1932

Abstract

The availability and use of fresh water are critical for human health and for economic and ecosystem stability. But the growing mismatch between human demands and natural freshwater availability is contributing to water scarcity, affecting industrial and agricultural production and a wide range of social, economic, and political problems, including poverty, deterioration of ecosystem health, and violent conflicts. Understanding and addressing different forms of water scarcity are vital for moving toward more sustainable management and use of fresh water. We provide here a review of concepts and definitions of water scarcity, metrics and indicators used to evaluate scarcity together with strategies for addressing and reducing the adverse consequences of water scarcity, including the development of alternative sources of water, improvements in water-use efficiency, and changes in systems of water management and planning.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012220-101319
2021-10-18
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/energy/46/1/annurev-environ-012220-101319.html?itemId=/content/journals/10.1146/annurev-environ-012220-101319&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    UN Dep. Econ. Soc. Aff 2021. Sustainable Development Goal 6: Ensure availability and sustainable management of water and sanitation for all. United Nations Department of Social Affairs https://sdgs.un.org/goals/goal6
    [Google Scholar]
  2. 2. 
    Gleick PH, Palaniappan M 2010. Peak water limits to freshwater withdrawal and use. PNAS 107:11155–62
    [Google Scholar]
  3. 3. 
    Alexander CMO 2017. The origin of inner Solar System water. Philos. Trans. R. Soc. A 375:20150384
    [Google Scholar]
  4. 4. 
    Grasset O, Castillo-Rogez J, Guillot T, Fletcher L, Tosi F. 2017. Water and volatiles in the outer solar system. Space Sci. Rev. 212:835–75
    [Google Scholar]
  5. 5. 
    Rampino MR, Caldeira K. 1994. The Goldilocks problem: climatic evolution and long-term habitability of terrestrial planets. Annu. Rev. Astron. Astrophys. 32:83–114
    [Google Scholar]
  6. 6. 
    Li Y, Vočadlo L, Sun T, Brodholt JP. 2020. The Earth's core as a reservoir of water. Nat. Geosci. 13:453–58
    [Google Scholar]
  7. 7. 
    Oki T, Kanae S. 2006. Global hydrological cycles and world water resources. Science 313:1068–72
    [Google Scholar]
  8. 8. 
    Trenberth KE, Fasullo JT, Mackaro J. 2011. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate 24:4907–24
    [Google Scholar]
  9. 9. 
    Gosling SN, Arnell NW. 2016. A global assessment of the impact of climate change on water scarcity. Clim. Change 134:371–85
    [Google Scholar]
  10. 10. 
    Mueller Schmied H, Adam L, Eisner S, Fink G, Flörke M et al. 2016. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 20:2877–98
    [Google Scholar]
  11. 11. 
    Rodell M, Beaudoing HK, L'Ecuyer T, Olson WS, Famiglietti JS et al. 2015. The observed state of the water cycle in the early twenty-first century. J. Climate 28:8289–318
    [Google Scholar]
  12. 12. 
    Wisser D, Fekete BM, Vörösmarty C, Schumann A. 2010. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol. Earth Syst. Sci. 14:1–24
    [Google Scholar]
  13. 13. 
    Liu B, Tan X, Gan TY, Chen X, Lin K et al. 2020. Global atmospheric moisture transport associated with precipitation extremes: mechanisms and climate change impacts. WIREs Water 7:e1412
    [Google Scholar]
  14. 14. 
    Gleick PH, Christian-Smith J, Cooley H. 2011. Water-use efficiency and productivity: rethinking the basin approach. Water Int 36:784–98
    [Google Scholar]
  15. 15. 
    Kohli A, Frenken K, Spottorno C. 2012. . Disambiguation of water statistics Rep., AQUASTAT, UN Food Agric Organ:.,
    [Google Scholar]
  16. 16. 
    Heermann DF, Solomon KH 2007. Efficiency and uniformity. Design and Operation of Farm Irrigation Systems GJ Hoffmann, RE Evans, ME Jensen, DL Martin, RL Elliott 108–19 St. Joseph, MI: Am. Soc. Agric. Biol. Eng., , 2nd ed..
    [Google Scholar]
  17. 17. 
    Hoekstra AY, Mekonnen MM 2012. The water footprint of humanity. PNAS 109:3232–37
    [Google Scholar]
  18. 18. 
    FAO (UN Food Agric. Organ) 2020. AQUASTAT—FAO's global information system on water and agriculture. Food and Agricultural Organization of the United Nations. http://www.fao.org/nr/water/aquastat/main/index.stm
    [Google Scholar]
  19. 19. 
    Wada Y, Bierkens MF. 2014. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. 9:104003
    [Google Scholar]
  20. 20. 
    Shiklomanov IA, Balonishnikova JA. 2003. World water use and water availability: trends, scenarios, consequences. Int. Assoc. Hydrol. Sci. Publ. 281:358–64
    [Google Scholar]
  21. 21. 
    Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B et al. 2003. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 48:317–37
    [Google Scholar]
  22. 22. 
    Flörke M, Lapola DM, Schaldach R, Voß F, Teichert E. 2010. Modelling historical and current irrigation water demand on the continental scale: Europe. Adv. Geosci. 27:79–85
    [Google Scholar]
  23. 23. 
    Flörke M, Kynast E, Bärlund I, Eisner S, Wimmer F, Alcamo J. 2013. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob. Environ. Change 23:144–56
    [Google Scholar]
  24. 24. 
    De Maré L. 1976. Resources-Needs-Problems: An Assessment of the World Water Situation by 2000 Lund, Swed.: Dep. Water Resour. Eng., Lund Inst. Technol.
    [Google Scholar]
  25. 25. 
    Falkenmark M, Lindh G. 1974. How can we cope with the water resources situation by the year 2015?. Ambio 3:114–22
    [Google Scholar]
  26. 26. 
    L'vovich MI. 1979. World Water Resources and their Future Washington, DC: Am. Geophys. Union
    [Google Scholar]
  27. 27. 
    Raskin P, Gleick PH, Kirshen P, Pontius RG Jr., Strzepek K. 1997. Water Futures: Assessment of Long-Range Patterns and Problems in Comprehensive Assessment of the Freshwater Resources of the World Stockholm: Stockh. Environ. Inst.
    [Google Scholar]
  28. 28. 
    Seckler DW, Amarasinghe U, Molden D, de Silva R, Barker R. 1998. World water demand and supply, 1990 to 2025: scenarios and issues Res. Rep. 19, Int. Water Manag. Inst. Colombo, Sri Lanka:
    [Google Scholar]
  29. 29. 
    Cai X, Rosegrant MW. 2002. Global water demand and supply projections: Part 1. A modeling approach. Water Int 27:159–69
    [Google Scholar]
  30. 30. 
    Gleick PH. 2003. Water use. Annu. Rev. Environ. Resour. 28:275–314
    [Google Scholar]
  31. 31. 
    Potting J, Bakkes J 2004. The GEO-3 Scenarios 20022032: Quantification and Analysis of Environmental Impacts Nairobi/Bilthoven, Neth: UN Environ. Progr./Natl. Inst. Public Health Environ.
    [Google Scholar]
  32. 32. 
    Gulbenkian Think Tank 2014. Water and the Future of Humanity: Revisiting Water Security Cham, Switz: Springer Nat. Switz. AG http://www.springer.com/978-3-319-01456-2
    [Google Scholar]
  33. 33. 
    Abraham S, Diringer S, Cooley H. 2020. An Assessment of Urban Water Demand Forecasts in California Oakland, CA: Pac. Inst.
    [Google Scholar]
  34. 34. 
    Diringer S, Cooley H, Heberger M, Phurisamban R, Donnelly K et al. 2018. Integrating water efficiency standards and codes into long-term demand forecasting Proj. 4495 Water Res. Found. Denver: http://www.waterrf.org/Pages/Projects.aspx?PID=4495
    [Google Scholar]
  35. 35. 
    Mann ME, Gleick PH. 2015. Climate change and California drought in the 21st century. PNAS 112:3858–59
    [Google Scholar]
  36. 36. 
    Wilhite DA, Glantz MH. 1985. Understanding: the drought phenomenon: the role of definitions. Water Int 10:111–20
    [Google Scholar]
  37. 37. 
    Molle F, Mollinga P. 2003. Water poverty indicators: conceptual problems and policy issues. Water Policy 5:529–44
    [Google Scholar]
  38. 38. 
    Meehan K, Jurjevich JR, Chun NMJW, Sherrill J. 2020. Geographies of insecure water access and the housing–water nexus in US cities. PNAS 117:28700–7
    [Google Scholar]
  39. 39. 
    Feinstein L, Daiess G. 2019. Plumbing the depths: Californians without toilets and running water Rep., Pac. Inst. Oakland, CA: http://pacinst.org/publication/plumbing-depths
    [Google Scholar]
  40. 40. 
    Feitelson E, Chenoweth J. 2002. Water poverty: towards a meaningful indicator. Water Policy 4:263–81
    [Google Scholar]
  41. 41. 
    Wescoat JL Jr., Headington L, Theobald R 2007. Water and poverty in the United States. Geoforum 38:801–14
    [Google Scholar]
  42. 42. 
    Galiani S, Gertler P, Schargrodsky E. 2005. Water for life: the impact of the privatization of water services on child mortality. J. Political Econ. 113:83–120
    [Google Scholar]
  43. 43. 
    Bakker KJ. 2003. A political ecology of water privatization. Stud. Political Econ. 70:35–58
    [Google Scholar]
  44. 44. 
    Rijsberman F. 2003. Can development of water resources reduce poverty?. Water Policy 5:399–412
    [Google Scholar]
  45. 45. 
    Hanjra MA, Ferede T, Gutta DG. 2009. Reducing poverty in sub-Saharan Africa through investments in water and other priorities. Agric. Water Manag. 96:1062–70
    [Google Scholar]
  46. 46. 
    Schreiner B, van Koppen B. 2003. Policy and law for addressing poverty, race and gender in the water sector: the case of South Africa. Water Policy 5:489–501
    [Google Scholar]
  47. 47. 
    Addae-Korankye A. 2014. Causes of poverty in Africa: a review of literature. Am. Int. J. Soc. Sci. 3:147–53
    [Google Scholar]
  48. 48. 
    Fischhendler I, Zilberman D. 2005. Packaging policies to reform the water sector: the case of the Central Valley Project Improvement Act. Water Resour. Res. 41:W07024
    [Google Scholar]
  49. 49. 
    Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD et al. 2014. Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.1–32 Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  50. 50. 
    Risser MD, Wehner MF. 2017. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett. 44:12–457
    [Google Scholar]
  51. 51. 
    Keellings D, Hernández Ayala JJ 2019. Extreme rainfall associated with Hurricane Maria over Puerto Rico and its connections to climate variability and change. Geophys. Res. Lett. 46:2964–73
    [Google Scholar]
  52. 52. 
    Yuan X, Wang L, Wu P, Ji P, Sheffield J, Zhang M 2019. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 10:1–8
    [Google Scholar]
  53. 53. 
    Marvel K, Cook BI, Bonfils CJ, Durack PJ, Smerdon JE, Williams AP. 2019. Twentieth-century hydroclimate changes consistent with human influence. Nature 569:59–65
    [Google Scholar]
  54. 54. 
    Najafi MR, Zwiers F, Gillett N. 2017. Attribution of the observed spring snowpack decline in British Columbia to anthropogenic climate change. J. Climate 30:4113–30
    [Google Scholar]
  55. 55. 
    Yuan X, Jiao Y, Yang D, Lei H 2018. Reconciling the attribution of changes in streamflow extremes from a hydroclimate perspective. Water Resour. Res. 54:3886–95
    [Google Scholar]
  56. 56. 
    Friedrich K, Grossman RL, Huntington J, Blanken PD, Lenters J et al. 2018. Reservoir evaporation in the Western United States: current science, challenges, and future needs. Bull. Am. Meteorol. Soc. 99:167–87
    [Google Scholar]
  57. 57. 
    Gampe D, Nikulin G, Ludwig R. 2016. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci. Total Environ. 573:1503–18
    [Google Scholar]
  58. 58. 
    Damkjaer S, Taylor R. 2017. The measurement of water scarcity: defining a meaningful indicator. Ambio 46:513–31
    [Google Scholar]
  59. 59. 
    Falkenmark M, Lundqvist J, Widstrand C. 1989. Macro-scale water scarcity requires micro-scale approaches: aspects of vulnerability in semi-arid development. Nat. Resour. Forum UN Sustain. Dev. J. 13:258–67
    [Google Scholar]
  60. 60. 
    Falkenmark M. 1997. Meeting water requirements of an expanding world population. Philos. Trans. R. Soc. Lond. Ser. B 352:929–36
    [Google Scholar]
  61. 61. 
    Engelman R, LeRoy P. 1993. Sustaining Water: Population and the Future of Renewable Water Supplies Washington, DC: Popul. Action Int.
    [Google Scholar]
  62. 62. 
    Engelman R, Cincotta RP, Dye B, Gardner-Outlaw T, Wisnewski J. 2000. People in the Balance Washington, DC: Popul. Action Int.
    [Google Scholar]
  63. 63. 
    Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW et al. 2014. Multimodel assessment of water scarcity under climate change. PNAS 111:3245–50
    [Google Scholar]
  64. 64. 
    Gleick PH, Chalecki EL, Wong A 2002. Measuring water well-being: water indicators and indices. The World's Water, 20022003: The Biennial Report on Freshwater Resources PH Gleick 87–112 Washington, DC: Island Press
    [Google Scholar]
  65. 65. 
    Gleick PH 1990. Vulnerability of water systems. Climate Change and U.S. Water Resources PE Waggoner 223–40 New York: Wiley
    [Google Scholar]
  66. 66. 
    Raskin PD, Hansen E, Margolis RM. 1996. Water and sustainability: global patterns and long-range problems. Nat. Resour. Forum UN Sustain. Dev. J. 20:1–15
    [Google Scholar]
  67. 67. 
    Ohlsson L. 2000. Water conflicts and social resource scarcity. Phys. Chem. Earth B 25:213–20
    [Google Scholar]
  68. 68. 
    Sullivan C. 2002. Calculating a Water Poverty Index. World Dev 30:1195–210
    [Google Scholar]
  69. 69. 
    Sullivan C, Meigh J, Lawrence P. 2006. Application of the Water Poverty Index at different scales: a cautionary tale. Water Int 31:412–26
    [Google Scholar]
  70. 70. 
    Pastor A, Ludwig F, Biemans H, Hoff H, Kabat P. 2014. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18:5041–59
    [Google Scholar]
  71. 71. 
    Liu J, Liu Q, Yang H. 2016. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 60:434–41
    [Google Scholar]
  72. 72. 
    Allan JA. 1998. Virtual water: a strategic resource. Ground Water 36:545–47
    [Google Scholar]
  73. 73. 
    Allan JA. 2003. Virtual water—the water, food, and trade nexus. Useful concept or misleading metaphor?. Water Int 28:106–13
    [Google Scholar]
  74. 74. 
    Wackernagel M, Rees WE. 1997. Perceptual and structural barriers to investing in natural capital: economics from an ecological footprint perspective. Ecol. Econ. 20:3–24
    [Google Scholar]
  75. 75. 
    Hoekstra AY, Chapagain AK, Mekonnen MM, Aldaya MM. 2011. The Water Footprint Assessment Manual: Setting the Global Standard London: Earthscan
    [Google Scholar]
  76. 76. 
    Falkenmark M, Rockström J. 2006. The new blue and green water paradigm: breaking new ground for water resources planning and management. J. Water Resour. Plann. Manag. 132:129–32
    [Google Scholar]
  77. 77. 
    Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD. 2012. Global monthly water scarcity: blue water footprints versus blue water availability. PLOS ONE 7:e32688
    [Google Scholar]
  78. 78. 
    Zeng Z, Liu J, Savenije HH. 2013. A simple approach to assess water scarcity integrating water quantity and quality. Ecol. Indic. 34:441–49
    [Google Scholar]
  79. 79. 
    Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III et al. 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14:32
    [Google Scholar]
  80. 80. 
    Molden D, Frenken K, Barker R, de Fraiture C, Mati B et al. 2007. Trends in agricultural water and development. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture D Molden 57–89 London/Colombo, Sri Lanka: Earthscan/Int. Water Manag. Inst.
    [Google Scholar]
  81. 81. 
    Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A et al. 2010. Global threats to human water security and river biodiversity. Nature 467:555–61
    [Google Scholar]
  82. 82. 
    Kummu M, Guillaume JH, de Moel H, Eisner S, Flörke M et al. 2016. The world's road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 6:38495
    [Google Scholar]
  83. 83. 
    Liu J, Yang H, Gosling SN, Kummu M, Flörke M et al. 2017. Water scarcity assessments in the past, present, and future. Earth's Future 5:545–59
    [Google Scholar]
  84. 84. 
    Mekonnen MM, Hoekstra AY. 2016. Four billion people facing severe water scarcity. Sci. Adv. 2:e1500323
    [Google Scholar]
  85. 85. 
    ECOSOC (UN Econ. Soc. Counc.), Comm. Econ., Soc. Cult. Rights 2003. General Comment No. 15: The Right to Water (Arts. 11, 12 of the Covenant) Jan. 20. UN Doc. E/C.12/2002/11. https://www.refworld.org/pdfid/4538838d11.pdf
    [Google Scholar]
  86. 86. 
    Gleick PH. 1996. Basic water requirements for human activities: meeting basic needs. Water Int 21:83–92
    [Google Scholar]
  87. 87. 
    Sharma SK, Vairavamoorthy K. 2009. Urban water demand management: prospects and challenges for the developing countries. Water Environ. J. 23:210–18
    [Google Scholar]
  88. 88. 
    Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B et al. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9:494–502
    [Google Scholar]
  89. 89. 
    Famiglietti JS. 2014. The global groundwater crisis. Nat. Clim. Change 4:945–48
    [Google Scholar]
  90. 90. 
    Wada Y, Beek LPH, Bierkens Marc FP 2012. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48:W00L06
    [Google Scholar]
  91. 91. 
    Bierkens MF, Wada Y. 2019. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14:063002
    [Google Scholar]
  92. 92. 
    Jones E, Qadir M, van Vliet MT, Smakhtin V, Kang S. 2019. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657:1343–56
    [Google Scholar]
  93. 93. 
    Gude VG. 2017. Desalination and water reuse to address global water scarcity. Rev. Environ. Sci. Bio/Technol. 16:591–609
    [Google Scholar]
  94. 94. 
    Tang CY, Yang Z, Guo H, Wen JJ, Nghiem LD, Cornelissen E. 2018. Potable water reuse through advanced membrane technology. Environ. Sci. Technol. 52:10215–23
    [Google Scholar]
  95. 95. 
    Garcia-Cuerva L, Berglund EZ, Binder AR. 2016. Public perceptions of water shortages, conservation behaviors, and support for water reuse in the US. Resour. Conserv. Recycl. 113:106–15
    [Google Scholar]
  96. 96. 
    Wilcox J, Nasiri F, Bell S, Rahaman MS. 2016. Urban water reuse: a triple bottom line assessment framework and review. Sustain. Cities Soc. 27:448–56
    [Google Scholar]
  97. 97. 
    Lahnsteiner J, Van Rensburg P, Esterhuizen J. 2018. Direct potable reuse—a feasible water management option. J. Water Reuse Desalin. 8:14–28
    [Google Scholar]
  98. 98. 
    Los Angeles Dept. Water Power 2015. Stormwater capture master plan Rep., Los Angeles Dept. Water Power Los Angeles, CA: https://www.ladwp.com/cs/idcplg?IdcService=GET_FILE&dDocName=OPLADWPCCB421767&RevisionSelectionMethod=LatestReleased
    [Google Scholar]
  99. 99. 
    Li H, Ding L, Ren M, Li C, Wang H 2017. Sponge city construction in China: a survey of the challenges and opportunities. Water 9:594
    [Google Scholar]
  100. 100. 
    Cooley H, Phurisamban R, Gleick P. 2019. The cost of alternative urban water supply and efficiency options in California. Environ. Res. Commun. 1:042001
    [Google Scholar]
  101. 101. 
    Dziegielewski B. 2003. Strategies for managing water demand. Water Resour. Update 126:28–39
    [Google Scholar]
  102. 102. 
    Gleick PH, Cooley H, Poole K, Osann E. 2014. The untapped potential of California's water supply: efficiency, reuse, and stormwater Issue Brief, Pac. Inst., Nat. Res. Defense Council Oakland, CA:
    [Google Scholar]
  103. 103. 
    Turner A, White S, Chong J, Dickinson MA, Cooley H, Donnelly K. 2016. Managing drought: learning from Australia Rep., Alliance Water Effic., Inst. Sustain. Futures, Pac. Inst. Oakland, CA:
    [Google Scholar]
  104. 104. 
    Adeyemi O, Grove I, Peets S, Norton T. 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 9:353
    [Google Scholar]
  105. 105. 
    Leflaive X, Hjort M. 2020. Addressing the social consequences of tariffs for water supply and sanitation Work. Pap. ENV/WKP(2020)13 Organ. Econ. Co-op. Dev. Paris:
    [Google Scholar]
  106. 106. 
    OECD (Off. Econ. Co-Op. Dev.) 2010. Pricing water resources and water and sanitation services Rep. OECD, Paris: https://doi.org/10.1787/9789264083608-en
    [Crossref] [Google Scholar]
  107. 107. 
    MacDougall N, Hanemann M, Zilberman D. 1992. The economics of agricultural drainage Rep., Dep. Agric. Resour. Econ., Univ. Calif. Berkeley:
    [Google Scholar]
  108. 108. 
    Cooley H, Donnelly K. 2013. Water-energy synergies: coordinating efficiency programs in California Rep., Pac. Inst. Oakland, CA: https://pacinst.org/wp-content/uploads/2013/09/pacinst-water-energy-synergies-full-report-1.pdf
    [Google Scholar]
  109. 109. 
    Friedman L. 2018. Water management planning Calif. Legis., CA: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB1668
    [Google Scholar]
  110. 110. 
    Mitchell D, Chestnutt T. 2013. Evaluation of East Bay Municipal Utilities District Pilot of WaterSmart Home Water Reports Rep., Calif. Water Found./East Bay Munic. Util. Dist. Oakland, CA/Sacramento, CA: https://www.financingsustainablewater.org/sites/www.financingsustainablewater.org/files/resource_pdfs/MCubed-Watersmart_evaluation_report_FINAL_12-12-13%2800238356%29.pdf
    [Google Scholar]
  111. 111. 
    Lovins AB. 1977. Soft Energy Paths: Toward a Durable Peace San Francisco: Friends Earth Int.
    [Google Scholar]
  112. 112. 
    Gleick PH. 2002. Water management: soft water paths. Nature 418:373
    [Google Scholar]
  113. 113. 
    Gleick PH. 2003. Global freshwater resources: soft-path solutions for the 21st century. Science 302:1524–28
    [Google Scholar]
  114. 114. 
    Brooks DB, Brandes OM, Gurman S. 2009. Making the Most of the Water We Have: The Soft Path Approach to Water Management London: Earthscan
    [Google Scholar]
  115. 115. 
    Williamson SH. 2020. What was the U.S. GDP then?. Measuring Worth - Gross Domestic Product Illinois: MeasuringWorth Foundation available at https://www.measuringworth.com/datasets/usgdp/
    [Google Scholar]
  116. 116. 
    Dieter CA, Maupin MA, Caldwell RR, Harris MA, Ivahnenko TI et al. 2018. Estimated use of water in the United States in 2015 Circular 1441 US Geolog. Survey Reston, VA:
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012220-101319
Loading
/content/journals/10.1146/annurev-environ-012220-101319
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error