1932

Abstract

Water quality issues are a major challenge that humanity is facing in the twenty-first century. Here, we review the main groups of aquatic contaminants, their effects on human health, and approaches to mitigate pollution of freshwater resources. Emphasis is placed on chemical pollution, particularly on inorganic and organic micropollutants including toxic metals and metalloids as well as a large variety of synthetic organic chemicals. Some aspects of waterborne diseases and the urgent need for improved sanitation in developing countries are also discussed. The review addresses current scientific advances to cope with the great diversity of pollutants. It is organized along the different temporal and spatial scales of global water pollution. Persistent organic pollutants (POPs) have affected water systems on a global scale for more than five decades; during that time geogenic pollutants, mining operations, and hazardous waste sites have been the most relevant sources of long-term regional and local water pollution. Agricultural chemicals and waste-water sources exert shorter-term effects on regional to local scales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-100809-125342
2010-11-21
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/energy/35/1/annurev-environ-100809-125342.html?itemId=/content/journals/10.1146/annurev-environ-100809-125342&mimeType=html&fmt=ahah

Literature Cited

  1. 1. UN Educ. Sci. Cult. Organ. (UNESCO) 2009. The United Nations World Water Development Report 3: Water in a Changing World Paris/New York: UNESCO/Berghahn Books [Google Scholar]
  2. Huntington TG. 2.  2006. Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol. 319:83–95 [Google Scholar]
  3. Oki T, Kanae S. 3.  2006. Global hydrological cycles and world water resources. Science 313:1068–72 [Google Scholar]
  4. Fenwick A. 4.  2006. Waterborne infectious diseases—Could they be consigned to history?. Science 313:1077–81 [Google Scholar]
  5. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA. 5.  et al. 2006. The challenge of micropollutants in aquatic systems. Science 313:1072–77 [Google Scholar]
  6. Saad L. 6.  2009. Water pollution Americans' top green concern http://www.gallup.com/poll/117079/water-pollution-americans-top-green-concern.aspx [Google Scholar]
  7. Gruber N, Galloway JN. 7.  2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293–96 [Google Scholar]
  8. Filippelli GM. 8.  2008. The global phosphorus cycle: past, present, and future. Elements 4:89–95 [Google Scholar]
  9. Jorgenson AK. 9.  2009. Political-economic integration, industrial pollution and human health: a panel study of less-developed countries, 1980–2000. Int. Sociol. 24:115–43 [Google Scholar]
  10. Larsen TA, Maurer M, Udert KM, Lienert J. 10.  2007. Nutrient cycles and resource management: implications for the choice of wastewater treatment technology. Water Sci. Technol. 56:229–37 [Google Scholar]
  11. Lohse KA, Brooks PD, McIntosh JC, Meixner T, Huxman TE. 11.  2009. Interactions between biogeochemistry and hydrologic systems. Annu. Rev. Environ. Resour. 34:65–96 [Google Scholar]
  12. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W. 12.  et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13 [Google Scholar]
  13. Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP. 13.  et al. 2005. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. Sci. USA 102:13517–20 [Google Scholar]
  14. Post VEA. 14.  2005. Fresh and saline groundwater interaction in coastal aquifers: Is our technology ready for the problems ahead?. Hydrogeol. J. 13:120–23 [Google Scholar]
  15. An Q, Wu YQ, Taylor S, Zhao B. 15.  2009. Influence of the Three Gorges Project on saltwater intrusion in the Yangtze River estuary. Environ. Geol. 56:1679–86 [Google Scholar]
  16. Gray NF. 16.  2005. Water Technology: An Introduction for Environmental Scientists and Engineers Oxford: Elsevier-Butterworth-Heinemann [Google Scholar]
  17. Cosgrove WJ, Rijsberman FR. 17.  2000. World Water Vision: Making Water Everybody's Business London: World Water Counc. [Google Scholar]
  18. Shao M, Tang XY, Zhang YH, Li WJ. 18.  2006. City clusters in China: air and surface water pollution. Front. Ecol. Environ. 4:353–61 [Google Scholar]
  19. Bockstaller C, Guichard L, Keichinger O, Girardin P, Galan MB, Gaillard G. 19.  2009. Comparison of methods to assess the sustainability of agricultural systems. A review. Agron. Sustain. Dev. 29:223–35 [Google Scholar]
  20. Eliopoulou E, Papanikolaou A. 20.  2007. Casualty analysis of large tankers. J. Mar. Sci. Technol. 12:240–50 [Google Scholar]
  21. Watson SB. 21.  2004. Aquatic taste and odor: a primary signal of drinking-water integrity. J. Toxicol. Environ. Health 67:1779–95 [Google Scholar]
  22. Schwarzman MR, Wilson MP. 22.  2009. New science for chemicals policy. Science 326:1065–66 [Google Scholar]
  23. Schwarzenbach RP, Gschwend PM, Imboden DM. 23.  2003. Environmental Organic Chemistry New York: Wiley1311 [Google Scholar]
  24. Waychunas GA, Kim CS, Banfield JF. 24.  2005. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7:409–33 [Google Scholar]
  25. Roberts LC, Hug SJ, Dittmar J, Voegelin A, Kretzschmar R. 25.  et al. 2010. Arsenic release from paddy soils during monsoon flooding. Nat. Geosci. 3:53–59 [Google Scholar]
  26. Teutsch N, Schmid M, Muller B, Halliday AN, Burgmann H, Wehrli B. 26.  2009. Large iron isotope fractionation at the oxic-anoxic boundary in Lake Nyos. Earth Planet. Sci. Lett. 285:52–60 [Google Scholar]
  27. Plumlee GS, Morman SA, Ziegler TL. 27.  2006. The toxicological geochemistry of earth materials: an overview of processes and the interdisciplinary methods used to understand them. Rev. Mineral. Geochem. 64:5–57 [Google Scholar]
  28. Manceau A, Marcus MA, Tamura N. 28.  2002. Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Rev. Mineral. Geochem. 49:341–28 [Google Scholar]
  29. Leeuwen HP, Town RM, Buffle J, Cleven R, Davison W. 29.  van et al. 2005. Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 39:8545–56 [Google Scholar]
  30. Thullner M, Van Cappellen P, Regnier P. 30.  2005. Modeling the impact of microbial activity on redox dynamics in porous media. Geochim. Cosmochim. Acta 69:5005–19 [Google Scholar]
  31. Navarro E, Baun A, Behra R, Hartmann NB, Filser J. 31.  et al. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–86 [Google Scholar]
  32. Giger W. 32.  2009. Hydrophilic and amphiphilic water pollutants: using advanced analytical methods for classic and emerging contaminants. Anal. Bioanal. Chem. 393:37–44 [Google Scholar]
  33. Richardson SD. 33.  2009. Water analysis: emerging contaminants and current issues. Anal. Chem. 81:4645–77 [Google Scholar]
  34. Tülp HC, Goss K-U, Schwarzenbach RP, Fenner K. 34.  2008. Experimental determination of LSER parameters for a set of 76 diverse pesticides and pharmaceuticals. Environ. Sci. Technol. 42:2034–40 [Google Scholar]
  35. Richter MK, Sander M, Krauss M, Christl I, Dahinden MG. 35.  et al. 2009. Cation binding of antimicrobial sulfathiazole to Leonardite humic acid. Environ. Sci. Technol. 43:6632–38 [Google Scholar]
  36. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J. 36.  2009. Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ. Sci. Technol. 43:7039–46 [Google Scholar]
  37. Brack W, Klamer HJC, de Ada ML, Barcelo D. 37.  2007. Effect-directed analysis of key toxicants in European river basins. A review. Environ. Sci. Pollut. Res. 14:30–38 [Google Scholar]
  38. Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen ELM. 38.  2008. Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. J. Environ. Monit. 10:622–31 [Google Scholar]
  39. Lohmann R, Breivik K, Dachs J, Muir D. 39.  2007. Global fate of POPs: current and future research directions. Environ. Pollut. 150:150–65 [Google Scholar]
  40. Muir DCG, Howard PH. 40.  2006. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 40:7157–66 [Google Scholar]
  41. Vonderheide AP, Mueller KE, Meija J, Welsh GL. 41.  2008. Polybrominated diphenyl ethers: causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Sci. Total Environ. 400:425–36 [Google Scholar]
  42. Yogui GT, Sericano JL. 42.  2009. Polybrominated diphenyl ether flame retardants in the US marine environment: a review. Environ. Int. 35:655–66 [Google Scholar]
  43. Goss KU, Bronner G. 43.  2006. What is so special about the sorption behavior of highly fluorinated compounds?. J. Phys. Chem. A 110:9518–22 [Google Scholar]
  44. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH. 44.  2006. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 40:32–44 [Google Scholar]
  45. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas F. 45.  2007. Food web-specific biomagnification of persistent organic pollutants. Science 317:236–39 [Google Scholar]
  46. Kelly BC, Ikonomou MG, Blair JD, Surridge B, Hoover D. 46.  et al. 2009. Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnification and wildlife exposure. Environ. Sci. Technol. 43:4037–43 [Google Scholar]
  47. Hites RA. 47.  2004. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ. Sci. Technol. 38:945–56 [Google Scholar]
  48. Porta M, Puigdomenech E, Ballester F, Selva J, Ribas-Fito N. 48.  et al. 2008. Monitoring concentrations of persistent organic pollutants in the general population: the international experience. Environ. Int. 34:546–61 [Google Scholar]
  49. Brown TN, Wania F. 49.  2008. Screening chemicals for the potential to he persistent organic pollutants: a case study of Arctic contaminants. Environ. Sci. Technol. 42:5202–9 [Google Scholar]
  50. Breivik K, Sweetman A, Pacyna JM, Jones KC. 50.  2007. Towards a global historical emission inventory for selected PCB congeners—A mass balance approach-3. An update. Sci. Total Environ. 377:296–307 [Google Scholar]
  51. Scheringer M. 51.  2009. Long-range transport of organic chemicals in the enviornment. Environ. Toxicol. Chem. 28:677–90 [Google Scholar]
  52. Swackhamer DL, Needham LL, Powell DE, Muir DC. 52.  2009. Use of measurement data in evaluating exposure of humans and wildlife to POPs/PBTs. Integr. Environ. Assess. Manag. 5:638–61 [Google Scholar]
  53. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA. 53.  et al. 2009. The toxicology of climate change: environmental contaminants in a warming world. Environ. Int. 35:971–86 [Google Scholar]
  54. 54. UN Food Agric. Organ. (FAO) 2008. FAOSTAT statistical database http://faostat.fao.org/site/424/default.aspx [Google Scholar]
  55. 55. US Environ. Prot. Agency (EPA) 2008. Pesticides http://www.epa.gov/pesticides/ [Google Scholar]
  56. Galt RE. 56.  2008. Beyond the circle of poison: significant shifts in the global pesticide complex, 1976–2008. Glob. Environ. Change 18:786–99 [Google Scholar]
  57. 57. Wiley-VCH 2007. Ullmann's Agrochemicals 2 Plant Growth and Crop Protection Weinheim: Wiley-VCH [Google Scholar]
  58. Reus J, Leendertse P, Bockstaller C, Fomsgaard I, Gutsche V. 58.  et al. 2002. Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agric. Ecosyst. Environ. 90:177–87 [Google Scholar]
  59. 59. Eur. Comm 1991. Plant protection products—Directive 91/414/EEC http://ec.europa.eu/food/plant/protection/evaluation/dir91-414eec_en.htm [Google Scholar]
  60. Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson A. 60.  et al. 2001. Forecasting agriculturally driven global environmental change. Science 292:281–84 [Google Scholar]
  61. Gilliom RJ. 61.  2007. Pesticides in U.S. streams and groundwater. Environ. Sci. Technol. 41:3407–13 [Google Scholar]
  62. Flury M. 62.  1996. Experimental evidence of transport of pesticides through field soils—A review. J. Environ. Qual. 25:25–45 [Google Scholar]
  63. Kay P, Edwards AC, Foulger M. 63.  2009. A review of the efficacy of contemporary agricultural stewardship measures for ameliorating water pollution problems of key concern to the UK water industry. Agric. Syst. 99:67–75 [Google Scholar]
  64. Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T. 64.  et al. 2009. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ. Chem. Lett. 7:205–31 [Google Scholar]
  65. Roger-Estrade J, Richard G, Dexter AR, Boizard H, De Tourdonnet S. 65.  et al. 2009. Integration of soil structure variations with time and space into models for crop management. A review. Agron. Sustain. Dev. 29:135–42 [Google Scholar]
  66. Leu C, Singer H, Stamm C, Muller SR, Schwarzenbach RP. 66.  2004. Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment. Environ. Sci. Technol. 38:3827–34 [Google Scholar]
  67. Reichenberger S, Bach M, Skitschak A, Frede HG. 67.  2007. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci. Total Environ. 384:1–35 [Google Scholar]
  68. Leu C, Singer H, Stamm C, Muller SR, Schwarzenbach RP. 68.  2004. Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. Environ. Sci. Technol. 38:3835–41 [Google Scholar]
  69. Kristoffersen P, Rask AM, Grundy AC, Franzen I, Kempenaar C. 69.  et al. 2008. A review of pesticide policies and regulations for urban amenity areas in seven European countries. Weed Res. 48:201–14 [Google Scholar]
  70. Kleijn D, Sutherland WJ. 70.  2003. How effective are European agri-environment schemes in conserving and promoting biodiversity?. J. Appl. Ecol. 40:947–69 [Google Scholar]
  71. Calvert GM, Karnik J, Mehler L, Beckman J, Morrissey B. 71.  et al. 2008. Acute pesticide poisoning among agricultural workers in the United States, 1998–2005. Am. J. Ind. Med. 51:883–98 [Google Scholar]
  72. Steerenberg P, van Amelsvoort L, Colosio C, Corsin E, Fustinoni S. 72.  et al. 2008. Toxicological evaluation of the immune function of pesticide workers, a European wide assessment. Hum. Exp. Toxicol. 27:701–7 [Google Scholar]
  73. Oluwole O, Cheke RA. 73.  2009. Health and environmental impacts of pesticide use practices: a case study of farmers in Ekiti State, Nigeria. Int. J. Agric. Sustain. 7:153–63 [Google Scholar]
  74. Sarkar SK, Bhattacharya BD, Bhattacharya A, Chatterjee M, Alam A. 74.  et al. 2008. Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview. Environ. Int. 34:1062–71 [Google Scholar]
  75. Williamson S, Ball A, Pretty J. 75.  2008. Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot. 27:1327–34 [Google Scholar]
  76. 76. UN Environ. Program. (UNEP) 2007. Global Environment Outlook GEO4: Environment for Development (e-book) http://www.eoearth.org/article/Global_Environment_Outlook_%28GEO-4%29:_Environment_for_Development_%28e-book%29 [Google Scholar]
  77. Atapattu SS, Kodituwakku DC. 77.  2009. Agriculture in South Asia and its implications on downstream health and sustainability: a review. Agric. Water Manag. 96:361–73 [Google Scholar]
  78. Khan S, Hanjra MA, Mu JX. 78.  2009. Water management and crop production for food security in China: a review. Agric. Water Manag. 96:349–60 [Google Scholar]
  79. Menezes CT, Heller L. 79.  2008. A method for prioritization of areas for pesticides surveillance on surface waters: a study in Minas Gerais, Brazil. Water Sci. Technol. 57:1693–98 [Google Scholar]
  80. Agrawal GD. 80.  1999. Diffuse agricultural water pollution in India. Water Sci. Technol. 39:33–47 [Google Scholar]
  81. Shi LL, Shan ZJ, Kong DY, Cai DJ. 81.  2006. The health and ecological impacts of organochlorine pesticide pollution in China: bioaccumulation of organochlorine pesticides in human and fish fats. Hum. Ecol. Risk Assess. 12:402–7 [Google Scholar]
  82. Chen Y, Parvez F, Gamble M, Islam T, Ahmed A. 82.  et al. 2009. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol. Appl. Pharmacol. 239:184–92 [Google Scholar]
  83. Haque R, Mazumder DNG, Samanta S, Ghosh N, Kalman D. 83.  et al. 2003. Arsenic in drinking water and skin lesions: dose-response data from West Bengal, India. Epidemiology 14:174–82 [Google Scholar]
  84. Berg M, Stengel C, Trang PTK, Viet PH, Sampson ML. 84.  et al. 2007. Magnitude of arsenic pollution in the Mekong and Red river deltas—Cambodia and Vietnam. Sci. Total Environ. 372:413–25 [Google Scholar]
  85. Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SMM. 85.  et al. 2004. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl. Geochem. 19:181–200 [Google Scholar]
  86. Frost FJ, Muller T, Petersen HV, Thomson B, Tollestrup K. 86.  2003. Identifying US populations for the study of health effects related to drinking water arsenic. J. Expo. Anal. Environ. Epidemiol. 13:231–39 [Google Scholar]
  87. Peters SC. 87.  2008. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes. J. Contam. Hydrol. 99:8–21 [Google Scholar]
  88. Winkel L, Berg M, Amini M, Hug SJ, Johnson CA. 88.  2008. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 1:536–42 [Google Scholar]
  89. Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ. 89.  et al. 2008. Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 42:3669–75 [Google Scholar]
  90. Kapaj S, Peterson H, Liber K, Bhattacharya P. 90.  2006. Human health effects from chronic arsenic poisoning—a review. J. Environ. Sci. Health Part A 41:2399–428 [Google Scholar]
  91. Smith AH, Lopipero PA, Bates MN, Steinmaus CM. 91.  2002. Public health: arsenic epidemiology and drinking water standards. Science 296:2145–46 [Google Scholar]
  92. Mohan D, Pittman CU. 92.  2007. Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142:1–53 [Google Scholar]
  93. Leupin OX, Hug SJ, Badruzzaman ABM. 93.  2005. Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ. Sci. Technol. 39:8032–37 [Google Scholar]
  94. Jakariya M, von Bromssen M, Jacks G, Chowdhury AMR, Ahmed KM, Bhattacharya P. 94.  2007. Searching for a sustainable arsenic mitigation strategy in Bangladesh: experience from two upazilas. Int. J. Environ. Pollut. 31:415–30 [Google Scholar]
  95. Hoque BA, Hoque MM, Ahmed T, Islam S, Azad AK. 95.  et al. 2004. Demand-based water options for arsenic mitigation: an experience from rural Bangladesh. Public Health 118:70–77 [Google Scholar]
  96. Al Rmalli SW, Haris PI, Harrington CF, Ayub M. 96.  2005. A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Sci. Total Environ. 337:23–30 [Google Scholar]
  97. Douglas I, Lawson N. 97.  2000. Material flows due to mining and urbanization. A Handbook of Industrial Ecology RU Ayers, LW Ayers 351–64 Cheltenham, UK/Northampton, MA: Elgar [Google Scholar]
  98. Bridge G. 98.  2004. Contested terrain: mining and the environment. Annu. Rev. Environ. Resour. 29:205–59 [Google Scholar]
  99. Blodau C. 99.  2006. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Sci. Total Environ. 369:307–32 [Google Scholar]
  100. Johnson DB, Hallberg KB. 100.  2005. Acid mine drainage remediation options: a review. Sci. Total Environ. 338:3–14 [Google Scholar]
  101. Hinton JJ, Veiga MM, Veiga ATC. 101.  2003. Clean artisanal gold mining: a utopian approach?. J. Clean. Prod. 11:99–115 [Google Scholar]
  102. Eisler R. 102.  2003. Health risks of gold miners: a synoptic review. Environ. Geochem. Health 25:325–45 [Google Scholar]
  103. Mudd GM. 103.  2007. Global trends in gold mining: towards quantifying environmental and resource sustainability?. Resour. Policy 32:42–56 [Google Scholar]
  104. Eisler R, Wiemeyer SN. 104.  2004. Cyanide hazards to plants and animals from gold mining and related water issues. Rev. Environ. Contam. Toxicol. 183:21–54 [Google Scholar]
  105. Röggla G. 105.  2000. UN report on cyanide spill warns of risk. Lancet 355:1530 [Google Scholar]
  106. Dudka S, Adriano DC. 106.  1997. Environmental impacts of metal ore mining and processing: a review. J. Environ. Qual. 26:590–602 [Google Scholar]
  107. Akcil A. 107.  2003. Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol. Adv. 21:501–11 [Google Scholar]
  108. Hamor T. 108.  2004. Sustainable mining in the European Union: the legislative aspect. Environ. Manag. 33:252–61 [Google Scholar]
  109. Jenkins H, Yakovleva N. 109.  2006. Corporate social responsibility in the mining industry: exploring trends in social and environmental disclosure. J. Clean. Prod. 14:271–84 [Google Scholar]
  110. Giusti L. 110.  2009. A review of waste management practices and their impact on human health. Waste Manag. 29:2227–39 [Google Scholar]
  111. 111. Eur. Environ. Agency (EEA) 2000. Management of contaminated sites in Western Europe: topic report No. 13/1999 EEA, Copenhagen. http://www.eea.europa.eu/publications/Topic_report_No_131999 [Google Scholar]
  112. 112. US Environ. Prot. Agency (EPA) 2008. 2008 report on the environment EPA/600/R-07/045F Natl. Cent. Environ. Assess. Washington, DC: http://www.epa.gov/roe/ [Google Scholar]
  113. Baun DL, Christensen TH. 113.  2004. Speciation of heavy metals in landfill leachate: a review. Waste Manag. Res. 22:3–23 [Google Scholar]
  114. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB. 114.  et al. 2001. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 16:659–718 [Google Scholar]
  115. Farhadian M, Vachelard C, Duchez D, Larroche C. 115.  2008. In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour. Technol. 99:5296–308 [Google Scholar]
  116. Smidt H, de Vos WM. 116.  2004. Anaerobic microbial dehalogenation. Annu. Rev. Microbiol. 58:43–73 [Google Scholar]
  117. Engelhaupt E. 117.  2008. Happy birthday, love canal. Environ. Sci. Technol. 42:8179–86 [Google Scholar]
  118. Selin NE. 118.  2009. Global biogeochemical cycling of mercury: a review. Annu. Rev. Environ. Resour. 34:43–63 [Google Scholar]
  119. Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL. 119.  1999. Migration of plutonium in ground water at the Nevada Test Site. Nature 397:56–59 [Google Scholar]
  120. Ewing RC. 120.  2006. The nuclear fuel cycle: a role for mineralogy and geochemistry. Elements 2:331–34 [Google Scholar]
  121. Spain JC, Hughes JB, Knackmuss H-J. 121.  2000. Biodegradation of Nitroaromatic Compounds and Explosives Boca Raton: Lewis434 [Google Scholar]
  122. Eighmy TT, Eusden JD, Krzanowski JE, Domingo DS, Stampfli D. 122.  et al. 1995. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid-waste incineration electrostatic precipitator ash. Environ. Sci. Technol. 29:629–46 [Google Scholar]
  123. Bayer-Raich M, Jarsjo J, Liedl R, Ptak T, Teutsch G. 123.  2006. Integral pumping test analyses of linearly sorbed groundwater contaminants using multiple wells: inferring mass flows and natural attenuation rates. Water Resour. Res. 42:W08411 [Google Scholar]
  124. Vrijheid M. 124.  2000. Health effects of residence near hazardous waste landfill sites: a review of epidemiologic literature. Environ. Health Perspect. 108:101–12 [Google Scholar]
  125. Henderson AD, Demond AH. 125.  2007. Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ. Eng. Sci. 24:401–23 [Google Scholar]
  126. Salt DE, Smith RD, Raskin I. 126.  1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:643–68 [Google Scholar]
  127. Hunkeler D, Aravena R, Butler BJ. 127.  1999. Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies. Environ. Sci. Technol. 33:2733–38 [Google Scholar]
  128. Bedard DL. 128.  2008. A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls—from sediment to defined medium. Annu. Rev. Microbiol. 62:253–70 [Google Scholar]
  129. Tobler NB, Hofstetter TB, Straub KL, Fontana D, Schwarzenbach RP. 129.  2007. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions. Environ. Sci. Technol. 41:7765–72 [Google Scholar]
  130. Elsner M, Schwarzenbach RP, Haderlein SB. 130.  2004. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environ. Sci. Technol. 38:799–807 [Google Scholar]
  131. Neumann A, Hofstetter TB, Lüssi M, Cirpka OA, Petit S, Schwarzenbach RP. 131.  2008. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Environ. Sci. Technol. 42:8381–87 [Google Scholar]
  132. Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M. 132.  et al. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44:15–23 [Google Scholar]
  133. Hofstetter TB, Schwarzenbach RP, Bernasconi SM. 133.  2008. Assessing transformation processes of organic compounds using stable isotope fractionation. Environ. Sci. Technol. 42:7737–43 [Google Scholar]
  134. Lloyd JR, Renshaw JC. 134.  2005. Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr. Opin. Biotechnol. 16:254–60 [Google Scholar]
  135. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD. 135.  et al. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 36:1202–11 [Google Scholar]
  136. Ternes TA, Joss A. 136.  2006. Human Pharmaceuticals, Hormones and Fragrances: The Challenge of Micro-pollutants in Urban Water Management London: IWA Publ.468 [Google Scholar]
  137. 137. Ger. Assoc. Research-Based Pharm. Co. (vfa, Verband Forschender Arzneimittelhersteller e.V.) 2009. Statistics 2009: The Pharmaceutical Industry in Germany Berlin: vfa64 [Google Scholar]
  138. Kümmerer K. 138.  2004. Emissions from medical care units. . In Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks27–44 Berlin/Heidelberg: Springer [Google Scholar]
  139. Stamm C, Alder AC, Fenner K, Hollender J, Krauss M. 139.  et al. 2008. Spatial and temporal patterns of pharmaceuticals in the aquatic environment: a review. Geogr. Compass 2:920–55 [Google Scholar]
  140. Ternes TA. 140.  1998. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 32:3245–60 [Google Scholar]
  141. Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS. 141.  et al. 2009. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ. Sci. Technol. 43:7862–69 [Google Scholar]
  142. Joss A, Keller E, Alder AC, Gobel A, McArdell CS. 142.  et al. 2005. Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 39:3139–52 [Google Scholar]
  143. Schulz M, Löffler D, Wagner M, Ternes TA. 143.  2008. Transformation of the X-ray contrast medium iopromide in soil and biological wastewater treatment. Environ. Sci. Technol. 42:7207–17 [Google Scholar]
  144. Escher B, Baumgartner R, Lienert J, Fenner K. 144.  2009. Predicting the ecotoxicological effects of transformation products. Transformation Products of Synthetic Chemicals in the Environment, Ser., The Handbook of Environmental Chemistry O Hutzinger, D Barcelo, A Kostianoy 205–44 Berlin/Heidelberg: Springer [Google Scholar]
  145. Ort C, Hollender J, Schaerer M, Siegrist H. 145.  2009. Model-based evaluation of reduction strategies for micropollutants from wastewater treatment plants in complex river networks. Environ. Sci. Technol. 43:3214–20 [Google Scholar]
  146. Heberer T, Massmann G, Fanck B, Taute T, Dunnbier U. 146.  2008. Behavior and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere 73:451–60 [Google Scholar]
  147. Heberer T, Ternes T. 147.  2006. Residues of pharmaceuticals from human use. Organic Pollutants in the Water Cycle T Reemtsma, M Jekel 41–63 Weinheim: Wiley-VCH [Google Scholar]
  148. 148. World Health Org. (WHO) 2004. Guidelines for Drinking Water Quality Geneva, Switz.: WHO, 3rd. [Google Scholar]
  149. 149. Eur. Med. Agency 2009. Scientific guidelines for human medicinal products http://www.ema.europa.eu/htms/human/humanguidelines/background.htm [Google Scholar]
  150. Joss A, Siegrist H, Ternes TA. 150.  2008. Are we about to upgrade wastewater treatment for removing organic micropollutants?. Water Sci. Technol. 57:251–55 [Google Scholar]
  151. von Gunten U. 151.  2006. Removal of PPCP during drinking water treatment. See Ref. 136 1–13
  152. Sumpter JP, Johnson AC. 152.  2008. 10th Anniversary perspective: reflections on endocrine disruption in the aquatic environment: from known knowns to unknown unknowns (and many things in between). J. Environ. Monit. 10:1476–85 [Google Scholar]
  153. Routledge EJ, Sumpter JP. 153.  1996. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ. Toxicol. Chem. 15241–48 [Google Scholar]
  154. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE. 154.  et al. 2007. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl. Acad. Sci. USA 104:8897–901 [Google Scholar]
  155. 155. World Health Organ. (WHO)/UN Child. Fund (UNICEF) 2008. Progress on Drinking-Water and Sanitation: Special Focus on Sanitation Geneva, Switz./New York: WHO/UNICEF58 [Google Scholar]
  156. 156. World Health Organ. (WHO) 2009. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks Geneva, Switz.: WHO [Google Scholar]
  157. 157. World Health Organ. (WHO)/UN Child. Fund (UNICEF) 2006. Meeting the MDG Drinking-Water and Sanitation Target: The Urban and Rural Challenge of the Decade Geneva, Switz./New York: WHO/UNICEF [Google Scholar]
  158. Ashbolt NJ. 158.  2004. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198:229–38 [Google Scholar]
  159. 159. World Health Organ. (WHO) 2002. Global defense against the infectious disease threat. Emerging and Epidemic-Prone Diseases MK Kindhauser 56–103 Geneva, Switz.: WHO [Google Scholar]
  160. Albert MJ, Faruque ASG, Faruque SM, Sack RB, Mahalanabis D. 160.  1999. Case-control study of enteropathogens associated with childhood diarrhea in Dhaka, Bangladesh. J. Clin. Microbiol. 37:3458–64 [Google Scholar]
  161. 161. World Health Organ. (WHO) 2008. 2008 UN-Water GLAAS Pilot Report Geneva, Switz.: WHO [Google Scholar]
  162. Nelson KL, Murray A. 162.  2008. Sanitation for unserved populations: technologies, implementation challenges, and opportunities. Annu. Rev. Environ. Resour. 33:119–51 [Google Scholar]
  163. 163. World Health Organ. (WHO) 2008. Guidelines for Drinking Water Quality (3rd Edition) Incorporating the 1st and 2nd Addenda, Vol. 1, Recommendations Geneva, Switz.: WHO [Google Scholar]
  164. Asano T, Butron FL, Leverenz HL, Tsuchihashi R, Tchobanglous G. 164.  2007. Water Reuse: Issues, Technologies, and Applications New York: Metcalf & Eddy/AECOM Press & McGraw-Hill [Google Scholar]
  165. 165. World Health Organ. (WHO) 2003. Heterotrophic Plate Counts and Drinking-Water Safety. The Significance of HPCs for Water Quality and Human Health J Bartram, J Cotruvo, M Exner, C Fricker, A Glasmacher London: WHO/IWA Publ. [Google Scholar]
  166. 166. US Environ. Prot. Agency (EPA) 2009. National primary drinking water regulations. EPA 816-F-09-004 http://www.epa.gov/safewater/consumer/pdf/mcl.pdf [Google Scholar]
  167. Payment P, Waite M, Dufour A. 167.  2003. Introducing parameters for the assessment of drinking water quality. See Ref. 184 47–77
  168. Mackenzie WR, Hoxie NJ, Proctor ME, Gradus MS, Blair KA. 168.  et al. 1994. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N. Engl. J. Med. 331:161–67 [Google Scholar]
  169. Köster W, Egli T, Ashbolt NJ, Botzenhart K, Burlion N. 169.  et al. 2003. Analytical methods for microbiological water quality testing. See Ref. 184 237–95
  170. Keserue H-A, Füchslin HP, Egli T. 170.  2008. Rapid detection and enumeration of Giardia sp. cysts in different water samples by immunomagnetic separation and flowcytometric detection Presented at 5th IWA Lead. Edge Technol. Conf. Water Wastewater Technol., Zürich, Switz. [Google Scholar]
  171. Füchslin HP, Kötzsch S, Keserue H-A, Egli T. 171.  2010. Rapid and quantitative detection of Legionella pneumophila applying immunomagnetic separation and flow cytometry. Cytometrie Part A 77A:264–74 [Google Scholar]
  172. Berney M, Vital M, Hulshoff I, Weilenmann HU, Egli T, Hammes F. 172.  2008. Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res. 42:4010–18 [Google Scholar]
  173. Hammes F, Vital M, Stucki D, Lautenschlager K, Egli T. 173.  2009. Advances in microbiological methods for drinking water analysis: flow cytometry, assimilable organic carbon and pathogen growth potential. TECHNEAU: Safe Drinking Water from Source to Tap T van den Hoven, C Kanzner 269–77 London/New York: IWA Publ. [Google Scholar]
  174. Hammes F, Berney M, Wang YY, Vital M, Koster O, Egli T. 174.  2008. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res. 42:269–77 [Google Scholar]
  175. Myers SS, Patz JA. 175.  2009. Emerging threats to human health from global environmental change. Annu. Rev. Environ. Resour. 34:223–52 [Google Scholar]
  176. Ford TE, Colwell RR, Rose JB, Morse SS, Rogers DJ, Yates TL. 176.  2009. Using satellite images of environmental changes to predict infectious disease outbreaks. Emerg. Infect. Dis. 15:1341–46 [Google Scholar]
  177. 177. World Health Organ. (WHO) 2007. World Health Report 2007—A Safer Future: Global Public Health Securitiy in the 21st Century Geneva, Switz.: WHO [Google Scholar]
  178. Rogers DJ, Randolph SE, Snow RW, Hay SI. 178.  2002. Satellite imagery in the study and forecast of malaria. Nature 415:710–15 [Google Scholar]
  179. Peter-Varbanets M, Zurbrugg C, Swartz C, Pronk W. 179.  2009. Decentralized systems for potable water and the potential of membrane technology. Water Res. 43:245–65 [Google Scholar]
  180. Peter-Varbanets M, Hammes F, Vital M, Pronk W. 180.  2010. Stabilization of flux during dead-end ultra-low pressure ultrafiltration. Water Res. 44:3607–16 [Google Scholar]
  181. Hunter PR. 181.  2009. Household water treatment in developing countries: comparing different intervention types using meta-regression. Environ. Sci. Technol. 43:8991–97 [Google Scholar]
  182. Hunter PR, Zmirou-Navier D, Hartemann P. 182.  2009. Estimating the impact on health of poor reliability of drinking water interventions in developing countries. Sci. Total Environ. 407:2621–24 [Google Scholar]
  183. Bramley RGV. 183.  2009. Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application. Crop Pasture Sci. 60:197–217 [Google Scholar]
  184. Dufour A, Snozzi M, Koster W, Bartram J, Ronchi E, Fewtrell L. 184.  2003. Assessing Microbial Safety of Drinking Water: Improving Approaches and Methods London: IWA Publ./WHO/OECD [Google Scholar]
/content/journals/10.1146/annurev-environ-100809-125342
Loading
/content/journals/10.1146/annurev-environ-100809-125342
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error