1932

Abstract

Until recently, the main environmental concerns associated with information and communication technologies (ICTs) have been their use-phase electricity consumption and the chemicals associated with their manufacture, and the environmental effects of these technologies on other parts of the economy have largely been ignored. With the advent of mobile computing, communication, and sensing devices, these indirect effects have the potential to be much more important than the impacts from the use and manufacturing phases of this equipment. This article summarizes the trends that have propelled modern technological societies into the ultralow-power design space and explores the implications of these trends for the direct and indirect environmental impacts associated with these new technologies. It reviews the literature on environmental effects of information technology (also with an emphasis on low-power systems) and suggests areas for further research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-021512-110549
2013-10-17
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/energy/38/1/annurev-environ-021512-110549.html?itemId=/content/journals/10.1146/annurev-environ-021512-110549&mimeType=html&fmt=ahah

Literature Cited

  1. Jovanovic B, Rousseau PL. 1.  2005. General purpose technologies. Natl. Bur. Econ. Res. Work. Pap. Ser. No. 11093 Cambridge, MA: [Google Scholar]
  2. Brynjolfsson E, McAffee A. 2.  2011. Race Against the Machine Cambridge, MA: Digital Frontier Press http://raceagainstthemachine.com/ [Google Scholar]
  3. Nordhaus WD. 3.  2007. Two centuries of productivity growth in computing. J. Econ. Hist. 67:1128–59 [Google Scholar]
  4. Hilbert M, López P. 4.  2011. The world's technological capacity to store, communicate, and compute information. Science 332:602560–65 [Google Scholar]
  5. Mollick E. 5.  2006. Establishing Moore's Law. IEEE Ann. Hist. Comput. 28:62–75 [Google Scholar]
  6. DiCarlo L, Moon G, Intondi A, Duck R, Frank J. 6.  et al. 2012. A digital health solution for using and managing medications: wirelessly observed therapy. IEEE Pulse 3:523–26 [Google Scholar]
  7. Koomey JG, Berard S, Sanchez M, Wong H. 7.  2011. Implications of historical trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput. 33:346–54 [Google Scholar]
  8. Tofel KC. 8.  2012. Nearly 1 in 4 computers sold last quarter were tablets. GigaOM Nov. 5. http://gigaom.com/2012/11/05/nearly-1-in-4-computers-sold-last-quarter-were-tablets/ [Google Scholar]
  9. Cook BW, Lanzisera S, Pister KSJ. 9.  2006. SoC issues for RF smart dust. Proc. IEEE 94:61177–96 [Google Scholar]
  10. Lee Y, Kim G, Bang S, Kim Y, Lee I. 10.  et al. A modular 1mm3 die-stacked sensing platform with optical communication and multi-modal energy harvesting Presented at Solid-State Circuits Conf. Digest Tech. Pap. (ISSCC), 2012 IEEE Int., Feb. 19–23, San Francisco [Google Scholar]
  11. Feynman RP. 11.  2001. The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman London: Penguin Books [Google Scholar]
  12. Fuechsle M, Miwa JA, Mahapatra S, Ryu H, Lee S. 12.  et al. 2012. A single-atom transistor. Nat. Nanotechnol. 7:4242–46 [Google Scholar]
  13. Lloyd S. 13.  2000. Ultimate physical limits to computation. Nature 406:67991047–54 [Google Scholar]
  14. 14. Comput. Community Consort 2012. 21st Century computer architecture: a community white paper. Comput. Community Consort., Washington, DC. http://cra.org/ccc/docs/init/21stcentury-architecturewhitepaper.pdf [Google Scholar]
  15. Fuller SH, Millett LI. 15.  2011. The Future of Computing Performance: Game Over or Next Level? Washington, DC: Natl. Acad. Press [Google Scholar]
  16. Dennard RH, Gaensslen FH, Yu H-N, Rideout VL, Bassous E, Leblanc AR. 16.  1974. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J. Solid State Circuits SC-9:5256–68 [Google Scholar]
  17. Bohr M. 17.  2007. A 30 year retrospective on Dennard's MOSFET scaling paper. IEEE SSCS Newsl. 12:111–13 [Google Scholar]
  18. Danowitz A, Kelley K, Mao J, Stevenson JP, Horowitz M. 18.  2012. CPU DB: recording microprocessor history. Processor 10:410–27 [Google Scholar]
  19. Roy K, Mukhopadhyay S, Mahmoodi-Meimand H. 19.  2003. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91:2305–27 [Google Scholar]
  20. Esmaeilzadeh H, Blem E, Amant RS, Sankaralingam K, Burger D. 20.  2011. Dark silicon and the end of multicore scaling. SIGARCH Comput. Archit. News 39:3365–76 [Google Scholar]
  21. Cao Q, Rogers JA. 21.  2009. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21:129–53 [Google Scholar]
  22. Hasan S, Salahuddin S, Vaidyanathan M, Alam MA. 22.  2006. High-frequency performance projections for ballistic carbon-nanotube transistors. Nanotechnol. IEEE Trans. 5:114–22 [Google Scholar]
  23. Guo J, Hasan S, Javey A, Bosman G, Lundstrom M. 23.  2005. Assessment of high-frequency performance potential of carbon nanotube transistors. Nanotechnol. IEEE Trans. 4:6715–21 [Google Scholar]
  24. Park H, Afzali A, Han S-J, Tulevski GS, Franklin AD. 24.  et al. 2012. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7:12787–91 [Google Scholar]
  25. Johnson BJ, Zoi CR. 25.  1992. EPA energy star computers: the next generation of office equipment. Proc. 1992 ACEEE Summer Study Energy Efficiency Buildings6.107–14 Asilomar, CA: Am. Counc. Energy Effic. Econ. [Google Scholar]
  26. Calhoun B, Chandrakasan A. 26.  2003. Standby voltage scaling for reduced power Presented at Custom Integr. Circuits Conf. 639–42 Orlando, FL: [Google Scholar]
  27. Lee Y, Seok M, Hanson S, Blaauw D, Sylvester D. 27.  2008. Standby power reduction techniques for ultra-low power processors Presented at 34th Eur. Solid State Circuits Conf. Edinburgh, UK: [Google Scholar]
  28. Vitale SA, Wyatt PW, Checka N, Kedzierski J, Keast CL. 28.  2010. FDSOI process technology for subthreshold-operation ultralow-power electronics. Proc. IEEE 98:2333–42 [Google Scholar]
  29. Beetner D, Pottinger H, Mitchell K. 29.  2000. Laboratories teaching concepts in microcontrollers and hardware-software co-design Presented at Front. Educ. Conf., 2000. 30th Annu Kansas City, MO: [Google Scholar]
  30. Micheli GD, Ernst R, Wolf W. 30.  2001. Readings in Hardware/Software Co-Design (Systems on Silicon) Burlington, MA: Morgan Kaufmann [Google Scholar]
  31. Donofrio D, Oliker L, Shalf J, Wehner MF, Rowen C. 31.  et al. 2009. Energy-efficient computing for extreme-scale science. Computer 42:1162–71 [Google Scholar]
  32. Krueger J, Donofrio D, Shalf J, Mohiyuddin M, Williams S. 32.  et al. 2011. Hardware/software co-design for energy-efficient seismic modeling. Proc. 2011 Int. Conf. High Perform. Comput., Netw., Storage Anal.1–12 Seattle, WA: ACM [Google Scholar]
  33. Mohiyuddin M, Murphy M, Oliker L, Shalf J, Wawrzynek J, Williams S. 33.  2009. A design methodology for domain-optimized power-efficient supercomputing. Proc. Conf. High Perform. Comput. Netw., Storage Anal.1–12 Portland, OR: ACM [Google Scholar]
  34. Shalf J, Quinlan D, Janssen C. 34.  2011. Rethinking hardware-software codesign for exascale systems. Computer 44:1122–30 [Google Scholar]
  35. Flynn D. 35.  2012. An ARM perspective on addressing low-power energy-efficient SoC designs. Proc. 2012 ACM/IEEE Int. Symp. Low Power Electron. Des.73–78 Redondo Beach, CA: ACM [Google Scholar]
  36. Chang C-Y, Tso P-C, Huang C-H, Yang P-H. 36.  2012. A fast wake-up power gating technique with inducing a balanced rush current Presented at Circuits and Syst. (ISCAS), 2012 IEEE Int. Symp., May 20–23, Seoul [Google Scholar]
  37. Miao G, Himayat N, Li Y, Swami A. 37.  2009. Cross-layer optimization for energy-efficient wireless communications: a survey. Wirel. Commun. Mob. Comput. 9:4529–42 [Google Scholar]
  38. Shannon CE. 38.  1949. Communication in the presence of noise. Proc. IRE 37:10–21 [Google Scholar]
  39. Feeney LM, Nilsson M. 39.  2001. Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. Twent. Annu. Jt. Conf. IEEE Comput. Commun. Soc. Proc. IEEE 3:1548–57 [Google Scholar]
  40. Dawson-Haggerty S, Krioukov A, Culler DE. 40.  2009. Power optimization—a reality check. Tech. Rep. No. UCB/EECS-2009-140, EECS Dep., Univ. Calif., Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-140.html [Google Scholar]
  41. Dutta P, Taneja J, Jeong J, Jiang X, Culler D. 41.  2008. A building block approach to sensornet systems. Proc. 6th ACM Conf. Embedded Netw. Sens. Syst.267–80 Raleigh, NC: ACM [Google Scholar]
  42. O KK, Kihong K, Floyd BA, Mehta JL, Hyun Y. 42.  et al. 2005. On-chip antennas in silicon ICs and their application. Electron Devices IEEE Trans. 52:71312–23 [Google Scholar]
  43. Rutherglen C, Jain D, Burke P. 43.  2009. Nanotube electronics for radiofrequency applications. Nat. Nano-technol. 4:12811–19 [Google Scholar]
  44. Burke PJ, Shengdong L, Zhen Y. 44.  2006. Quantitative theory of nanowire and nanotube antenna performance. Nanotechnol. IEEE Trans. 5:4314–34 [Google Scholar]
  45. Hanson GW. 45.  2005. Fundamental transmitting properties of carbon nanotube antennas. Antennas Propag. IEEE Trans. 53:113426–35 [Google Scholar]
  46. Burke P, Rutherglen C. 46.  2010. Towards a single-chip, implantable RFID system: Is a single-cell radio possible?. Biomed. Microdevices 12:4589–96 [Google Scholar]
  47. Deng S, Balakrishnan H. 47.  2012. Traffic-aware techniques to reduce 3G/LTE wireless energy consumption. Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol.181–92 Nice, Fr.: ACM [Google Scholar]
  48. Reddy TB. 48.  2011. Linden's Handbook of Batteries New York: McGraw-Hill [Google Scholar]
  49. Bogue R. 49.  2010. Powering tomorrow's sensor: a review of technologies—Part 2. Sens. Rev. 30:4271–75 [Google Scholar]
  50. Bogue R. 50.  2010. Powering tomorrow's sensor: a review of technologies—Part 1. Sens. Rev. 30:3182–86 [Google Scholar]
  51. Pech D, Brunet M, Durou H, Huang P, Mochalin V. 51.  et al. 2010. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5:9651–54 [Google Scholar]
  52. Mouawad J. 52.  2013. Boeing discloses fixes for lithium-ion batteries. New York Times March 15 B3 [Google Scholar]
  53. Buchmann I. 53.  2011. Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers Richmond, Can.: Cadex Electron. [Google Scholar]
  54. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. 54.  2010. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10:124863–68 [Google Scholar]
  55. Bogue R. 55.  2007. MEMS sensors: past, present and future. Sens. Rev. 27:17–13 [Google Scholar]
  56. Bogue R. 56.  2009. Nanosensors: a review of recent research. Sens. Rev. 29:4310–15 [Google Scholar]
  57. Bogue R. 57.  2008. Nanosensors: a review of recent progress. Sens. Rev. 28:112–17 [Google Scholar]
  58. Bogue R. 58.  2012. Environmental sensing and recent developments in graphene. Sens. Rev. 32:117012799 [Google Scholar]
  59. Aygün B, Gungor VC. 59.  2011. Wireless sensor networks for structure health monitoring: recent advances and future research directions. Sens. Rev. 31:3261–76 [Google Scholar]
  60. Chen G, Hanson S, Blaauw D, Sylvester D. 60.  2010. Circuit design advances for wireless sensing applications. Proc. IEEE 98:111808–27 [Google Scholar]
  61. Bogue R. 61.  2009. Energy harvesting and wireless sensors: a review of recent developments. Sens. Rev. 29:3194–99 [Google Scholar]
  62. Roundy S, Wright PK, Rabaey JM. 62.  2004. Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations Norwell, MA: Kluwer Acad. [Google Scholar]
  63. Vullers RJM, Schaijk RV, Visser HJ, Penders J, Hoof CV. 63.  2010. Energy harvesting for autonomous wireless sensor networks. Solid-State Circuits Mag. IEEE 2:229–38 [Google Scholar]
  64. Leonov V, Vullers RJM. 64.  2009. Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J. Renew. Sustain. Energy 1:61–14 [Google Scholar]
  65. Sarpeshkar R. 65.  2010. Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  66. Vullers RJM, van Schaijk R, Doms I, Van Hoof C, Mertens R. 66.  2009. Micropower energy harvesting. Solid-State Electron. 53:7684–93 [Google Scholar]
  67. Zervos H. 67.  2011. Energy Harvesting for Automotive Applications. Cambridge, MA: IDTechEx http://media.idtechex.com/pdfs/en/S2142B5538.pdf [Google Scholar]
  68. Wei C, Zhou W, Wang Q, Xia X, Li X. 68.  2012. TPMS (tire-pressure monitoring system) sensors: monolithic integration of surface-micromachined piezoresistive pressure sensor and self-testable accelerometer. Microelectron. Eng. 91:0167–73 [Google Scholar]
  69. Hasan NN, Arif A, Pervez U. 69.  2011. Tire pressure monitoring system with wireless communication Presented at Electr. Comput. Eng. (CCECE), 2011 24th Can. Conf. Niagara Falls, Canada [Google Scholar]
  70. Jiachou W, Xiaoyuan X, Xinxin L. 70.  2012. Monolithic integration of pressure plus acceleration composite TPMS sensors with a single-sided micromachining technology. Microelectromech. Syst. J. 21:2284–93 [Google Scholar]
  71. Tan YK, Panda SK. 71.  2011. Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. Ind. Electron. IEEE Trans. 58:94424–35 [Google Scholar]
  72. Wang ZL. 72.  2007. Nanopiezotronics. Adv. Mater. 19:6889–92 [Google Scholar]
  73. Qin Y, Wang X, Wang ZL. 73.  2008. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:7180809–13 [Google Scholar]
  74. Sample AP, Smith JR. 74.  2009. Experimental results with two wireless power transfer systems Presented at RWS '09 Proc. 4th Int. Conf. Radio Wirel. Symp. 16–18 San Diego, CA: [Google Scholar]
  75. Bandyopadhyay S, Chandrakasan AP. 75.  2012. Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor. Solid-State Circuits IEEE J. 47:92199–215 [Google Scholar]
  76. Boehret K. 76.  2011. It's hard to cut the charging cords. Wall Street J. Feb. 16. http://online.wsj.com/article/SB10001424052748704409004576146341266125026.html [Google Scholar]
  77. Sample AP, Yeager DJ, Powledge PS, Mamishev AV, Smith JR. 77.  2008. Design of an RFID-based battery-free programmable sensing platform. Instrum. Meas. IEEE Trans. 57:112608–15 [Google Scholar]
  78. Brown WC. 78.  1984. The history of power transmission by radio waves. Microw. Theory Tech. IEEE Trans. 32:91230–42 [Google Scholar]
  79. Sample AP, Meyer DA, Smith JR. 79.  2011. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. Ind. Electron. IEEE Trans. 58:2544–54 [Google Scholar]
  80. Thota K. 80.  2012. Broadband and Wi-Fi households global forecast 2012 Rep. Strategy Anal., San Francisco. http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7215 [Google Scholar]
  81. Akyildiz IF, Xudong W. 81.  2005. A survey on wireless mesh networks. Commun. Mag., IEEE 43:9S23–30 [Google Scholar]
  82. Rao SSN, Krishna YKS, Rao KN. 82.  2011. A survey: routing protocols for wireless mesh networks. Int. J. Res. Rev. Wirel. Sens. Netw. 1:343–47 [Google Scholar]
  83. Rabaey JM, Ammer J, Karalar T, Suetfei L, Otis B. 83.  et al. 2002. PicoRadios for wireless sensor networks: the next challenge in ultra-low power design Presented at Solid-State Circuits Conf., 2002. Digest Tech. Pap. ISSCC. 2002 IEEE Int., San Francisco [Google Scholar]
  84. Nordman B, Christensen K, Meier A. 84.  2012. Think globally, distribute power locally: the promise of nanogrids. IEEE Comput. 45:989–91 [Google Scholar]
  85. Williams E. 85.  2011. Environmental effects of information and communications technologies. Nature 479:7373354–58 [Google Scholar]
  86. Koomey JG, Calwell C, Laitner S, Thornton J, Brown RE. 86.  et al. 2002. Sorry, wrong number: the use and misuse of numerical facts in analysis and media reporting of energy issues. Annu. Rev. Energy Environ. 27:119–58 [Google Scholar]
  87. Koomey JG. 87.  2008. Turning Numbers into Knowledge: Mastering the Art of Problem Solving Oakland, CA: Analytics Press [Google Scholar]
  88. Koomey JG, Chong H, Loh W, Nordman B, Blazek M. 88.  2004. Network electricity use associated with wireless personal digital assistants. ASCE J. Infrastruct. Syst. 10:3131–37 [Google Scholar]
  89. Kawamoto K, Koomey J, Nordman B, Brown RE, Piette M. 89.  et al. 2002. Electricity used by office equipment and network equipment in the U.S. Energy 27:3255–69 [Google Scholar]
  90. Roth KW, Goldstein F, Kleinman J. 90.  2002. Energy consumption by office and telecommunications equipment in commercial buildings I Energy consumption baseline. Tech. Rep. PB2002-101438, US Dep. Commer., Washington, DC. http://www.ntis.gov/search/product.aspx?ABBR=PB2002101438 [Google Scholar]
  91. Baer WS, Hassell S, Vollaard BA. 91.  2002. Electricity requirements for a digital society Rep. MR-1617-DOE, RAND Corp., Santa Monica, CA. http://www.rand.org/publications/MR/MR1617/ [Google Scholar]
  92. Mitchell-Jackson J, Koomey JG, Nordman B, Blazek M. 92.  2003. Data center power requirements: measurements from Silicon Valley. Energy 28:8837–50 [Google Scholar]
  93. Blazek M, Chong H, Loh W, Koomey J. 93.  2004. A data center revisited: assessment of the energy impacts of retrofits and technology trends in a high-density computing facility. ASCE J. Infrastruct. Syst. 10:398–104 [Google Scholar]
  94. Malmodin J, Moberg Å, Lundén D, Finnveden G, Lövehagen N. 94.  2010. Greenhouse gas emissions and operational electricity use in the ICT and entertainment and media sectors. J. Ind. Ecol. 14:5770–90 [Google Scholar]
  95. 95. US DOE 2010. International energy outlook 2010 Rep. DOE/EIA-04842010. Energy Inf. Adm., US Dep. Energy, Washington, DC. http://www.eia.gov/forecasts/archive/ieo10/index.html [Google Scholar]
  96. Lanzisera S, Nordman B, Brown RE. 96.  2012. Data network equipment energy use and savings potential in buildings. Energy Effic. 5:2149–62 [Google Scholar]
  97. Lambert S, Van Heddeghem W, Vereecken W, Lannoo B, Colle D, Pickavet M. 97.  2012. Worldwide electricity consumption of communication networks. Opt. Express 20:26B513–24 [Google Scholar]
  98. Koomey J. 98.  2011. Growth in Data Center Electricity Use 2005 to 2010 Oakland, CA: Analytics Press http://www.analyticspress.com/datacenters.html [Google Scholar]
  99. Koomey J. 99.  2008. Worldwide electricity used in data centers. Environ. Res. Lett. 3:034008 [Google Scholar]
  100. Masanet E, Shehabi A, Koomey JG. 100.  2013. Characteristics of low-carbon data centers. Nat. Clim. Change 3:7627–30 [Google Scholar]
  101. 101. Int. Stand. Organ 1997. ISO 14040—Environmental Management—Life Cycle Assessment—Principles and Framework. Geneva: ISO [Google Scholar]
  102. Chapman PF. 102.  1975. Energy analysis of nuclear power stations. Energy Policy 3:4285–98 [Google Scholar]
  103. Heijungs R, Suh S. 103.  2002. The Computational Structure of Life Cycle Assessment Dordrecht, Neth.: Kluwer Acad. [Google Scholar]
  104. Baumann H, Tillman A-M. 104.  2004. The Hitch Hiker's Guide to LCA: An Orientation in Life Cycle Assessment Methodology and Applications Lund, Swed.: Studentlitteratur AB [Google Scholar]
  105. Bullard CW, Herendeen RA. 105.  1975. The energy cost of goods and services. Energy Policy 3:4268–78 [Google Scholar]
  106. Hendrickson C, Horvath A, Joshi S, Lave L. 106.  1998. Economic input-output models for environmental life-cycle assessment. Policy Anal. 32:7A184–91 [Google Scholar]
  107. Hendrickson C, Matthews HS, Lave L, Bergerson J, Cicas G. 107.  et al. 2006. Environmental Life Cycle Assessment of Goods and Services: An Input-Output Approach Washington, DC: Resour. Future [Google Scholar]
  108. Bullard C, Pennter P, Pilati D. 108.  1978. Net energy analysis: handbook for combining process and input-output analysis. Resour. Energy 1:267–313 [Google Scholar]
  109. Joshi S. 109.  2000. Product environmental life-cycle assessment using input-output techniques. J. Ind. Ecol. 3:2/395–120 [Google Scholar]
  110. Suh S, Lenzen M, Treloar GJ, Hondo H, Horvath A. 110.  et al. 2004. System boundary selection in life-cycle inventories using hybrid approaches. Environ. Sci. Technol. 38:3657–64 [Google Scholar]
  111. 111. Microelectron. Comput. Technol. Corp 1993. Environmental Consciousness: A Strategic Competitiveness Issue for the Electronics and Computer Industry. Austin, TX: MCC [Google Scholar]
  112. Williams ED, Ayres RU, Heller M. 112.  2002. The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices. Environ. Sci. Technol. 36:245504–10 [Google Scholar]
  113. Williams E, Krishnan N, Boyd S. 113.  2011. Ultrapurity and Energy Use: Case Study of Semiconductor Manufacturing Thermodynamics and the Destruction of Resources New York: Cambridge Univ. Press [Google Scholar]
  114. Williams E. 114.  2004. Energy intensity of computer manufacturing: hybrid assessment combining process and economic input-output methods. Environ. Sci. Technol. 38:226166–74 [Google Scholar]
  115. Deng L, Babbitt CW, Williams ED. 115.  2011. Economic-balance hybrid LCA extended with uncertainty analysis: case study of a laptop computer. J. Clean. Prod. 19:111198–206 [Google Scholar]
  116. Geibig JR, Socolof ML. 116.  2005. Solders in electronics: a life-cycle assessment Rep. EPA 744-R-05–001, US Environ. Prot. Agency, Washington, DC. http://www.epa.gov/dfe/pubs/solder/lca/index.htm [Google Scholar]
  117. Boyd SB, Horvath A, Dornfeld DA. 117.  2010. Life-cycle assessment of computational logic produced from 1995 through 2010. Environ. Res. Lett. 5:1014011 [Google Scholar]
  118. Deng L, Williams ED. 118.  2011. Functionality versus “typical product” measures of technological progress. J. Ind. Ecol. 15:1108–21 [Google Scholar]
  119. Babbitt CW, Kahhat R, Williams E, Babbitt GA. 119.  2009. Evolution of product lifespan and implications for environmental assessment and management: a case study of personal computers in higher education. Environ. Sci. Technol. 43:135106–12 [Google Scholar]
  120. Lenzen M. 120.  2001. Errors in conventional and input-output—based life—cycle inventories. J. Ind. Ecol. 4:4127–48 [Google Scholar]
  121. Williams ED, Weber CL, Hawkins TR. 121.  2009. Hybrid framework for managing uncertainty in life cycle inventories. J. Ind. Ecol. 13:6928–44 [Google Scholar]
  122. Hertwich EG, Roux C. 122.  2011. Greenhouse gas emissions from the consumption of electric and electronic equipment by Norwegian households. Environ. Sci. Technol. 45:198190–96 [Google Scholar]
  123. 123. IVF Ind. Res. Dev. Corp 2007. Lot 3: Personal computers (desktops and laptops) and computer monitors Final Rep. (Task 1–8), EuP Prep. Study, TREN/D1/40-2005, IVF Rep. 07004, IVF Ind. Res. Dev. Corp., Mölndal, Swed. http://extra.ivf.se/ecocomputer/reports.asp [Google Scholar]
  124. Yao MA, Higgs TG, Cullen MJ, Stewart S, Brady TA. 124.  2010. Comparative assessment of life cycle assessment methods used for personal computers. Environ. Sci. Technol. 44:197335–46 [Google Scholar]
  125. 125. Apple 2013. Product Environmental Reports Cupertino, CA: Apple [Google Scholar]
  126. Boyd S, Horvath A, Dornfeld D. 126.  2011. Life-cycle assessment of NAND flash memory. Semicond. Manuf. IEEE Trans. 24:1117–24 [Google Scholar]
  127. Weber CL. 127.  2012. Uncertainty and variability in product carbon footprinting. J. Ind. Ecol. 16:2203–11 [Google Scholar]
  128. Fehske A, Fettweis G, Malmodin J, Biczok G. 128.  2011. The global footprint of mobile communications: the ecological and economic perspective. Commun. Mag. IEEE 49:855–62 [Google Scholar]
  129. Samuelson P, Nordhaus W. 129.  2009. Economics Columbus, OH: McGraw-Hill/Irwin [Google Scholar]
  130. Sanstad AH, DeCanio SJ, Boyd G, Koomey JG. 130.  2001. Estimating bounds on the economy-wide effects of the CEF policy scenarios. Energy Policy 29:141299–312 [Google Scholar]
  131. Leibenstein H. 131.  1966. Allocative efficiency versus “X-efficiency.”. Am. Econ. Rev. 56:3393–415 [Google Scholar]
  132. Jensen R. 132.  2007. The digital provide: information (technology), market performance, and welfare in the south Indian fisheries sector. Q. J. Econ. 122:3879–924 [Google Scholar]
  133. Koomey JG. 133.  2012. Cold Cash, Cool Climate: Science-Based Advice for Ecological Entrepreneurs Burlingame, CA: Analytics Press http://www.analyticspress.com/cccc.html [Google Scholar]
  134. Hilty L, Lohmann W, Huang EM. 134.  2011. Sustainability and ICT—an overview of the field with a focus on socio-economic aspects. Not. Polit. 17:10413–28 [Google Scholar]
  135. Fischer-Kowalski M, Swilling M, von Weizsäcker EY, Ren Y, Moriguchi Y. 135.  et al. 2011. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth Paris: UNEP http://www.uncsd2012.org/index.php?page=view&type=400&nr=32&menu=45 [Google Scholar]
  136. Atkyns R, Blazek M, Roitz J. 136.  2002. Measurement of environmental impacts of telework adoption amidst change in complex organizations: AT&T survey methodology and results. Resour. Conserv. Recycl. 36:3267–85 [Google Scholar]
  137. Weber C, Koomey JG, Matthews S. 137.  2010. The energy and climate change impacts of different music delivery methods. J. Ind. Ecol. 14:5754–69 [Google Scholar]
  138. 138. Boston Consult. Group 2008. Smart 2020: Enabling the Low Carbon Economy in the Information Age. San Francisco: Clim. Group/Global e-Sustain. Initiat. (GeSI) http://www.smart2020.org/_assets/files/Smart2020UnitedStatesReportAddendum.pdf [Google Scholar]
  139. Barzel Y. 139.  1982. Measurement cost and the organization of markets. J. Law Econ. 25:127–48 [Google Scholar]
  140. Palensky P, Kupzog F. 140.  2013. Smart grids. Annu. Rev. Environ. Resour. 38:201–26 [Google Scholar]
  141. Goldstein DB, Rosenfeld AH. 141.  1975. Conservation and peak power—cost and demand Rep. LBL-4438, Lawrence Berkeley Natl. Lab., Berkeley, CA [Google Scholar]
  142. Brynjolfsson E, Hitt LM. 142.  1996. Paradox lost? Firm-level evidence on the returns to information systems spending. Manag. Sci. 42:4541–58 [Google Scholar]
  143. Brynjolfsson E, Hitt LM. 143.  2000. Beyond computation: information technology, organizational transformation and business performance. J. Econ. Perspect. 14:423–48 [Google Scholar]
  144. Owen D. 144.  2012. The Conundrum: How Scientific Innovation, Increased Efficiency, and Good Intentions Can Make Our Energy and Climate Problems Worse New York: Riverhead Trade [Google Scholar]
  145. Taylor C, Koomey J. 145.  2008. Estimating energy use and greenhouse gas emissions of Internet advertising Work. Pap., prepared for IMC2, New York. http://energy.lbl.gov/EA/emills/commentary/docs/carbonemissions.pdf [Google Scholar]
  146. Malmodin J, Lunden D, Nilsson M, Andersson G. 146.  2012. LCA of data transmission and IP core networks Presented at Electron. Goes Green 2012+ (EGG), Berlin [Google Scholar]
  147. Hinton K, Baliga J, Feng MZ, Ayre RWA, Tucker RS. 147.  2011. Power consumption and energy efficiency in the internet. Netw. IEEE 25:26–12 [Google Scholar]
/content/journals/10.1146/annurev-environ-021512-110549
Loading
/content/journals/10.1146/annurev-environ-021512-110549
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error