–71
    [Google Scholar]
  167. 167. 
    Jameson F. 2005. Archaeologies of the Future: The Desire Called Utopia and Other Science Fictions London: Verso
    [Google Scholar]
  168. 168. 
    Mišík M, Kujundžić N. 2021. Energy Humanities. Current State and Future Directions Cham, Switz: Springer Int.
    [Google Scholar]
  169. 169. 
    Wilson S, Carlson A, Szeman I. 2017. Petrocultures: Oil, Politics, Culture Montreal: McGill-Queen's Univ. Press
    [Google Scholar]
  170. 170. 
    Jasanoff S, Kim S-H. 2015. Dreamscapes of Modernity: Sociotechnical Imaginaries and the Fabrication of Power Chicago, London: Univ. Chicago Press
    [Google Scholar]
  171. 171. 
    Kuchler M, Bridge G. 2018. Down the black hole: Sustaining national socio-technical imaginaries of coal in Poland. Energy Res. Soc. Sci. 41:136–47
    [Google Scholar]
  172. 172. 
    Bryant R, Knight DM. 2019. The Anthropology of the Future Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  173. 173. 
    Smith B. 2019. Imagined energy futures in contemporary speculative fictions. Resilience 6:2–3136–54
    [Google Scholar]
  174. 174. 
    Bridge G. 2015. Energy (in)security: world-making in an age of scarcity. Geogr. J. 181:4328–39
    [Google Scholar]
  175. 175. 
    Appadurai A. 2013. The Future as Cultural Fact: Essays on the Global Condition London: Verso
    [Google Scholar]
  176. 176. 
    Hulme M. 2015. (Still) disagreeing about climate change: which way forward?. Zygon 50:4893–905
    [Google Scholar]
  177. 177. 
    Hassan R 2015. When innovation becomes conformist. Universities in the Flux of Time: An Exploration of Time and Temporality in University Life P Gibbs, O-H Ylijoki, C Guzmán-Valenzuela, R Barnett 79–93 London: Routledge
    [Google Scholar]
  178. 178. 
    Huckle J, Wals AEJ. 2015. The UN Decade of Education for Sustainable Development: business as usual in the end. Environ. Educ. Res. 21:3491–505
    [Google Scholar]
  179. 179. 
    Amsler S, Facer K. 2017. Contesting anticipatory regimes in education: exploring alternative educational orientations to the future. Futures 94:6–14
    [Google Scholar]
  180. 180. 
    Haarstad H, Wanvik TI. 2017. Carbonscapes and beyond: conceptualizing the instability of oil landscapes. Prog. Hum. Geogr. 41:4432–50
    [Google Scholar]
  181. 181. 
    Lotz-Sisitka H, Wals AEJ, Kronlid D, McGarry D. 2015. Transformative, transgressive social learning: rethinking higher education pedagogy in times of systemic global dysfunction. Curr. Opin. Environ. Sustain. 16:73–80
    [Google Scholar]
  182. 182. 
    de Sousa Santos B. 2018. The End of the Cognitive Empire: The Coming of Age of Epistemologies of the South Durham, NC: Duke Univ. Press
    [Google Scholar]
  183. 183. 
    Dag Hammarskjöld Found 1975. What Now? The 1975 Dag Hammarskjöld Report on Development and International Cooperation Motala, Swed: Dag Hammarskjöld Found.
    [Google Scholar]
  184. 184. 
    Allen D. 2006. Talking to Strangers: Anxieties of Citizenship Since Brown v. Board of Education Chicago: Univ. Chicago Press
    [Google Scholar]
  185. 185. 
    Stein S, Andreotti V, Suša R, Amsler S, Hunt D et al. 2020. Gesturing towards decolonial futures. Nordic J. Comp. Int. Educ. 4:143–65
    [Google Scholar]
  186. 186. 
    Wamsler C, Schäpke N, Fraude C, Stasiak D, Bruhn T et al. 2020. Enabling new mindsets and transformative skills for negotiating and activating climate action: lessons from UNFCCC conferences of the parties. Environ. Sci. Policy 112:227–35
    [Google Scholar]
  187. 187. 
    Asafu-Adjay J, Blomqvist L, Brand S, Brook B, DeFries R et al. 2015. An ecomodernist manifesto. Ecomodernism April. http://www.ecomodernism.org
    [Google Scholar]
  188. 188. 
    De Stercke S. 2014. Dynamics of energy systems: a useful perspective. Rep. IR-14-013 Int. Inst. Appl. Syst. Anal. Laxenburg, Austria:
    [Google Scholar]
  189. 189. 
    BP 2020. BP Statistical Review of World Energy (69th) London: BP
    [Google Scholar]
  190. 190. 
    Fernandes SD, Trautmann NM, Streets DG, Roden CA, Bond TC. 2007. Global biofuel use, 1850–2000. Glob. Biogeochem. Cycles 21:2GB2019
    [Google Scholar]
  191. 191. 
    Friedlingstein P, Jones MW, O'Sullivan M, Andrew RM, Hauck J et al. 2019. Global Carbon Budget 2019. Earth Syst. Sci. Data 11:41783–838
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012220-011104
Loading
/content/journals/10.1146/annurev-environ-012220-011104
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error