1932

Abstract

In recent years, machine learning has proven to be a powerful tool for deriving insights from data. In this review, we describe ways in which machine learning has been leveraged to facilitate the development and operation of sustainable energy systems. We first provide a taxonomy of machine learning paradigms and techniques, along with a discussion of their strengths and limitations. We then provide an overview of existing research using machine learning for sustainable energy production, delivery, and storage. Finally, we identify gaps in this literature, propose future research directions, and discuss important considerations for deployment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-020220-061831
2021-10-18
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/energy/46/1/annurev-environ-020220-061831.html?itemId=/content/journals/10.1146/annurev-environ-020220-061831&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Creutzig F. 2016. Economic and ecological views on climate change mitigation with bioenergy and negative emissions. GCB Bioenergy 8:14–10
    [Google Scholar]
  2. 2. 
    Bruckner T, Bashmakov I, Mulugetta Y, Chum H, de la Vega Navarro A et al. 2014. Energy systems. Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to the Fifth Assessment Report O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.511–97 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  3. 3. 
    Carley S, Lawrence S, Brown A, Nourafshan A, Benami E. 2011. Energy-based economic development. Renew. Sustain. Energy Rev. 15:1282–95
    [Google Scholar]
  4. 4. 
    Mitchell TM. 1997. Machine Learning Burr Ridge, IL: McGraw Hill
  5. 5. 
    U. N. Gen., Assem 2015. Transforming our world: the 2030 Agenda for Sustainable Development Publ. A/RES/70/1, U. N. New York:
  6. 6. 
    Thind MP, Tessum CW, Azevedo IL, Marshall JD. 2019. Fine particulate air pollution from electricity generation in the US: health impacts by race, income, and geography. Environ. Sci. Technol. 53:2314010–19
    [Google Scholar]
  7. 7. 
    Jenkins K, McCauley D, Heffron R, Stephan H, Rehner R 2016. Energy justice: a conceptual review. Energy Res. Soc. Sci. 11:174–82
    [Google Scholar]
  8. 8. 
    Mah A. 2017. Environmental justice in the age of big data: challenging toxic blind spots of voice, speed, and expertise. Environ. Sociol. 3:2122–33
    [Google Scholar]
  9. 9. 
    Perera KS, Aung Z, Woon WL 2014. Machine learning techniques for supporting renewable energy generation and integration: a survey. Data Analytics for Renewable Energy Integration WL Woon, Z Aung, S Madnick 81–96 Berlin: Springer
    [Google Scholar]
  10. 10. 
    Ramchurn SD, Vytelingum P, Rogers A, Jennings NR 2012. Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55:486–97
    [Google Scholar]
  11. 11. 
    Rolnick D, Donti PL, Kaack LH, Kochanski K, Lacoste A et al. 2019. Tackling climate change with machine learning. arXiv:1906.05433 [cs]
  12. 12. 
    Vinuesa R, Azizpour H, Leite I, Balaam M, Dignum V et al. 2020. The role of artificial intelligence in achieving the sustainable development goals. Nat. Commun. 11:233
    [Google Scholar]
  13. 13. 
    Gomes C, Dietterich T, Barrett C, Conrad J, Dilkina B et al. 2019. Computational sustainability: computing for a better world and a sustainable future. Commun. ACM 62:956–65
    [Google Scholar]
  14. 14. 
    Kaack LH. 2019. Challenges and prospects for data-driven climate change mitigation. PhD Thesis Carnegie Mellon Univ Pittsburgh, PA:
    [Google Scholar]
  15. 15. 
    Mosavi A, Salimi M, Faizollahzadeh Ardabili S, Rabczuk T, Shamshirband S, Varkonyi-Koczy AR 2019. State of the art of machine learning models in energy systems, a systematic review. Energies 12:71301
    [Google Scholar]
  16. 16. 
    Breiman L. 2001. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16:3199–231
    [Google Scholar]
  17. 17. 
    Sutton RS, Barto AG. 2018. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press
  18. 18. 
    Buşoniu L, de Bruin T, Tolić D, Kober J, Palunko I. 2018. Reinforcement learning for control: performance, stability, and deep approximators. Annu. Rev. Control 46:8–28
    [Google Scholar]
  19. 19. 
    Silver D, Huang A, Maddison CJ, Guez A, Sifre L et al. 2016. Mastering the game of go with deep neural networks and tree search. Nature 529:7587484–89
    [Google Scholar]
  20. 20. 
    Zhuang F, Qi Z, Duan K, Xi D, Zhu Y et al. 2020. A comprehensive survey on transfer learning. Proc. IEEE 109:43–76
    [Google Scholar]
  21. 21. 
    Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep convolutional neural networks. Commun. ACM 60:684–90
    [Google Scholar]
  22. 22. 
    Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA. 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152:166–77
    [Google Scholar]
  23. 23. 
    Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J et al. 2020. Language models are few-shot learners. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS '20)1877–901 Red Hook, NY: Curran
    [Google Scholar]
  24. 24. 
    Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K. 2019. Speech recognition using deep neural networks: a systematic review. IEEE Access 7:19143–65
    [Google Scholar]
  25. 25. 
    Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning Cambridge, MA: MIT Press
  26. 26. 
    Raghu M, Schmidt E. 2020. A survey of deep learning for scientific discovery. arXiv:2003.11755 [cs]
  27. 27. 
    Rasmussen CE 2003. Gaussian processes in machine learning. Advanced Lectures on Machine Learning O Bousquet, U von Luxburg, G Rätsch 63–71 Berlin: Springer
    [Google Scholar]
  28. 28. 
    Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. 2019. A survey on bias and fairness in machine learning. arXiv:1908.09635 [cs]
  29. 29. 
    Gebru T, Denton E. 2020. Tutorial on fairness accountability transparency and ethics in computer vision at CVPR 2020 Tutor. Overv., online. https://sites.google.com/view/fatecv-tutorial
  30. 30. 
    Victor DG. 2019. Blueprint for the future of AI 2018–2019: how artificial intelligence will affect the future of energy and climate Rep. Brookings Inst. Washington, DC: https://www.brookings.edu/research/how-artificial-intelligence-will-affect-the-future-of-energy-and-climate/
  31. 31. 
    Hong T, Fan S 2016. Probabilistic electric load forecasting: a tutorial review. Int. J. Forecast. 32:3914–38
    [Google Scholar]
  32. 32. 
    Kuster C, Rezgui Y, Mourshed M. 2017. Electrical load forecasting models: a critical systematic review. Sustain. Cities Soc. 35:257–70
    [Google Scholar]
  33. 33. 
    Raza MQ, Khosravi A. 2015. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 50:1352–72
    [Google Scholar]
  34. 34. 
    Khan AR, Mahmood A, Safdar A, Khan ZA, Khan NA. 2016. Load forecasting, dynamic pricing and DSM in smart grid: a review. Renew. Sustain. Energy Rev. 54:1311–22
    [Google Scholar]
  35. 35. 
    Ledva GS, Balzano L, Mathieu JL. 2018. Real-time energy disaggregation of a distribution feeder's demand using online learning. IEEE Trans. Power Syst. 33:54730–40
    [Google Scholar]
  36. 36. 
    Kell A, McGough AS, Forshaw M. 2018. Segmenting residential smart meter data for short-term load forecasting. Proceedings of the 9th International Conference on Future Energy Systems (e-ENERGY '18)91–96 New York: ACM
    [Google Scholar]
  37. 37. 
    Bogomolov A, Lepri B, Larcher R, Antonelli F, Pianesi F, Pentland A. 2016. Energy consumption prediction using people dynamics derived from cellular network data. EPJ Data Sci. 5:13
    [Google Scholar]
  38. 38. 
    Wang S, Wang S, Chen H, Gu Q. 2020. Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics. Energy 195:116964
    [Google Scholar]
  39. 39. 
    Donti P, Amos B, Kolter JZ. 2017. Task-based end-to-end model learning in stochastic optimization. Proceedings of the 30th Conference on Neural Information Processing Systems (NeurIPS '17)5484–94 New York: ACM
    [Google Scholar]
  40. 40. 
    Mocanu E, Nguyen PH, Kling WL, Gibescu M. 2016. Unsupervised energy prediction in a smart grid context using reinforcement cross-building transfer learning. Energy Build. 116:646–55
    [Google Scholar]
  41. 41. 
    Yuan Y, Dehghanpour K, Bu F, Wang Z. 2019. A multi-timescale data-driven approach to enhance distribution system observability. IEEE Trans. Power Syst. 34:43168–77
    [Google Scholar]
  42. 42. 
    Ahmed R, Sreeram V, Mishra Y, Arif M. 2020. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew. Sustain. Energy Rev. 124:109792
    [Google Scholar]
  43. 43. 
    Das UK, Tey KS, Seyedmahmoudian M, Mekhilef S, Idris MYI et al. 2018. Forecasting of photovoltaic power generation and model optimization: a review. Renew. Sustain. Energy Rev. 81:912–28
    [Google Scholar]
  44. 44. 
    Maldonado-Correa J, Solano J, Rojas-Moncayo M. 2019. Wind power forecasting: a systematic literature review. Wind Eng. 45:2413–26
    [Google Scholar]
  45. 45. 
    Giebel G, Kariniotakis G 2017. Wind power forecasting—a review of the state of the art. Renewable Energy Forecasting: From Models to Applications G Kariniotakis 59–109 Amsterdam: Elsevier
    [Google Scholar]
  46. 46. 
    Kara EC, Roberts CM, Tabone M, Alvarez L, Callaway DS, Stewart EM. 2018. Disaggregating solar generation from feeder-level measurements. Sustain. Energy Grids Netw. 13:112–21
    [Google Scholar]
  47. 47. 
    Sun Y, Szűcs G, Brandt AR. 2018. Solar PV output prediction from video streams using convolutional neural networks. Energy Environ. Sci. 11:71811–18
    [Google Scholar]
  48. 48. 
    Wang HZ, Li GQ, Wang GB, Peng JC, Jiang H, Liu YT. 2017. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 188:56–70
    [Google Scholar]
  49. 49. 
    Hao Y, Tian C. 2019. A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting. Appl. Energy 238:368–83
    [Google Scholar]
  50. 50. 
    Du P, Wang J, Yang W, Niu T. 2019. A novel hybrid model for short-term wind power forecasting. Appl. Soft Comput. 80:93–106
    [Google Scholar]
  51. 51. 
    Voyant C, Notton G, Kalogirou S, Nivet ML, Paoli C et al. 2017. Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105:569–82
    [Google Scholar]
  52. 52. 
    McGovern A, Elmore KL, Gagne DJ, Haupt SE, Karstens CD et al. 2017. Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Am. Meteorol. Soc. 98:102073–90
    [Google Scholar]
  53. 53. 
    Hwang J, Orenstein P, Cohen J, Pfeiffer K, Mackey L. 2019. Improving subseasonal forecasting in the western US with machine learning. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining2325–35 New York: ACM
    [Google Scholar]
  54. 54. 
    Haupt SE, Kosovic B, Jensen T, Lee J, Jimenez P et al. 2016. The Sun4Cast® solar power forecasting system: the results of the public-private-academic partnership to advance solar power forecasting. Tech. Rep. Natl. Cent. Atmos. Res./Univ. Corp. Atmos. Res. Boulder CO:
  55. 55. 
    Kosovic B, Haupt SE, Adriaansen D, Alessandrini S, Wiener G et al. 2020. A comprehensive wind power forecasting system integrating artificial intelligence and numerical weather prediction. Energies 13:61372
    [Google Scholar]
  56. 56. 
    Mathe J, Miolane N, Sebastien N, Lequeux J. 2019. PVNet: a LRCN architecture for spatio-temporal photovoltaic power forecasting from numerical weather prediction. arXiv:1902.01453 [cs.LG]
  57. 57. 
    Willard J, Jia X, Xu S, Steinbach M, Kumar V. 2020. Integrating physics-based modeling with machine learning: a survey. arXiv:2003.04919 [physics]
  58. 58. 
    de Hoog J, Maetschke S, Ilfrich P, Kolluri RR. 2020. Using satellite and aerial imagery for identification of solar PV: state of the art and research opportunities. Proceedings of the 11th ACM International Conference on Future Energy Systems (e-ENERGY 2020)308–13 New York: ACM
    [Google Scholar]
  59. 59. 
    Ralston Fonseca F, Craig M, Jaramillo P, Bergés M, Severnini E et al. 2021. Effects of climate change on capacity expansion decisions of an electricity generation fleet in the southeast US. Environ. Sci. Technol. 55:42522–31
    [Google Scholar]
  60. 60. 
    Chertkov M, Andersson G. 2020. Multienergy systems. Proc. IEEE 108:91387–91
    [Google Scholar]
  61. 61. 
    Duchesne L, Karangelos E, Wehenkel L. 2020. Recent developments in machine learning for energy systems reliability management. Proc. IEEE 108:91656–76
    [Google Scholar]
  62. 62. 
    Hasan F, Kargarian A, Mohammadi A. 2020. A survey on applications of machine learning for optimal power flow. 2020 IEEE Texas Power and Energy Conference (TPEC)37–42 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Fioretto F, Mak TW, Van Hentenryck P. 2020. Predicting AC optimal power flows: combining deep learning and Lagrangian dual methods. Proceedings of the 34th AAAI Conference on Artificial Intelligence, Vol. 1630–37 Palo Alto, CA: AAAI
    [Google Scholar]
  64. 64. 
    Zamzam A, Baker K. 2020. Learning optimal solutions for extremely fast AC optimal power flow. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)1–6 Piscataway, NJ: IEEE
    [Google Scholar]
  65. 65. 
    Donti PL, Rolnick D, Kolter JZ. 2021. DC3: a learning method for optimization with hard constraints. Poster presented at 9th International Conference on Learning Representations (ICLR 21), online, May 3–7. https://iclr.cc/virtual/2021/poster/2868
  66. 66. 
    Misra S, Roald L, Ng Y. 2018. Learning for constrained optimization: identifying optimal active constraint sets. arXiv:1802.09639 [math]
  67. 67. 
    Baker K. 2019. Learning warm-start points for AC optimal power flow. 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP) Piscataway, NJ: IEEE
    [Google Scholar]
  68. 68. 
    Dong W, Xie Z, Kestor G, Li D. 2020. Smart-PGSim: using neural network to accelerate AC-OPF power grid simulation. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '20) art. 63 New York: ACM
    [Google Scholar]
  69. 69. 
    Xavier ÁS, Qiu F, Ahmed S 2020. Learning to solve large-scale security-constrained unit commitment problems. INFORMS J. Comput. 33:2739–56
    [Google Scholar]
  70. 70. 
    Capitanescu F. 2016. Critical review of recent advances and further developments needed in AC optimal power flow. Electr. Power Syst. Res. 136:57–68
    [Google Scholar]
  71. 71. 
    Jereminov M, Pandey A, Pileggi L. 2018. Equivalent circuit formulation for solving ac optimal power flow. IEEE Trans. Power Syst. 34:32354–65
    [Google Scholar]
  72. 72. 
    Antonopoulos I, Robu V, Couraud B, Kirli D, Norbu S et al. 2020. Artificial intelligence and machine learning approaches to energy demand-side response: a systematic review. Renew. Sustain. Energy Rev. 130:109899
    [Google Scholar]
  73. 73. 
    Lopez-Garcia TB, Coronado-Mendoza A, Domínguez-Navarro JA. 2020. Artificial neural networks in microgrids: a review. Eng. Appl. Artif. Intell. 95:103894
    [Google Scholar]
  74. 74. 
    Dobbe R, Sondermeijer O, Fridovich-Keil D, Arnold D, Callaway D, Tomlin C 2019. Toward distributed energy services: decentralizing optimal power flow with machine learning. IEEE Trans. Smart Grid 11:21296–306
    [Google Scholar]
  75. 75. 
    Karagiannopoulos S, Aristidou P, Hug G. 2019. Data-driven local control design for active distribution grids using off-line optimal power flow and machine learning techniques. IEEE Trans. Smart Grid 10:66461–71
    [Google Scholar]
  76. 76. 
    Hassan A, Acharya S, Chertkov M, Deka D, Dvorkin Y. 2020. A hierarchical approach to multienergy demand response: from electricity to multienergy applications. Proc. IEEE 108:91457–74
    [Google Scholar]
  77. 77. 
    Zhang Z, Zhang D, Qiu RC. 2019. Deep reinforcement learning for power system applications: an overview. CSEE J. Power Energy Syst. 6:1213–25
    [Google Scholar]
  78. 78. 
    Glavic M. 2019. (Deep) reinforcement learning for electric power system control and related problems: a short review and perspectives. Annu. Rev. Control 48:22–35
    [Google Scholar]
  79. 79. 
    Glavic M, Fonteneau R, Ernst D. 2017. Reinforcement learning for electric power system decision and control: past considerations and perspectives. IFAC-PapersOnLine 50:16918–27
    [Google Scholar]
  80. 80. 
    Vázquez-Canteli JR, Nagy Z. 2019. Reinforcement learning for demand response: a review of algorithms and modeling techniques. Appl. Energy 235:1072–89
    [Google Scholar]
  81. 81. 
    Ramchurn S, Vytelingum P, Rogers A, Jennings N 2011. Agent-based control for decentralised demand side management in the smart grid. Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS '11)5–12 New York: ACM
    [Google Scholar]
  82. 82. 
    Sheikhi A, Rayati M, Ranjbar AM. 2016. Demand side management for a residential customer in multi-energy systems. Sustain. Cities Soc. 22:63–77
    [Google Scholar]
  83. 83. 
    Lago J, De Ridder F, De Schutter B. 2018. Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221:386–405
    [Google Scholar]
  84. 84. 
    Bruce A, Ruff L. 2018. Deep learning solar PV and carbon intensity forecasts Slides Natl. Grid ESO Wokingham, UK: http://powerswarm.co.uk/wp-content/uploads/2018/10/2018.10.18-Bruce-National-Grid-ESO-Deep-Learning-Solar-PV-and-Carbon-Intensity.pdf
  85. 85. 
    Leerbeck K, Bacher P, Junker RG, Goranović G, Corradi O et al. 2020. Short-term forecasting of CO2 emission intensity in power grids by machine learning. Appl. Energy 277:115527
    [Google Scholar]
  86. 86. 
    Du Y, Li F. 2019. Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning. IEEE Trans. Smart Grid 11:21066–76
    [Google Scholar]
  87. 87. 
    King RTFA, Tu X, Dessaint LA, Kamwa I. 2016. Multi-contingency transient stability-constrained optimal power flow using multilayer feedforward neural networks. Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) Piscataway, NJ: IEEE
    [Google Scholar]
  88. 88. 
    Halilbašić L, Thams F, Venzke A, Chatzivasileiadis S, Pinson P. 2018. Data-driven security-constrained AC-OPF for operations and markets. 2018 Power Systems Computation Conference (PSCC) Piscataway, NJ: IEEE
    [Google Scholar]
  89. 89. 
    Ni Z, Paul S 2019. A multistage game in smart grid security: a reinforcement learning solution. IEEE Trans. Neural Netw. Learn. Syst. 30:92684–95
    [Google Scholar]
  90. 90. 
    Marot A, Donnot B, Romero C, Donon B, Lerousseau M et al. 2020. Learning to run a power network challenge for training topology controllers. Electr. Power Syst. Res. 189:106635
    [Google Scholar]
  91. 91. 
    Yoon D, Hong S, Lee BJ, Kim KE. 2021. Winning the L2RPN Challenge: power grid management via semi-Markov afterstate actor-critic. Poster presented at 9th International Conference on Learning Representations (ICLR '21), online, May 3–7. https://iclr.cc/virtual/2021/poster/3003
  92. 92. 
    Donti PL, Roderick M, Fazlyab M, Kolter JZ. 2020. Enforcing robust control guarantees within neural network policies Poster presented at 9th International Conference on Learning Representations (ICLR '21), online, May 3–7. https://iclr.cc/virtual/2021/poster/2899
  93. 93. 
    Donti PL, Liu Y, Schmitt AJ, Bernstein A, Yang R, Zhang Y 2019. Matrix completion for low-observability voltage estimation. IEEE Trans. Smart Grid 11:32520–30
    [Google Scholar]
  94. 94. 
    Pertl M, Heussen K, Gehrke O, Rezkalla M. 2016. Voltage estimation in active distribution grids using neural networks. Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM) Piscataway, NJ: IEEE
    [Google Scholar]
  95. 95. 
    Jiang H, Zhang Y. 2016. Short-term distribution system state forecast based on optimal synchrophasor sensor placement and extreme learning machine. Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM) Piscataway, NJ: IEEE
    [Google Scholar]
  96. 96. 
    Mokhtar M, Robu V, Flynn D, Higgins C, Whyte J et al. 2019. Predicting the voltage distribution for low voltage networks using deep learning. Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) Piscataway, NJ: IEEE
    [Google Scholar]
  97. 97. 
    Ostrometzky J, Berestizshevsky K, Bernstein A, Zussman G. 2019. Physics-informed deep neural network method for limited observability state estimation. arXiv:1910.06401 [eess]
  98. 98. 
    Reisi AR, Moradi MH, Jamasb S. 2013. Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renew. Sustain. Energy Rev. 19:433–43
    [Google Scholar]
  99. 99. 
    Abdullah MA, Yatim A, Tan CW, Saidur R. 2012. A review of maximum power point tracking algorithms for wind energy systems. Renew. Sustain. Energy Rev. 16:53220–27
    [Google Scholar]
  100. 100. 
    Abdelrahman H, Berkenkamp F, Poland J, Krause A. 2016. Bayesian optimization for maximum power point tracking in photovoltaic power plants. Proceedings of the 2016 European Control Conference (ECC)2078–83 Piscataway, NJ: IEEE
    [Google Scholar]
  101. 101. 
    Abel D, Williams EC, Brawner S, Reif E, Littman ML. 2018. Bandit-based solar panel control. Proceedings of the 30th AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-18)7713–18 Palo Alto, CA: AAAI
    [Google Scholar]
  102. 102. 
    Rao S, Katoch S, Narayanaswamy V, Muniraju G, Tepedelenlioglu C et al. 2020. Machine Learning for Solar Array Monitoring, Optimization, and Control San Francisco, CA: Morgan & Claypool
  103. 103. 
    Wei C, Zhang Z, Qiao W, Qu L. 2015. Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems. IEEE Trans. Ind. Electron. 62:106360–70
    [Google Scholar]
  104. 104. 
    Keramitsoglou I, Cartalis C, Kiranoudis CT. 2006. Automatic identification of oil spills on satellite images. Environ. Model. Softw. 21:5640–52
    [Google Scholar]
  105. 105. 
    Wan J, Yu Y, Wu Y, Feng R, Yu N 2012. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks. Sensors 12:1189–214
    [Google Scholar]
  106. 106. 
    Wang J, Tchapmi LP, Ravikumar AP, McGuire M, Bell CS et al. 2020. Machine vision for natural gas methane emissions detection using an infrared camera. Appl. Energy 257:113998
    [Google Scholar]
  107. 107. 
    Zukhrufany S. 2018. The utilization of supervised machine learning in predicting corrosion to support preventing pipelines leakage in oil and gas industry Master's Thesis Univ. Stavanger Stavanger, Nor:.
  108. 108. 
    Narciso DA, Martins F. 2020. Application of machine learning tools for energy efficiency in industry: a review. Energy Rep. 6:1181–99
    [Google Scholar]
  109. 109. 
    Victor DG, Yanosek K. 2017. The next energy revolution: the promise and peril of high-tech innovation. Brookings PlanetPolicy Blog June 17. https://www.brookings.edu/blog/planetpolicy/2017/06/13/the-next-energy-revolution-the-promise-and-peril-of-high-tech-innovation/
    [Google Scholar]
  110. 110. 
    Chen B, Harp DR, Lin Y, Keating EH, Pawar RJ. 2018. Geologic CO2 sequestration monitoring design: a machine learning and uncertainty quantification based approach. Appl. Energy 225:332–45
    [Google Scholar]
  111. 111. 
    Mo S, Zhu Y, Zabaras N, Shi X, Wu J. 2019. Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media. Water Resour. Res. 55:1703–28
    [Google Scholar]
  112. 112. 
    Iyengar S, Lee S, Sheldon D, Shenoy P. 2018. SolarClique: detecting anomalies in residential solar arrays. Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS '18) art. 38 New York: ACM
    [Google Scholar]
  113. 113. 
    Orozco R, Sheng S, Phillips C. 2018. Diagnostic models for wind turbine gearbox components using SCADA time series data Conf. Pap. NREL/CP-5000-71166 Natl. Renew. Energy Lab. Boulder, CO:
  114. 114. 
    Calivá F, De Ribeiro FS, Mylonakis A, Demazière C, Vinai P et al. 2018. A deep learning approach to anomaly detection in nuclear reactors. Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN) Piscataway, NJ: IEEE
    [Google Scholar]
  115. 115. 
    Chen FC, Jahanshahi MR. 2017. NB-CNN: deep learning–based crack detection using convolutional neural network and nave Bayes data fusion. IEEE Trans. Ind. Electron. 65:54392–400
    [Google Scholar]
  116. 116. 
    Rudin C, Waltz D, Anderson RN, Boulanger A, Salleb-Aouissi A et al. 2011. Machine learning for the New York City power grid. IEEE Trans. Pattern Anal. Mach. Intell. 34:2328–45
    [Google Scholar]
  117. 117. 
    Nguyen VN, Jenssen R, Roverso D. 2018. Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning. Int. J. Electr. Power Energy Syst. 99:107–20
    [Google Scholar]
  118. 118. 
    Maggiori E, Tarabalka Y, Charpiat G, Alliez P. 2017. Can semantic labeling methods generalize to any city? The Inria aerial image labeling benchmark. Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)3226–29 Piscataway, NJ: IEEE
    [Google Scholar]
  119. 119. 
    Demir I, Koperski K, Lindenbaum D, Pang G, Huang J et al. 2018. DeepGlobe 2018: a challenge to parse the Earth through satellite images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops172–81 Piscataway, NJ: IEEE
  120. 120. 
    Yang HL, Yuan J, Lunga D, Laverdiere M, Rose A, Bhaduri B 2018. Building extraction at scale using convolutional neural network: mapping of the United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11:82600–14
    [Google Scholar]
  121. 121. 
    Streltsov A, Malof JM, Huang B, Bradbury K. 2020. Estimating residential building energy consumption using overhead imagery. Appl. Energy 280:116018
    [Google Scholar]
  122. 122. 
    Huang B, Yang J, Streltsov A, Bradbury K, Collins LM, Malof J. 2021. GridTracer: automatic mapping of power grids using deep learning and overhead imagery. arXiv:2101.06390 [cs.CV]
  123. 123. 
    Arderne C, Zorn C, Nicolas C, Koks EE 2020. Predictive mapping of the global power system using open data. Sci. Data 7:19
    [Google Scholar]
  124. 124. 
    Ellman DDA. 2015. The reference electrification model: a computer model for planning rural electricity access PhD Thesis MIT, Cambridge, MA:
  125. 125. 
    Mellit A, Benghanem M, Arab AH, Guessoum A. 2003. Modelling of sizing the photovoltaic system parameters using artificial neural network. Proceedings of the 2003 IEEE Conference on Control Applications (CCA 2003), Vol. 1353–57 Piscataway, NJ: IEEE
    [Google Scholar]
  126. 126. 
    Wu X, Gomes-Selman J, Shi Q, Xue Y, García-Villacorta R et al. 2018. Efficiently approximating the Pareto frontier: hydropower dam placement in the Amazon basin. Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18)849–59 Palo Alto, CA: AAAI
    [Google Scholar]
  127. 127. 
    Moutis P, Skarvelis-Kazakos S, Brucoli M. 2016. Decision tree aided planning and energy balancing of planned community microgrids. Appl. Energy 161:197–205
    [Google Scholar]
  128. 128. 
    Bengio Y, Lodi A, Prouvost A. 2020. Machine learning for combinatorial optimization: a methodological tour d'horizon. Eur. J. Oper. Res. 290:2405–21
    [Google Scholar]
  129. 129. 
    Guo S, Jiang X, Thornton T, Saunders D 2019. Approximate string matching of power system substation names. Proceedings of the 2019 IEEE Power and Energy Conference at Illinois (PECI) Piscataway, NJ: IEEE
    [Google Scholar]
  130. 130. 
    Catalyst Coop 2020. Public Utility Data Liberation Project. Dataset Updates Catalyst Coop. Boulder, CO: https://zenodo.org/communities/catalyst-cooperative/
  131. 131. 
    Valerio L, Passarella A, Conti M. 2016. Hypothesis transfer learning for efficient data computing in smart cities environments. 2016 IEEE International Conference on Smart Computing (SMARTCOMP) Piscataway, NJ: IEEE
    [Google Scholar]
  132. 132. 
    Muhammad K, Lloret J, Baik SW. 2019. Intelligent and energy-efficient data prioritization in green smart cities: current challenges and future directions. IEEE Commun. Mag. 57:260–65
    [Google Scholar]
  133. 133. 
    Chu S, Cui Y, Liu N. 2017. The path towards sustainable energy. Nat. Mater. 16:16–22
    [Google Scholar]
  134. 134. 
    Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. 2018. Machine learning for molecular and materials science. Nature 559:7715547–55
    [Google Scholar]
  135. 135. 
    Liu Y, Zhao T, Ju W, Shi S. 2017. Materials discovery and design using machine learning. J. Mater. 3:3159–77
    [Google Scholar]
  136. 136. 
    Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I et al. 2013. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms. Adv. Energy Mater. 3:8980–85
    [Google Scholar]
  137. 137. 
    Raccuglia P, Elbert KC, Adler PD, Falk C, Wenny MB et al. 2016. Machine-learning-assisted materials discovery using failed experiments. Nature 533:760173–76
    [Google Scholar]
  138. 138. 
    Zhang L, He M, Shao S. 2020. Machine learning for halide perovskite materials. Nano Energy 78:105380
    [Google Scholar]
  139. 139. 
    Bai J, Xue Y, Bjorck J, Le Bras R, Rappazzo B et al. 2018. Phase Mapper: accelerating materials discovery with AI. AI Mag. 39:115–26
    [Google Scholar]
  140. 140. 
    Gomes CP, Bai J, Xue Y, Björck J, Rappazzo B et al. 2019. CRYSTAL: a multi-agent AI system for automated mapping of materials' crystal structures. MRS Commun. 9:2600–8
    [Google Scholar]
  141. 141. 
    Zitnick CL, Chanussot L, Das A, Goyal S, Heras-Domingo J et al. 2020. An introduction to electrocatalyst design using machine learning for renewable energy storage. arXiv:2010.09435 [cond-mat.mtrl-sci]
  142. 142. 
    Ren Z, Oviedo F, Thway M, Tian SI, Wang Y et al. 2020. Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics. npj Comput. Mater. 6:9
    [Google Scholar]
  143. 143. 
    Attia PM, Grover A, Jin N, Severson KA, Markov TM et al. 2020. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578:7795397–402
    [Google Scholar]
  144. 144. 
    Humphreys D, Kupresanin A, Boyer M, Canik J, Chang C et al. 2020. Advancing fusion with machine learning research needs workshop report. J. Fusion Energy 39:4123–55
    [Google Scholar]
  145. 145. 
    Baltz E, Trask E, Binderbauer M, Dikovsky M, Gota H et al. 2017. Achievement of sustained net plasma heating in a fusion experiment with the optometrist algorithm. Sci. Rep. 7:6425
    [Google Scholar]
  146. 146. 
    Kates-Harbeck J, Svyatkovskiy A, Tang W. 2019. Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature 568:7753526–31
    [Google Scholar]
  147. 147. 
    Yu J, Wang Z, Majumdar A, Rajagopal R. 2018. DeepSolar: a machine learning framework to efficiently construct a solar deployment database in the United States. Joule 2:122605–17
    [Google Scholar]
  148. 148. 
    Nassar R, Hill TG, McLinden CA, Wunch D, Jones DB, Crisp D. 2017. Quantifying CO2 emissions from individual power plants from space. Geophys. Res. Lett. 44:1910–45
    [Google Scholar]
  149. 149. 
    Buchwitz M, Reuter M, Schneising O, Bovensmann H, Burrows JP et al. 2018. Copernicus Climate Change Service (C3S) global satellite observations of atmospheric carbon dioxide and methane. Adv. Astron. Sci. Technol. 1:57–60
    [Google Scholar]
  150. 150. 
    Kuhlmann G, Broquet G, Marshall J, Clément V, Löscher A et al. 2019. Detectability of CO2 emission plumes of cities and power plants with the Copernicus anthropogenic CO2 Monitoring (CO2M) mission. Atmos. Meas. Tech. 12:126695–719
    [Google Scholar]
  151. 151. 
    Couture HD, O'Connor J, Mitchell G, Söldner-Rembold I, D'Souza D et al. 2020. Towards tracking the emissions of every power plant on the planet. NeurIPS 2020 Workshop Tackling Climate Change with Machine Learning pap. 11 San Diego, CA: Neur. Inf. Process. Syst.
    [Google Scholar]
  152. 152. 
    Venugopalan S, Rai V. 2015. Topic based classification and pattern identification in patents. Technol. Forecast. Soc. Change 94:236–50
    [Google Scholar]
  153. 153. 
    Callaghan MW, Minx JC, Forster PM. 2020. A topography of climate change research. Nat. Clim. Change 10:2118–23
    [Google Scholar]
  154. 154. 
    de Avila Belbute-Peres F, Smith K, Allen K, Tenenbaum J, Kolter JZ. 2018. End-to-end differentiable physics for learning and control. Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS '18)7178–89 New York: ACM
    [Google Scholar]
  155. 155. 
    Chen RTQ, Rubanova Y, Bettencourt J, Duvenaud DK. 2018. Neural ordinary differential equations. Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS '18)6571–83 New York: ACM
    [Google Scholar]
  156. 156. 
    Greydanus S, Dzamba M, Yosinski J. 2019. Hamiltonian neural networks. Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS '19)15379–89 New York: ACM
    [Google Scholar]
  157. 157. 
    Wong E, Kolter JZ. 2018. Provable defenses against adversarial examples via the convex outer adversarial polytope. PMLR 80:5286–95
    [Google Scholar]
  158. 158. 
    Raghunathan A, Steinhardt J, Liang P. 2018. Certified defenses against adversarial examples. Proceedings of the 6th International Conference on Learning Representations (ICLR '18) arXiv:1801.09344 [cs]
    [Google Scholar]
  159. 159. 
    Rudin C, Chen C, Chen Z, Huang H, Semenova L, Zhong C. 2021. Interpretable machine learning: fundamental principles and 10 grand challenges. arXiv:2103.11251 [cs.LG]
  160. 160. 
    Doshi-Velez F, Kim B 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608 [stat.ML]
  161. 161. 
    Ghahramani Z. 2015. Probabilistic machine learning and artificial intelligence. Nature 521:7553452–59
    [Google Scholar]
  162. 162. 
    Rudin C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1:5206–15
    [Google Scholar]
  163. 163. 
    Wilder B, Dilkina B, Tambe M. 2019. Melding the data–decisions pipeline: decision-focused learning for combinatorial optimization. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-19)1658–65 Palo Alto, CA: AAAI
    [Google Scholar]
  164. 164. 
    Cronin J, Anandarajah G, Dessens O. 2018. Climate change impacts on the energy system: a review of trends and gaps. Clim. Change 151:279–93
    [Google Scholar]
  165. 165. 
    Hilbert M. 2016. Big Data for development: a review of promises and challenges. Dev. Policy Rev. 34:1135–74
    [Google Scholar]
  166. 166. 
    Moreno JB, Timms M, Wildberger K. 2019. How artificial intelligence is accelerating the energy transition: an overview of AI activities at E.ON. Rep. E.ON SE, Munich, Ger.
  167. 167. 
    Donaghy T, Henderson C, Jardim E. 2019. Oil in the cloud: how tech companies are helping Big Oil profit from climate destruction Rep. Greenpeace Washington, DC:
/content/journals/10.1146/annurev-environ-020220-061831
Loading
/content/journals/10.1146/annurev-environ-020220-061831
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error