1932

Abstract

Healthy soils contribute to a wide range of ecosystem services and virtually all of the UN Sustainable Development Goals, but most of the world's soil resources are in only fair, poor, or very poor condition, and conditions are getting worse in more cases than they are improving. A total of 33% of all soils are moderately to highly degraded as a result of erosion, loss of organic matter, poor nutrient balance, salinization and alkalinization, contamination, acidification, loss of biodiversity, sealing, compaction, and poor water status. Best management practices are available to limit or mitigate threats to soil health, and many of them mitigate multiple soil threats. In many regions of the world, policies or initiatives to protect or enhance the status of soils are in place, and they need to be strengthened and enforced. The Food and Agriculture Organisation will publish its second comprehensive assessment of the status of the world's soils in 2025, and this review provides an interim update on world soil status and offers an accessible overview of the topic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-030323-075629
2024-10-18
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-030323-075629.html?itemId=/content/journals/10.1146/annurev-environ-030323-075629&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Smith P, Keesstra W, Silver WL, Adhya TK, De Deyn GB, et al. 2021.. Soil-derived Nature's Contributions to People and their contribution to the UN Sustainable Development Goals. . Philos. Trans. R. Soc. B 376::20200185
    [Crossref] [Google Scholar]
  2. 2.
    FAO (Food Agric. Organ. U.N.), ITPS (Intergov. Tech. Panel Soils). 2020.. Towards a definition of soil health. Soil Lett. 1 , FAO/ITPS, Rome:. https://www.fao.org/3/cb1110en/cb1110en.pdf
    [Google Scholar]
  3. 3.
    FAO (Food Agric. Organ.). 2017.. Voluntary guidelines for sustainable soil management. Rep. , FAO, Rome:. http://www.fao.org/3/a-i6874e.pdf
    [Google Scholar]
  4. 4.
    FAO (Food Agric. Organ.), ITPS (Intergov. Tech. Panel Soils). 2015.. Status of the world's soil resources (SWSR)—main report. Rep. , FAO/ITPS, Rome:. https://www.fao.org/3/i5199e/I5199E.pdf
    [Google Scholar]
  5. 5.
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.). 2018.. The IPBES assessment report on land degradation and restoration. Assess. Rep. , IPBES, Bonn, Ger:.
    [Google Scholar]
  6. 6.
    Olsson L, Barbosa H, Bhadwal S, Cowie A, Delusca K, et al. 2019.. Land degradation. . In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, ed. PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, H-O Pörtner, et al. , pp. 345436. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  7. 7.
    Brady NC, Weil RC. 2016.. Soil erosion and its control. . In The Nature and Properties of Soils, pp. 81978. Upper Saddle River, NJ:: Prentice Hall. , 15th ed..
    [Google Scholar]
  8. 8.
    Thaler EA, Larsen IJ, Yu Q. 2021.. The extent of soil loss across the US Corn Belt. . PNAS 118:(8):e1922375118
    [Crossref] [Google Scholar]
  9. 9.
    Badreldin N, Lobb DA. 2019.. Assessment of the cost of soil erosion to crop production in Canada. . In Proceedings of the Global Symposium on Soil Erosion, pp. 63337. Rome:: FAO
    [Google Scholar]
  10. 10.
    Panagos P, Ballabio C, Himics M, Scarpa S, Matthews F, et al. 2021.. Projections of soil loss by water erosion in Europe by 2050. . Environ. Sci. Policy 124::38092
    [Crossref] [Google Scholar]
  11. 11.
    Köchy M, Hiederer R, Freibauer A. 2015.. Global distribution of soil organic carbon—part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. . Soil 1:(1):35165
    [Crossref] [Google Scholar]
  12. 12.
    FAO (Food Agric. Organ. U.N.). 2017.. Soil organic carbon: the hidden potential. Rep. , FAO, Rome:
    [Google Scholar]
  13. 13.
    Lahmar R, Ruellan A. 2007.. Soil degradation in the Mediterranean region and cooperative strategies. . Cah. Agric. 16:(4):31823
    [Crossref] [Google Scholar]
  14. 14.
    Ferreira CSS, Aghmiuni SS, Destouni G, Ghajarnia N, Kalantari Z. 2022.. Soil degradation in the European Mediterranean region: processes, status and consequences. . Sci. Total Environ. 805::150106
    [Crossref] [Google Scholar]
  15. 15.
    FAO (Food Agric. Organ. U.N.). 2022.. Global Soil Organic Carbon map—GSOCmap v.1.6. Database , FAO, Rome:
    [Google Scholar]
  16. 16.
    Sanderman J, Hengl T, Fiske GJ. 2017.. Soil carbon debt of 12,000 years of human land use. . PNAS 114::957580
    [Crossref] [Google Scholar]
  17. 17.
    Bossio DA, Cook-Patton SC, Ellis PW, Fargione J, Sanderman J, et al. 2020.. The role of soil carbon in natural climate solutions. . Nat. Sustain. 3:(5):39198
    [Crossref] [Google Scholar]
  18. 18.
    UNEP (U. N. Environ. Progr.). 2022.. Global peatlands assessmentthe state of the world's peatlands: evidence for action toward the conservation, restoration, and sustainable management of peatlands. Rep. , Glob. Peatl. Initiat., UNEP, Nairobi:
    [Google Scholar]
  19. 19.
    Stoorvogel JJ, Smaling EMA. 1990.. Assessment of Soil Nutrient Depletion in Sub-Saharan Africa: 1983–2000, Vol. 1: Main Report. Wageningen, Neth:.: Wageningen Univ.
    [Google Scholar]
  20. 20.
    Gebresamuel G, Opazo-Salazar D, Corral-Núnez G, van Beek C, Elias E, et al. 2020.. Nutrient balance of farming systems in Tigray, Northern Ethiopia. . J. Soil Sci. Plant Nutr. 21::31528
    [Crossref] [Google Scholar]
  21. 21.
    Austin AT, Bustamante MMC, Nardoto GB, Mitre SK, Pérez T, et al. 2013.. Latin America's nitrogen challenge. . Science 340:(6129):149
    [Crossref] [Google Scholar]
  22. 22.
    Bai X, Gaoa J, Wanga S, Caia H, Chena Z, et al. 2020.. Excessive nutrient balance surpluses in newly built solar greenhouses over five years leads to high nutrient accumulations in soil. . Agric. Ecosyst. Environ. 288::106717
    [Crossref] [Google Scholar]
  23. 23.
    van de Vlasakker PCH, Tonderski K, Metson GS. 2022.. A review of nutrient losses to waters from soil- and ground-based urban agriculture—more nutrient balances than measurements. . Front. Sustain. Food Syst. 6::842930
    [Crossref] [Google Scholar]
  24. 24.
    Krasilnikov P, Taboada MA, Amanullah. 2022.. Fertilizer use, soil health and agricultural sustainability. . Agriculture 12::462
    [Crossref] [Google Scholar]
  25. 25.
    Smil V. 1999.. Crop residues: agriculture's largest harvest. . Bioscience 49::299308
    [Crossref] [Google Scholar]
  26. 26.
    Alewell C, Ringeval B, Ballabio C, Robinson DA, Panagos P, et al. 2020.. Global phosphorus shortage will be aggravated by soil erosion. . Nat. Commun. 11::4546
    [Crossref] [Google Scholar]
  27. 27.
    Cakmak I, McLaughlin MJ, White P. 2017.. Zinc for better crop production and human health. . Plant Soil 411::14
    [Crossref] [Google Scholar]
  28. 28.
    Sartori M, Philippidis G, Ferrari E, Borrelli P, Lugato E, et al. 2019.. A linkage between the biophysical and the economic: assessing the global market impacts of soil erosion. . Land Use Policy 86::299312
    [Crossref] [Google Scholar]
  29. 29.
    Hassani A, Azapagic A, Shokri N. 2021.. Global predictions of primary soil salinization under changing climate in the 21st century. . Nat. Commun. 12::6663
    [Crossref] [Google Scholar]
  30. 30.
    Singh A. 2022.. Soil salinity: a global threat to sustainable development. . Soil Use Manag. 38::3967
    [Crossref] [Google Scholar]
  31. 31.
    US Salin. Lab. 1954.. Diagnosis and Improvement of Saline and Alkali Soils. USDA Handb. 60 . Washington, DC:: Gov. Print. Off.
    [Google Scholar]
  32. 32.
    FAO (Food Agric. Organ. U.N.), ITPS (Intergov. Tech. Panel Soils). 2021.. Global map of salt-affected soils. Fact Sheet, FAO, Rome:. https://www.fao.org/3/cb7247en/cb7247en.pdf
    [Google Scholar]
  33. 33.
    Naidu R, Biswas B, Willett IR, Cribb J, Singh BK, et al. 2021.. Chemical pollution: a growing peril and potential catastrophic risk to humanity. . Environ. Int. 156::106616
    [Crossref] [Google Scholar]
  34. 34.
    WHO (World Health Organ.). 2014.. Global status report on noncommunicable diseases 2014. Rep. , WHO, Geneva:. http://www.who.int/nmh/publications/ncd-status-report-2014/en
    [Google Scholar]
  35. 35.
    Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, et al. 2018.. The Lancet Commission on pollution and health. . Lancet 391::462512
    [Crossref] [Google Scholar]
  36. 36.
    UNEP (U. N. Environ. Progr.). 2017.. Resolution 3/4: environment and health. Doc. UNEP/EA.3/Res.4 , UNEP, Nairobi:. https://wedocs.unep.org/20.500.11822/30795
    [Google Scholar]
  37. 37.
    Jing CHE, Zhao XQ, Shen RF. 2023.. Molecular mechanisms of plant adaptation to acid soils: a review. . Pedosphere 33:(1):1422
    [Crossref] [Google Scholar]
  38. 38.
    Zhu XF, Shen RF. 2023.. Towards sustainable use of acidic soils: deciphering aluminum-resistant mechanisms in plants. . Fundam. Res. In press
    [Google Scholar]
  39. 39.
    Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, et al. 2016.. Water balance creates a threshold in soil pH at the global scale. . Nature 540:(7634):56769
    [Crossref] [Google Scholar]
  40. 40.
    Meng C, Tian D, Zeng H, Li Z, Yi C, Niu S. 2019.. Global soil acidification impacts on belowground processes. . Environ. Res. Lett. 14::074003
    [Crossref] [Google Scholar]
  41. 41.
    Tian D, Niu S. 2015.. A global analysis of soil acidification caused by nitrogen addition. . Environ. Res. Lett. 10::024019
    [Crossref] [Google Scholar]
  42. 42.
    Wang Y, Yao Z, Zhan Y, Zheng X, Zhou M, et al. 2021.. Potential benefits of liming to acid soils on climate change mitigation and food security. . Glob. Change Biol. 27:(12):280721
    [Crossref] [Google Scholar]
  43. 43.
    Orgiazzi A, Panagos P, Yigini Y, Dunbar MB, Gardi C, et al. 2016.. A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity. . Sci. Total Environ. 545/546::1120
    [Crossref] [Google Scholar]
  44. 44.
    Kihara J, Bolo P, Kinyua M, Nyawira SS, Sommer R. 2020.. Soil health and ecosystem services: lessons from sub-Sahara Africa (SSA). . Geoderma 370::114342
    [Crossref] [Google Scholar]
  45. 45.
    Panagos P, Standardi G, Borrelli P, Lugato E, Montanarella L, et al. 2018.. Cost of agricultural productivity loss due to soil erosion in the European Union: from direct cost evaluation approaches to the use of macroeconomic model. . Land Degrad. Dev. 29::47184
    [Crossref] [Google Scholar]
  46. 46.
    Montanarella L, Panagos P. 2021.. The relevance of sustainable soil management within the European Green Deal. . Land Use Policy 100::104950
    [Crossref] [Google Scholar]
  47. 47.
    United Nations. 2019.. World Urbanization Prospects: The 2018 Revision. New York:: United Nations
    [Google Scholar]
  48. 48.
    Schneider A, Friedl MA, Potere DA. 2009.. A new map of global urban extent from MODIS satellite data. . Environ. Res. Lett. 4::044003
    [Crossref] [Google Scholar]
  49. 49.
    Gao J, O'Neill BC. 2020.. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. . Nat. Commun. 11::2302
    [Crossref] [Google Scholar]
  50. 50.
    van Vliet J. 2019.. Direct and indirect loss of natural area from urban expansion. . Nat. Sustain. 2:(8):75563
    [Crossref] [Google Scholar]
  51. 51.
    D'Amour C, Reitsma F, Baiocchi G, Barthel S, Güneralp B, et al. 2017.. Future urban land expansion and implications for global croplands. . PNAS 114::893944
    [Crossref] [Google Scholar]
  52. 52.
    Keller T, Sandin M, Colombi T, Horn R, Or D. 2019.. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. . Soil Till. Res. 194::104293
    [Crossref] [Google Scholar]
  53. 53.
    Yang PP, Dong WX, Heinen M, Qin W, Oenema O. 2022.. Soil compaction prevention, amelioration and alleviation measures are effective in mechanized and smallholder agriculture: a meta-analysis. . Land 11:(5):645
    [Crossref] [Google Scholar]
  54. 54.
    Hernandez-Ramirez G, Ruser R, Kim DG. 2021.. How does soil compaction alter nitrous oxide fluxes? A meta-analysis. . Soil Till. Res. 211::105036
    [Crossref] [Google Scholar]
  55. 55.
    Chamen WCT, Moxey AP, Towers W, Balana B, Hallett PD. 2015.. Mitigating arable soil compaction: a review and analysis of available cost and benefit data. . Soil Till. Res. 146::1025
    [Crossref] [Google Scholar]
  56. 56.
    Zabrodskyi A, Sarauskis E, Kukharets S, Juostas A, Vasiliauskas G, et al. 2021.. Analysis of the impact of soil compaction on the environment and agricultural economic losses in Lithuania and Ukraine. . Sustainability 13:(14):7762
    [Crossref] [Google Scholar]
  57. 57.
    Pulido-Moncada M, Petersen SO, Munkholm LJ. 2022.. Soil compaction raises nitrous oxide emissions in managed agroecosystems. a review. . Agron. Sustain. Dev. 42::38
    [Crossref] [Google Scholar]
  58. 58.
    Lin H, ed. 2012.. Hydropedology: Synergistic Integration of Soil Science and Hydrology. Cambridge, MA:: Academic
    [Google Scholar]
  59. 59.
    Douville H, Raghavan K, Renwick J, Allan RP, Arias PA, et al. 2021.. Water cycle changes. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Pean, et al. , pp. 1055210. Cambridge, UK/New York:: Cambridge Univ. Press
    [Google Scholar]
  60. 60.
    Cook BI, Mankin JS, Marvel K, Williams AP, Smerdon JE, et al. 2020.. Twenty-first century drought projections in the CMIP6 forcing scenarios. . Earth's Future 8:(6):e2019EF001461
    [Crossref] [Google Scholar]
  61. 61.
    Fan Y, Li H, Miguez-Macho G. 2013.. Global patterns of groundwater table depth. . Science 339::94043
    [Crossref] [Google Scholar]
  62. 62.
    FAO (Food Agric. Organ. U.N.). 2015.. Revised World Soils Charter. Rome:: FAO
    [Google Scholar]
  63. 63.
    Panigatti JL. 2016.. Aspectos de la erosión de los suelos en Argentina II. Buenos Aires:: Asoc. Argent. Cienc. Suelo
    [Google Scholar]
  64. 64.
    Smith P, House JI, Bustamante M, Sobocka J, Harper R, et al. 2016.. Global change pressures on soils from land use and management. . Glob. Change Biol. 22::100828
    [Crossref] [Google Scholar]
  65. 65.
    Blanco H, Lal R. 2010.. Principles of Soil Conservation and Management. Dordrecht, Neth:.: Springer
    [Google Scholar]
  66. 66.
    Zobeck TM, Van Pelt RS. 2011.. Wind erosion. . In Soil Management: Building a Stable Base for Agriculture, ed. JL Hatfield, TJ Sauer , pp. 20927. Madison, WI:: Am. Soc. Agron. Soil Sci. Soc. Am.
    [Google Scholar]
  67. 67.
    FAO (Food Agric. Organ. U.N.), ITPS (Intergov. Tech. Panel Soils). 2021.. . Recarbonizing Our Soils: A Technical Manual of Recommended Management Practices. 6 vols . Rome:: FAO. https://www.fao.org/global-soil-partnership/areas-of-work/soil-organic-carbon-manual/en
    [Google Scholar]
  68. 68.
    Francaviglia R, Almagro M, Vicente-Vicente JL. 2023.. Conservation agriculture and soil organic carbon: principles, processes, practices and policy options. . Soil Syst. 7::17
    [Crossref] [Google Scholar]
  69. 69.
    Greifswald Mire Cent. 2022.. Global Peatland Database. Data Vis., Greifswald Mire Cent., Univ. Greifswald, Greifswald, Ger.: https://greifswaldmoor.de/global-peatland-database-en.html
    [Google Scholar]
  70. 70.
    Chenu C, Angers DA, Barré P, Derrien D, Arrouays D, et al. 2019.. Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations. . Soil Till. Res. 188::4152
    [Crossref] [Google Scholar]
  71. 71.
    Silva Neto EC, Coelho-Junior MG, Horák-Terra I, Gonçalves TS, Anjos LHC, et al. 2023.. Organic soils: formation, classification and environmental changes records in the highlands of southeastern Brazil. . Sustainability 15:(4):3416
    [Crossref] [Google Scholar]
  72. 72.
    IUCN (Int. Union Conserv. Nat.). 2016.. UK peatland strategy: 2018–2040. Rep. , IUCN, Gland, Switz:. https://www.iucn-uk-peatlandprogramme.org/sites/default/files/2019-07/2018_UK%20Peatland%20Strategy_DIGITAL.pdf
    [Google Scholar]
  73. 73.
    Oenema O, Brentrup F, Lammel J, Bascou P, Billen G, et al. 2015.. Nitrogen Use Efficiency (NUE)—an indicator for the utilization of nitrogen in agriculture and food systems. Tech. Rep. , Wageningen Univ., Wageningen, Neth.:
    [Google Scholar]
  74. 74.
    Cassman KG, Dobermann A, Walters DT. 2002.. Agroecosystems, nitrogen-use efficiency, and nitrogen management. . Ambio 31:(2):13240
    [Crossref] [Google Scholar]
  75. 75.
    Giller KE, Andersson JA, Corbeels M, Kirkegaard J, Mortensen D, et al. 2015.. Beyond conservation agriculture. . Front. Plant Sci. 6::870
    [Crossref] [Google Scholar]
  76. 76.
    Chivenge P, Zingore S, Ezui KS, Njoroge S, Bunquin MA, et al. 2022.. Progress in research on site-specific nutrient management for smallholder farmers in sub-Saharan Africa. . Field Crops Res. 281::108503
    [Crossref] [Google Scholar]
  77. 77.
    Bouwman AF, Beusen AHW, Lassaletta L, Van Apeldoorn DF, Van Grinsven HJM, et al. 2017.. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. . Sci. Rep. 7::40366
    [Crossref] [Google Scholar]
  78. 78.
    FAO (Food Agric. Organ. U.N.). 2022.. Global Symposium on Salt-Affected Soils: Outcome Document. Rep., FAO, Rome
    [Google Scholar]
  79. 79.
    Hopmans JW, Qureshi AS, Kisekka I, Munns R, Grattan SR, et al. 2021.. Critical knowledge gaps and research priorities in global soil salinity. . Adv. Agron. 169::1191
    [Crossref] [Google Scholar]
  80. 80.
    Zhang X, Shu C, Wu Y, Ye P, Du D. 2023.. Advances of coupled water-heat-salt theory and test techniques for soils in cold and arid regions: a review. . Geoderma 432::116378
    [Crossref] [Google Scholar]
  81. 81.
    Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. 2016.. In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. . Rev. Environ. Contam. Toxicol. 236::1115
    [Google Scholar]
  82. 82.
    Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. 2016.. Ex-situ remediation technologies for environmental pollutants: a critical perspective. . Rev. Environ. Contam. Toxicol. 236::11792
    [Google Scholar]
  83. 83.
    Kunhikrishnan A, Thangarajan R, Bolan NS, Xu Y, Mandal S, et al. 2016.. Functional relationships of soil acidification, liming, and greenhouse gas flux. . Adv. Agron. 139::171
    [Crossref] [Google Scholar]
  84. 84.
    Goulding K. 2016.. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. . Soil Use Manag. 32::39099
    [Crossref] [Google Scholar]
  85. 85.
    Wang J, Zhang B, Tian Y, Zhang H, Cheng Y, et al. 2018.. A soil management strategy for ameliorating soil acidification and reducing nitrification in tea plantations. . Eur. J. Soil Biol. 88::3640
    [Crossref] [Google Scholar]
  86. 86.
    Raza S, Zamanian K, Ullah S, Kuzyakov Y, Virto I, et al. 2021.. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. . J. Clean. Prod. 315::128036
    [Crossref] [Google Scholar]
  87. 87.
    Köninger J, Panagos P, Jones A, Briones MJI, Orgiazzi A. 2022.. In defence of soil biodiversity: towards an inclusive protection in the European Union. . Biol. Conserv. 268::109475
    [Crossref] [Google Scholar]
  88. 88.
    Ginzky H, Ruppel OC. 2022.. Soil protection law in Africa: insights and recommendations based on country studies from Cameroon, Kenya and Zambia. . Soil Secur. 6::100032
    [Crossref] [Google Scholar]
  89. 89.
    Kaneko N, Yoshiura S, Kobayashi M, eds. 2022.. Sustainable Living with Environmental Risks. Tokyo:: Springer
    [Google Scholar]
  90. 90.
    Bagnall DK, Rieke EL, Morgan CLS, Liptzin DSL, Cappellazzi SB, et al. 2023.. A minimum suite of soil health indicators for North American agriculture. . Soil Secur. 10::100084
    [Crossref] [Google Scholar]
  91. 91.
    Wu R, Cheng X, Han H. 2019.. The effect of forest thinning on soil microbial community structure and function. . Forests 10::352
    [Crossref] [Google Scholar]
  92. 92.
    Angel S, Parent J, Civco DL, Blei A, Potere D. 2011.. The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. . Progr. Plan. 75:(2):53107
    [Crossref] [Google Scholar]
  93. 93.
    Larondelle N, Haase D. 2013.. Urban ecosystem services assessment along a rural–urban gradient: a cross analysis of European cities. . Ecol. Indic. 29::17990
    [Crossref] [Google Scholar]
  94. 94.
    Decoville A, Feltgen V. 2023.. Clarifying the EU objective of no net land take: a necessity to avoid the cure being worse than the disease. . Land Use Policy 131::106722
    [Crossref] [Google Scholar]
  95. 95.
    Tobias S, Conen F, Duss A, Wenzel LM, Buser C, et al. 2018.. Soil sealing and unsealing: state of the art and examples. . Land Degrad. Dev. 29::201524
    [Crossref] [Google Scholar]
  96. 96.
    McPhee JE, Antille DL, Tullberg JN, Doyle RB, Boersma M. 2020.. Managing soil compaction—a choice of low-mass autonomous vehicles or controlled traffic?. Biosyst. Eng. 195::22741
    [Crossref] [Google Scholar]
  97. 97.
    Correa J, Postma JA, Watt M, Wojciechowski T. 2019.. Soil compaction and the architectural plasticity of root systems. . J. Exp. Bot. 70::601934
    [Crossref] [Google Scholar]
  98. 98.
    Labelle ER, Hansson L, Hogbom L, Jourgholami M, Laschi A. 2022.. Strategies to mitigate the effects of soil physical disturbances caused by forest machinery: a comprehensive review. . Curr. For. Rep. 8::2037
    [Crossref] [Google Scholar]
  99. 99.
    Edreira JIR, Guilpart N, Sadras V, Cassman KG, van Ittersum MK, et al. 2018.. Water productivity of rainfed maize and wheat: a local to global perspective. . Agric. For. Meteorol. 259::36473
    [Crossref] [Google Scholar]
  100. 100.
    Castellano MJ, Archontoulis SV, Helmers MJ, Poffenbarger HJ, Six J. 2019.. Sustainable intensification of agricultural drainage. . Nat. Sustain. 2:(10):91421
    [Crossref] [Google Scholar]
  101. 101.
    Drury CF, Tan CS, Gaynor JD, Oloya TO, Welacky TW. 1996.. Influence of controlled drainage-subirrigation on surface and tile drainage nitrate loss. . J. Environ. Qual. 25:(2):31724
    [Crossref] [Google Scholar]
  102. 102.
    Wolka K, Mulder J, Biazin B. 2018.. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: a review. . Agric. Water Manag. 207::6779
    [Crossref] [Google Scholar]
  103. 103.
    Kennedy TL, Suddick EC, Six J. 2013.. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. . Agric. Ecosyst. Environ. 170::1627
    [Crossref] [Google Scholar]
  104. 104.
    Bodle R. 2022.. International soil governance. . Soil Secur. 6::100037
    [Crossref] [Google Scholar]
  105. 105.
    U. N. Gen. Assem. 2015.. Resolution 70/1. Transforming our world: the 2030 Agenda for Sustainable Development. Doc. A/RES/70/1 , U. N. Gen. Assem., New York:. https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf
    [Google Scholar]
  106. 106.
    Dazzi C, Papa GL. 2022.. A new definition of soil to promote soil awareness, sustainability, security and governance. . Int. Soil Water Conserv. Res. 10:(1):99108
    [Crossref] [Google Scholar]
  107. 107.
    Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, et al. 2016.. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. . Soil 2::11128
    [Crossref] [Google Scholar]
  108. 108.
    UNCCD (U. N. Conv. Combat Desertif.). 2006.. Integration of the Sustainable Development Goals and targets into the implementation of the United Nations Convention to Combat Desertification and the Intergovernmental Working Group report on land degradation neutrality. Decis. 3/COP.12 , UNCCD, Bonn, Ger./New York:. https://www.unccd.int/sites/default/files/inline-files/dec3-COP.12eng.pdf
    [Google Scholar]
  109. 109.
    Hannam I. 2022.. Soil governance and land degradation neutrality. . Soil Secur. 6::100030
    [Crossref] [Google Scholar]
  110. 110.
    Orr BJ, Cowie AL, Castillo Sanchez VM, Chasek P, Crossman ND, et al. 2017.. Scientific conceptual framework for land degradation neutrality: a report of the science-policy interface. Rep. , UNCCD (U. N. Conv. Combat Desertif.), Bonn, Ger./New York:
    [Google Scholar]
  111. 111.
    Rumpel C, Amiraslani F, Chenu C, Cardenas MG, Kaonga M, et al. 2020.. The 4p1000 initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. . Ambio 49::35060
    [Crossref] [Google Scholar]
  112. 112.
    FAO (Food Agric. Organ. U.N.). 2023.. SoiLEX: soil related legal instruments and soil governance. Database, FAO, Rome:. https://www.fao.org/soils-portal/soilex/en
    [Google Scholar]
  113. 113.
    Oliveira DMS, Tavares RLM, Loss A, Madari BE, Cerri CEP, et al. 2023.. Climate-smart agriculture and soil C sequestration in Brazilian Cerrado: a quantitative review. . Rev. Bras. Cienc. Solo 47:(spe):e0220055
    [Crossref] [Google Scholar]
  114. 114.
    Polidoro JC, de Freitas PL, Hernani LC, Cunha dos Anjos LH, Ribero Rodrigues RD, et al. 2021.. Potential impact of plans and policies based on the principles of conservation agriculture on the control of soil erosion in Brazil. . Land Degrad. Dev. 32:(12):345768
    [Crossref] [Google Scholar]
  115. 115.
    Gov. Bras. 2022.. The 2022–2050 National Fertilizer Plan. Decree 10.991/2022 , Gov. Bras., Brasilia:, March 22. https://www.in.gov.br/en/web/dou/-/decreto-n-10.991-de-11-de-marco-de-2022-385453056
    [Google Scholar]
  116. 116.
    Dep. Environ. Food Rural Aff., Rural Paym. Agency. 2022.. The SFI arable and horticultural soils standard. Fact Sheet, Dep. Environ. Food Rural Aff., London:. https://www.gov.uk/guidance/the-sfi-arable-and-horticultural-soils-standard
    [Google Scholar]
  117. 117.
    Dep. Environ. Food Rural Aff. 2018.. Applying the farming rules for water. Statut. Guid., Dep. Environ. Food Rural Aff., London:. https://www.gov.uk/government/publications/applying-the-farming-rules-for-water/applying-the-farming-rules-for-water
    [Google Scholar]
  118. 118.
    Basque Gov. 2022.. Basque soil protection strategy, 2030. Rep. , Basque Gov., Vitoria-Gasteiz, Spain:. https://www.ihobe.eus/publications/soil-protection-strategy-2030
    [Google Scholar]
  119. 119.
    Gov. Catalonia. 2019.. Law 3/2019 on agricultural spaces. Press Release, Gov. Catalonia, Barcelona, Spain:. https://www.agronoms.cat/general/aprovada-la-llei-3-2019-del-17-de-juny-dels-espais-agraris
    [Google Scholar]
  120. 120.
    Dep. Environ. Food Rural Aff. 2018.. 25 Year Environment Plan. Policy Pap., Dep. Environ. Food Rural Aff., London:. https://www.gov.uk/government/publications/25-year-environment-plan
    [Google Scholar]
  121. [Google Scholar]
  122. 122.
    Goffner D, Sinare H, Gordon LJ. 2019.. The Great Green Wall for the Sahara and the Sahel Initiative as an opportunity to enhance resilience in Sahelian landscapes and livelihoods. . Reg. Environ. Change 19::141728
    [Crossref] [Google Scholar]
  123. 123.
    Yu Y, Zhao W, Martinez-Murillo JF, Pereira P. 2020.. Loess Plateau: from degradation to restoration. . Sci. Total Environ. 738::140206
    [Crossref] [Google Scholar]
  124. 124.
    Bhowmick S. 2022.. Understanding the economic issues in Sri Lanka's current debacle. Rep. , Obs. Res. Found., New Delhi, India:. http://www.zbw.eu/econis-archiv/bitstream/11159/12457/1/1809283078_0.pdf
    [Google Scholar]
  125. 125.
    Mazurek-Kusiak A, Sawicki B, Kobyłka A. 2021.. Contemporary challenges to the organic farming: a Polish and Hungarian case study. . Sustainability 13:(14):8005
    [Crossref] [Google Scholar]
  126. 126.
    Amelung W, Bossio D, de Vries W, Kögel-Knabner I, Lehmann J, et al. 2020.. Towards a global-scale soil climate mitigation strategy. . Nat. Commun. 11::5427
    [Crossref] [Google Scholar]
  127. 127.
    Broomandi P, Guney M, Kim JR, Karaca F. 2020.. Soil contamination in areas impacted by military activities: a critical review. . Sustainability 12:(21):9002
    [Crossref] [Google Scholar]
  128. 128.
    Pereira P, Bašić F, Bogunovic I, Barcelo D. 2022.. Russian–Ukrainian war impacts the total environment. . Sci. Total Environ. 837::155865
    [Crossref] [Google Scholar]
  129. 129.
    Yin H, Butsic V, Buchner J, Kuemmerle T, Prishchepov AV, et al. 2019.. Agricultural abandonment and re-cultivation during and after the Chechen Wars in the northern Caucasus. . Glob. Environ. Change 55::14959
    [Crossref] [Google Scholar]
  130. 130.
    Lehmann J, Kern DC, Glaser B, Woods WI. 2003.. Amazonian Dark Earths: Origin, Properties, Management. Dordrecht, Neth:.: Kluwer Acad.
    [Google Scholar]
  131. 131.
    Schmidt MJ. 2013.. Amazonian Dark Earths: pathways to sustainable development in tropical rainforests?. Bol. Mus. Para. Emílio Goeldi Ciênc. Hum. 8:(1):1138
    [Crossref] [Google Scholar]
  132. 132.
    Barrera-Bassols A, Zinck JA. 2003.. Ethnopedology: a worldwide view on the soil knowledge of local people. . Geoderma 111:(3):17195
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-030323-075629
Loading
/content/journals/10.1146/annurev-environ-030323-075629
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error