The growing extraction of natural resources and the waste and emissions resulting from their use are directly or indirectly responsible for humanity approaching or even surpassing critical planetary boundaries. A sound knowledge base of society's metabolism, i.e., the physical exchange processes between society and its natural environment and the production and consumption processes involved, is essential to develop strategies for more sustainable resource use. Economy-wide material flow accounting (MFA) is a framework that provides consistent compilations of the material inputs to national economies, changes in material stocks within the economic system, and material outputs to other economies and the environment. We present the conceptual foundations of MFA and derived indicators and review the current state of knowledge of global patterns and trends of extraction, trade, and use of materials. We discuss the relation of material use and economic development and the decoupling of material use from economic growth in the context of sustainable resource use policies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Graedel TE, Harper EM, Nassar NT, Reck BK. 1.  2015. On the materials basis of modern society. PNAS 112:206295–300 [Google Scholar]
  2. Shiklomanov IA. 2.  2000. Appraisal and assessment of world water resources. Water Int 25:111–32 [Google Scholar]
  3. Krausmann F, Gingrich S, Eisenmenger N, Erb KH, Haberl H, Fischer-Kowalski M. 3.  2009. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68:102696–705 [Google Scholar]
  4. Boden TA, Marland G, Andres RJ. 4.  2016. Global, regional, and national fossil-fuel CO2 emissions Pap. Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab. US Dep. Energy Oak Ridge, TN: http://cdiac.ornl.gov/trends/emis/tre_glob.html
  5. Hoornweg D, Bhada-Tata P, Kennedy C. 5.  2013. Environment: waste production must peak this century. Nature 502:7473615–17 [Google Scholar]
  6. Steffen W, Crutzen PJ, McNeill JR. 6.  2007. The Anthropocene: are humans now overwhelming the great forces of nature?. AMBIO J. Hum. Environ. 36:8614–21 [Google Scholar]
  7. Haberl H, Erb K-H, Krausmann F. 7.  2014. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39:1363–91 [Google Scholar]
  8. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z. 8.  et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:5878889–92 [Google Scholar]
  9. Izard CF, Müller DB. 9.  2010. Tracking the devil's metal: historical global and contemporary US tin cycles. Resour. Conserv. Recycl. 54:121436–41 [Google Scholar]
  10. Kapur A, Graedel TE. 10.  2006. Copper mines above and below the ground. Environ. Sci. Technol. 40:103135–41 [Google Scholar]
  11. Rockström J, Steffen W, Noone K, Å Persson, Chapin FSI. 11.  et al. 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14:232–63 [Google Scholar]
  12. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I. 12.  et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:62231259855 [Google Scholar]
  13. Pauliuk S, Hertwich EG. 13.  2015. Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies. Ecol. Econ. 119:83–93 [Google Scholar]
  14. Fischer-Kowalski M, Haberl H. 14.  2015. Social metabolism: a metric for biophysical growth and degrowth. Handbook of Ecological Economics J Martinez-Alier, R Muradian 100–38 Cheltenham, UK: Edward Elgar [Google Scholar]
  15. Bringezu S, Moriguchi Y. 15.  2002. Material flow analysis. A Handbook of Industrial Ecology RU Ayres, LW Ayres 79–91 Cheltenham, UK: Edward Elgar [Google Scholar]
  16. Fischer-Kowalski M, Krausmann F, Giljum S, Lutter S, Mayer A. 16.  et al. 2011. Methodology and indicators of economy-wide material flow accounting. J. Ind. Ecol. 15:6855–76 [Google Scholar]
  17. 17. European Environment Agency (EEA). 2010. The European Environment—State and Outlook 2010: Synthesis Copenhagen, Den.: EEA
  18. 18. Organisation for Economic Co-operation and Development (OECD). 2015. Material Resources, Productivity and the Environment Paris: OECD
  19. 19. European Statistical Office (Eurostat). 2001. Economy-wide Material Flow Accounts and Derived Indicators. A Methodological Guide. Luxemb., Luxembourg: Eurostat
  20. 20. Organisation for Economic Co-operation and Development (OECD). 2008. Measuring Material Flows and Resource Productivity I The OECD Guide Paris: OECD21
  21. Fischer-Kowalski M. 21.  1998. Society's metabolism. The intellectual history of material flow analysis, Part I, 1860–1970. J. Ind. Ecol. 2:161–78 [Google Scholar]
  22. Martinez-Alier J. 22.  2004. Marx, energy and social metabolism. Encycl. Energy 3:825–34 [Google Scholar]
  23. Fischer-Kowalski M, Hüttler W. 23.  1998. Society's metabolism. J. Ind. Ecol. 2:4107–36 [Google Scholar]
  24. Ayres RU, Kneese AV. 24.  1969. Production, consumption, and externalities. Am. Econ. Rev. 59:282–97 [Google Scholar]
  25. Graedel TE, Lifset RJ. 25.  2016. Industrial ecology's first decade. See Ref. 171 3–20
  26. Fischer-Kowalski M, Weisz H. 26.  1999. Society as a hybrid between material and symbolic realms. Toward a theoretical framework of society-nature interaction. Adv. Hum. Ecol. 8:215–51 [Google Scholar]
  27. Baccini P, Brunner PH. 27.  2012. Metabolism of the Anthroposphere: Analysis, Evaluation, Design Cambridge, MA: MIT Press. , 2nd ed..
  28. Daxbeck H, Baccini P, Brunner PH. 28.  1994. Industrial metabolism at the regional and local level: a case study on a Swiss region. See Ref. 142 163–93
  29. Kennedy C, Cuddihy J, Engel-Yan J. 29.  2007. The changing metabolism of cities. J. Ind. Ecol. 11:243–59 [Google Scholar]
  30. Rosado L, Niza S, Ferrao P. 30.  2014. A material flow accounting case study of the Lisbon metropolitan area using the urban metabolism analyst model. J. Ind. Ecol. 18:184–101 [Google Scholar]
  31. Fischer-Kowalski M, Krausmann F, Pallua I. 31.  2014. A sociometabolic reading of the Anthropocene: modes of subsistence, population size and human impact on Earth. Anthr. Rev. 1:18–33 [Google Scholar]
  32. Fischer-Kowalski M, Haberl H. 32. , eds. 2007. Socioecological Transitions and Global Change: Trajectories of Social Metabolism and Land Use Cheltenham, UK: Edward Elgar
  33. Krausmann F, Weisz H, Eisenmenger N. 33.  2016. Transitions in sociometabolic regimes throughout human history. See Ref. 172 63–92
  34. Krausmann F, Fischer-Kowalski M, Schandl H, Eisenmenger N. 34.  2008. The global sociometabolic transition. J. Ind. Ecol. 12:5–6637–56 [Google Scholar]
  35. Gonzales de Molina, Toledo V. 35.  2014. The Social Metabolism - A Socio-Ecological Theory of Historical Change, Vol. 3 Cham: Springer International Publishing355 pp.
  36. Pauliuk S, Hertwich EG. 36.  2016. Prospective models of society's future metabolism: what industrial ecology has to contribute. See Ref. 171 21–43
  37. Schandl H, Hatfield-Dodds S, Wiedmann T, Geschke A, Cai Y. 37.  et al. 2016. Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. J. Clean. Prod. 132:45–56 [Google Scholar]
  38. Schandl H, Schaffartzik A. 38.  2015. Material flow analysis. International Encyclopedia of the Social & Behavioral Sciences JD Wright 760–64 Oxford, UK: Elsevier [Google Scholar]
  39. Paley WS. 39.  1952. Resources for Freedom: Report of the President's Materials Policy Commission Washington, DC: US Gov. Print. Off.
  40. Bringezu S. 40.  1993. Towards increasing resource productivity: how to measure the total material consumption of regional or national economies. Fresenius Environ. Bull. 2:8437–42 [Google Scholar]
  41. 41. Ministry of the Environment. 1994. Quality of the Environment in Japan 1994 Tokyo, Jpn.: Min. Environ. Gov. Jpn http://www.env.go.jp/en/wpaper/1994/index.html
  42. Steurer A. 42.  1992. Stoffstrombilanz Österreich 1988, Vol. 26 Vienna: IFF Soc. Ecology
  43. Adriaanse A, Bringezu S, Hammond A, Moriguchi Y, Rodenburg E. 43.  et al. 1997. Resource Flows: The Material Basis of Industrial Economies Washington, DC: World Res. Inst.
  44. Matthews E, Amann C, Bringezu S, Fischer-Kowalski M, Hüttler W. 44.  et al. 2000. The Weight of Nations: Material Outflows from Industrial Economies Washington, DC: World Res. Inst.
  45. 45. Organisation for Economic Co-operation and Development (OECD). 2008. Measuring Material Flows and Resource Productivity II The Accounting Framework Paris: OECD
  46. 46. United Nations. 2014. System of Environmental-Economic Accounting 2012. Central Framework. New York: United Nations
  47. 47. United Nations Environment Programme (UNEP). 2016. Global Material Flows and Resource Productivity. Assessment Report for the UNEP International Resource Panel. Paris: UNEP
  48. 48. European Statistical Office (Eurostat). 2013. Economy-wide Material Flow Accounts (EW-MFA). Compilation Guide 2013 Luxemb., Luxembourg: Eurostat
  49. Krausmann F, Weisz H, Eisenmenger N, Schütz H, Haas W, Schaffartzik A. 49.  2015. Economy-wide Material Flow Accounting Introduction and Guide, Vol. 151 Vienna: IFF Soc. Ecology
  50. Bringezu S, van de Sand I, Schütz H, Bleischwitz R, Moll S. 50.  2009. Analysing global resource use of national and regional economies across various levels. See Ref. 174 10–52
  51. Pauliuk S, Majeau-Bettez G, Müller DB. 51.  2015. A general system structure and accounting framework for socioeconomic metabolism. J. Ind. Ecol. 19:5728–41 [Google Scholar]
  52. Haberl H. 52.  2001. The energetic metabolism of societies Part I: Accounting concepts. J. Ind. Ecol. 5:111–33 [Google Scholar]
  53. Ščasny M, Kovanda J, Hák T. 53.  2003. Material flow accounts, balances and derived indicators for the Czech Republic during the 1990s: results and recommendations for methodological improvements. Ecol. Econ. 45:141–57 [Google Scholar]
  54. Bringezu S, Schütz H, Moll S. 54.  2003. Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. J. Ind. Ecol. 7:243–64 [Google Scholar]
  55. Eisenmenger N, Fischer-Kowalski M, Weisz H. 55.  2007. Indicators of natural resource use and consumption. See Ref. 175 193–222
  56. Hashimoto S, Moriguchi Y. 56.  2004. Proposal of six indicators of material cycles for describing society's metabolism: from the viewpoint of material flow analysis. Resour. Conserv. Recycl. 40:3185–200 [Google Scholar]
  57. Kovanda J, van de Sand I, Schütz H, Bringezu S. 57.  2012. Economy-wide material flow indicators: overall framework, purposes and uses and comparison of material use and resource intensity of the Czech Republic, Germany and the EU-15. Ecol. Indic. 17:88–98 [Google Scholar]
  58. 58. European Commission. 2011. Roadmap to a Resource Efficient Europe (COM2011 571) Brussels: Eur. Comm.
  59. 59. Ministry of the Environment. 2013. Fundamental Plan for Establishing a Sound Material-Cycle Society Tokyo, Jpn.: Ministry Environ. Gov. Jpn.
  60. Van der Voet E, Van Oers L, De Bruyn S, De Jong F, Tukker A. 60.  2009. Environmental Impact of the Use of Natural Resources and Products, Vol. 184 Leiden, Neth.: Leiden Univ., Inst. Environ. Sci. (CML)
  61. van der Voet E, van Oers L, Nikolic I. 61.  2004. Dematerialization: not just a matter of weight. J. Ind. Ecol. 8:4121–37 [Google Scholar]
  62. 62. JRC. 2012. Life cycle indicators for resources, products and waste Rep. EUR 25466 Joint Res. Cent., Inst. Environ. Sustain., EU Comm. Ispra, Italy: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/31346/1/lbna25466enn.pdf
  63. Bruckner M, Giljum S, Lutz C, Wiebe KS. 63.  2012. Materials embodied in international trade-global material extraction and consumption between 1995 and 2005. Glob. Environ. Change 22:3568–76 [Google Scholar]
  64. Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S. 64.  2012. Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet. Ecol. Indic. 16:100–12 [Google Scholar]
  65. Kovanda J, Weinzettel J. 65.  2013. The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension. Environ. Sci. Policy. 29:71–80 [Google Scholar]
  66. Giljum S, Bruckner M, Martinez A. 66.  2015. Material footprint assessment in a global input-output framework. J. Ind. Ecol. 19:5792–804 [Google Scholar]
  67. Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S. 67.  et al. 2015. The material footprint of nations. Proc. Natl. Acad. Sci. 112:206271–76 [Google Scholar]
  68. Lenzen M, Murray J, Sack F, Wiedmann T. 68.  2007. Shared producer and consumer responsibility—theory and practice. Ecol. Econ. 61:127–42 [Google Scholar]
  69. Rodrigues J, Domingos T. 69.  2008. Consumer and producer environmental responsibility: comparing two approaches. Ecol. Econ. 66:2–3533–46 [Google Scholar]
  70. Eisenmenger N, Wiedenhofer D, Schaffartzik A, Giljum S, Bruckner M. 70.  et al. 2016. Consumption-based material flow indicators—comparing six ways of calculating the Austrian raw material consumption providing six results. Ecol. Econ. 128:177–86 [Google Scholar]
  71. Saurat M, Ritthoff M. 71.  2013. Calculating MIPS 2.0. Resources 2:4581–607 [Google Scholar]
  72. Lutter S, Giljum S, Bruckner M. 72.  2016. A review and comparative assessment of existing approaches to calculate material footprints. Ecol. Econ. 127:1–10 [Google Scholar]
  73. Schoer K, Weinzettel J, Kovanda J, Giegrich J, Lauwigi C. 73.  2012. Raw material consumption of the European Union: concept, calculation method and results. Environ. Sci. Technol. 46:168903–9 [Google Scholar]
  74. Tukker A, Poliakov E, Heijungs R, Hawkins T, Neuwahl F. 74.  et al. 2009. Towards a global multi-regional environmentally extended input-output database. Ecol. Econ. 68:71928–37 [Google Scholar]
  75. Schaffartzik A, Eisenmenger N, Krausmann F, Weisz H. 75.  2014. Consumption-based material flow accounting. J. Ind. Ecol. 18:1102–12 [Google Scholar]
  76. Lenzen M, Moran D, Kanemoto K, Geschke A. 76.  2013. Building EORA: a global multi-region input-output database at high country and sector resolution. Econ. Syst. Res. 25:120–49 [Google Scholar]
  77. Peters GP, Andrew R, Lennox J. 77.  2011. Constructing an environmentally-extended multi-regional input-output table using the GTAP database. Econ. Syst. Res. 23:2131–52 [Google Scholar]
  78. Tukker A, Dietzenbacher E. 78.  2013. Global multiregional input-output frameworks: an introduction and outlook. Econ. Syst. Res. 25:11–19 [Google Scholar]
  79. Fischer‐Kowalski M, Haberl H. 79.  1997. Tons, joules, and money: modes of production and their sustainability problems. Soc. Nat. Resour. 10:161–85 [Google Scholar]
  80. Fischer-Kowalski M, Haberl H. 80.  2007. Conceptualizing, observing and comparing socioecological transitions. See Ref. 32 1–30
  81. Schandl H, Schulz N. 81.  2002. Changes in the United Kingdom's natural relations in terms of society's metabolism and land-use from 1850 to the present day. Ecol. Econ. 41:2203–21 [Google Scholar]
  82. Gierlinger S, Krausmann F. 82.  2012. The physical economy of the United States of America. J. Ind. Ecol. 16:3365–77 [Google Scholar]
  83. Krausmann F, Gingrich S, Nourbakhch-Sabet R. 83.  2011. The metabolic transition in Japan: a material flow account for the period 1878 to 2005. J. Ind. Ecol. 15:6877–92 [Google Scholar]
  84. Infante-Amate J, Soto D, Aguilera E, García-Ruiz R, Guzmán G. 84.  et al. 2015. The Spanish transition to industrial metabolism: long-term material flow analysis (1860–2010). J. Ind. Ecol. 19:866–76 [Google Scholar]
  85. Krausmann F, Gaugl B, West J, Schandl H. 85.  2016. The metabolic transition of a planned economy: material flows in the USSR and the Russian Federation 1900 to 2010. Ecol. Econ. 124:76–85 [Google Scholar]
  86. Kovanda J, Hak T. 86.  2011. Historical perspectives of material use in Czechoslovakia in 1855–2007. Ecol. Indic. 11:51375–84 [Google Scholar]
  87. Fishman T, Schandl H, Tanikawa H, Walker P, Krausmann F. 87.  2014. Accounting for the material stock of nations. J. Ind. Ecol. 18:3407–20 [Google Scholar]
  88. Wiedenhofer D, Rovenskaya E, Haas W, Krausmann F, Pallua I, Fischer-Kowalski M. 88.  2013. Is there a 1970s syndrome? Analyzing structural breaks in the metabolism of industrial economies. Energy Procedia 40:182–91 [Google Scholar]
  89. Giljum S, Dittrich M, Lieber M, Lutter S. 89.  2014. Global patterns of material flows and their socio-economic and environmental implications: an MFA study on all countries world-wide from 1980 to 2009. Resources 3:1319–39 [Google Scholar]
  90. Schaffartzik A, Mayer A, Gingrich S, Eisenmenger N, Loy C, Krausmann F. 90.  2014. The global metabolic transition: regional patterns and trends of global material flows, 1950–2010. Glob. Environ. Change 26:87–97 [Google Scholar]
  91. Krausmann F, Wiedenhofer D, Lauk C, Haas W, Tanikawa H. 91.  et al. 2017. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. PNAS 14:1880–85 [Google Scholar]
  92. Steinberger JK, Krausmann F, Eisenmenger N. 92.  2010. Global patterns of materials use: a socioeconomic and geophysical analysis. Ecol. Econ. 69:51148–58 [Google Scholar]
  93. Weisz H, Krausmann F, Amann C, Eisenmenger N, Erb KH. 93.  et al. 2006. The physical economy of the European Union: cross-country comparison and determinants of material consumption. Ecol. Econ. 58:4676–98 [Google Scholar]
  94. Krausmann F, Erb K-H, Gingrich S, Lauk C, Haberl H. 94.  2008. Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol. Econ. 65:3471–87 [Google Scholar]
  95. Mayer A, Schaffartzik A, Krausmann F, Eisenmenger N. 95.  2016. More than the sum of its parts: patterns in global material flows. See. Ref. 172 217–37
  96. Steger S, Bleischwitz R. 96.  2011. Drivers for the use of materials across countries. J. Clean. Prod. 19:8816–26 [Google Scholar]
  97. Pauliuk S, Müller DB. 97.  2014. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Change 24:132–42 [Google Scholar]
  98. Wang H, Tian X, Tanikawa H, Chang M, Hashimoto S. 98.  et al. 2014. Exploring China's materialization process with economic transition: analysis of raw material consumption and its socioeconomic drivers. Environ. Sci. Technol. 48:95025–32 [Google Scholar]
  99. Schandl H, West J. 99.  2012. Material flows and material productivity in China, Australia, and Japan. J. Ind. Ecol. 16:3352–64 [Google Scholar]
  100. Schandl H, West J. 100.  2010. Resource use and resource efficiency in the Asia-Pacific region. Glob. Environ. Change 20:4636–47 [Google Scholar]
  101. West J, Schandl H, Krausmann F, Kovanda J, Hak T. 101.  2014. Patterns of change in material use and material efficiency in the successor states of the Former Soviet Union. Ecol. Econ. 105:211–19 [Google Scholar]
  102. Dittrich M, Bringezu S, Schütz H. 102.  2012. The physical dimension of international trade, part 2: indirect global resource flows between 1962 and 2005. Ecol. Econ. 79:32–43 [Google Scholar]
  103. Schaffartzik A, Mayer A, Eisenmenger N, Krausmann F. 103.  2016. Global patterns of metal extractivism, 1950–2010: providing the bones for the industrial society's skeleton. Ecol. Econ. 122:101–10 [Google Scholar]
  104. Giljum S, Eisenmenger N. 104.  2004. North-South trade and the distribution of environmental goods and burdens: a biophysical perspective. J. Environ. Dev. 13:173–100 [Google Scholar]
  105. Moran DD, Lenzen M, Kanemoto K, Geschke A. 105.  2013. Does ecologically unequal exchange occur?. Ecol. Econ. 89:177–86 [Google Scholar]
  106. Perez-Rincon MA. 106.  2006. Colombian international trade from a physical perspective: towards an ecological “Prebisch thesis.”. Ecol. Econ. 59:4519–29 [Google Scholar]
  107. Giljum S. 107.  2004. Trade, materials flows, and economic development in the South: the example of Chile. J. Ind. Ecol. 8:1–2241–61 [Google Scholar]
  108. Bringezu S, Schütz H, Steger S, Baudisch J. 108.  2004. International comparison of resource use and its relation to economic growth: the development of total material requirement, direct material inputs and hidden flows and the structure of TMR. Ecol. Econ. 51:1–297–124 [Google Scholar]
  109. Canas Â, Ferrão P, Conceição P. 109.  2003. A new environmental Kuznets curve? Relationship between direct material input and income per capita: evidence from industrialised countries. Ecol. Econ. 46:2217–29 [Google Scholar]
  110. Seppälä T, Haukioja T, KAIvo-ojA J. 110.  2001. The EKC hypothesis does not hold for direct material flows: Environmental Kuznets Curve Hypothesis tests for direct material flows in five industrial countries. Popul. Environ. 23:2217–38 [Google Scholar]
  111. West J, Schandl H. 111.  2013. Material use and material efficiency in Latin America and the Caribbean. Ecol. Econ. 94:19–27 [Google Scholar]
  112. Steinberger JK, Krausmann F, Getzner M, Schandl H, West J. 112.  2013. Development and dematerialization: an international study. PLOS ONE 8:10e70385 [Google Scholar]
  113. 113. European Commission. 2011. A resource-efficient Europe-Flagship initiative under the Europe 2020 Strategy. Communication (COM 2011 21). Brussels: European Commission http://www.cbss.org/wp-content/uploads/2012/10/resource_efficient_europe_en.pdf
  114. Ekins P. 114.  2002. Economic Growth and Environmental Sustainability: The Prospects for Green Growth New York: Routledge
  115. 115. United Nations Environmment Programme (UNEP). 2011. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth Nairobi, Kenya: UNEP
  116. Giljum S, Hak T, Hinterberger F, Kovanda J. 116.  2005. Environmental governance in the European Union: strategies and instruments for absolute decoupling. Int. J. Sustain. Dev. 8:1–231–46 [Google Scholar]
  117. Ruffing K. 117.  2007. Indicators to measure decoupling of environmental pressure from economic growth. See Ref. 175 211–22
  118. 118. United Nations Environment Programme (UNEP). 2014. Decoupling 2: Technologies, Opportunities and Policy Options Nairobi, Kenya: UNEP
  119. Steger S, Bleischwitz R. 119.  2009. Decoupling GDP from resource use, resource productivity and competitiveness. See Ref. 173 172–93
  120. 120. United Nations Environment Programme (UNEP). 2016. Resource Efficiency: Potential and Economic Implications. A Report of the International Resource Panel. Nairobi, Kenya: UNEP
  121. Bringezu S, Schütz H, Saurat M, Moll S, Acosta Fernandez J, Steger S. 121.  2009. Europe's resource use: basic trends, global and sectoral patterns and environmental and socioeconomic impacts. See Ref. 174 52–155
  122. von Weizsäcker EU, Hargroves C, Smith MH, Desha C, Stasinopoulos P. 122.  2009. Factor Five: Transforming the Global Economy Through 80% Improvements in Resource Productivity London: Earthscan
  123. Allwood JM, Ashby MF, Gutowski TG, Worrell E. 123.  2011. Material efficiency: a white paper. Resour. Conserv. Recycl. 55:3362–81 [Google Scholar]
  124. Ekins P. 124.  2009. The rationale for and economic implications of dematerialisation. See Ref. 173 305–37
  125. Jackson T. 125.  2016. Prosperity Without Growth: Foundations for the Economy of Tomorrow New York: Routledge
  126. Nørgard J, Xue J. 126.  2016. Between green growth and degrowth: decoupling, rebound effects and the politics for long-term sustainability. See Ref. 131 267–84
  127. Ward JD, Sutton PC, Werner AD, Costanza R, Mohr SH, Simmons CT. 127.  2016. Is decoupling GDP growth from environmental impact possible?. PloS One 11:10e0164733 [Google Scholar]
  128. Barker T, Ekins P, Foxon T. 128.  2007. The macro-economic rebound effect and the UK economy. Energy Policy 35:104935–46 [Google Scholar]
  129. Chitnis M, Sorrell S. 129.  2015. Living up to expectations: estimating direct and indirect rebound effects for UK households. Energy Econ 52:S100–16 [Google Scholar]
  130. Hertwich EG. 130.  2005. Consumption and the rebound effect: an industrial ecology perspective. J. Ind. Ecol. 9:1–285–98 [Google Scholar]
  131. Santarius T, Walnum HJ, Aall C. 131. , eds. 2016. Rethinking Climate and Energy Policies: New Perspectives on the Rebound Phenomenon Cham, Switz.: Springer
  132. Kallis G, Kerschner C, Martinez-Alier J. 132.  2012. The economics of degrowth. Ecol. Econ. 84:172–80 [Google Scholar]
  133. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK. 133.  et al. 2010. The next generation of scenarios for climate change research and assessment. Nature 463:7282747–56 [Google Scholar]
  134. Meyer B, Distelkamp M, Wolter MI. 134.  2007. Material efficiency and economic-environmental sustainability. Results of simulations for Germany with the model PANTA RHEI. Ecol. Econ. 63:1192–200 [Google Scholar]
  135. Giljum S, Behrens A, Hinterberger F, Lutz C, Meyer B. 135.  2008. Modelling scenarios towards a sustainable use of natural resources in Europe. Environ. Sci. Policy 11:3204–16 [Google Scholar]
  136. 136. European Commission. 2016. Study on Modelling of the Economic and Environmental Impacts of Raw Material Consumption Luxemb., Luxembourg: Publ. Off. EU
  137. Schandl H, Poldy F, Turner GM, Measham TG, Walker DH, Eisenmenger N. 137.  2008. Australia's resource use trajectories. J. Ind. Ecol. 12:5–6669–85 [Google Scholar]
  138. Hatfield-Dodds S, Schandl H, Newth D, Obersteiner M, Cai Y. 138.  et al. 2017. Assessing global resource use and greenhouse emissions to 2050, with ambitious resource efficiency and climate mitigation policies. J. Clean. Prod. 144:403–14 [Google Scholar]
  139. Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E. 139. Int. Panel Climate Change (IPCC), et al. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Vol. 3 Cambridge, UK: Cambridge Univ. Press
  140. Bringezu S. 140.  2015. Possible target corridor for sustainable use of global material. Resources 4:125–54 [Google Scholar]
  141. Lettenmeier M, Liedtke C, Rohn H. 141.  2014. Eight tons of material footprint—suggestion for a resource cap for household consumption in Finland. Resources 3:3488–515 [Google Scholar]
  142. Ayres RU, Simonis UE. 142. , eds. 1994. Industrial Metabolism: Restructuring for Sustainable Development, Vol. 376 New York: United Nations Univ.
  143. Takiguchi H, Takemoto K. 143.  2008. Japanese 3R policies based on material flow analysis. J. Ind. Ecol. 12:5–6792–98 [Google Scholar]
  144. Moriguchi Y. 144.  2007. Material flow indicators to measure progress toward a sound material-cycle society. J. Mater. Cycles Waste Manag. 9:2112–20 [Google Scholar]
  145. Greyson J. 145.  2007. An economic instrument for zero waste, economic growth and sustainability. J. Clean. Prod. 15:131382–90 [Google Scholar]
  146. Mathews JA, Tan H. 146.  2011. Progress toward a circular economy in China. J. Ind. Ecol. 15:3435–57 [Google Scholar]
  147. Yong R. 147.  2007. The circular economy in China. J. Mater. Cycles Waste Manag. 9:2121–29 [Google Scholar]
  148. Xue B, Chen X, Geng Y, Guo X, Lu C. 148.  et al. 2010. Survey of officials’ awareness on circular economy development in China: based on municipal and county level. Resour. Conserv. Recycl. 54:121296–302 [Google Scholar]
  149. Winans K, Kendall A, Deng H. 149.  2017. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 68:825–33 [Google Scholar]
  150. Chertow MR. 150.  2000. Industrial symbiosis: literature and taxonomy. Annu. Rev. Energy Environ. 25:1313–37 [Google Scholar]
  151. Stahel WR. 151.  2016. The circular economy. Nature 531:7595435 [Google Scholar]
  152. Haas W, Krausmann F, Wiedenhofer D, Heinz M. 152.  2015. How circular is the global economy? An assessment of material flows, waste production, and recycling in the European Union and the World in 2005. J. Ind. Ecol. 19:765–77 [Google Scholar]
  153. Kovanda J. 153.  2014. Incorporation of recycling flows into economy-wide material flow accounting and analysis: a case study for the Czech Republic. Resour. Conserv. Recycl. 92:78–84 [Google Scholar]
  154. Bleischwitz R, Bettina B-W, Rainer L, Sören S, Henning WC. 154.  et al. 2009. Outline of a resource policy and its economic dimension. See Ref. 174 2216–98
  155. Jackson T, Victor PA. 155.  2016. Does slow growth lead to rising inequality? Some theoretical reflections and numerical simulations. Ecol. Econ. 121:206–19 [Google Scholar]
  156. Bringezu S, Potočnik J, Schandl H, Lu Y, Ramaswami A. 156.  et al. 2016. Multi-scale governance of sustainable natural resource use—challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability 8:8778 [Google Scholar]
  157. 157. United Nations. 2015. Transforming our World: the 2030 Agenda for Sustainable Development New York: United Nations
  158. Tukker A, Cohen M, Hubacek K, Mont O. 158.  2010. Sustainable consumption and production. J. Ind. Ecol. 14:11–3 [Google Scholar]
  159. Pauliuk S, Arvesen A, Stadler K, Hertwich EG. 159.  2017. Industrial ecology in integrated assessment models. Nat. Clim. Change 7:113–20 [Google Scholar]
  160. Gerst MD, Graedel TE. 160.  2008. In-use stocks of metals: status and implications. Environ. Sci. Technol. 42:197038–45 [Google Scholar]
  161. Gordon RB, Bertram M, Graedel TE. 161.  2006. Metal stocks and sustainability. PNAS 103:51209–14 [Google Scholar]
  162. Kleijn R, Huele R, Van Der Voet E. 162.  2000. Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden. Ecol. Econ. 32:2241–54 [Google Scholar]
  163. Weisz H, Suh S, Graedel TE. 163.  2015. Industrial ecology: the role of manufactured capital in sustainability. Proc. Natl. Acad. Sci. 112:206260–64 [Google Scholar]
  164. Fishman T, Schandl H, Tanikawa H. 164.  2016. Stochastic analysis and forecasts of the patterns of speed, acceleration, and levels of material stock accumulation in society. Environ. Sci. Technol. 50:73729–37 [Google Scholar]
  165. Schiller G, Müller F, Ortlepp R. 165.  2016. Mapping the anthropogenic stock in Germany: metabolic evidence for a circular economy. Resour. Conserv. Recycl. In press
  166. Tanikawa H, Fishman T, Okuoka K, Sugimoto K. 166.  2015. The weight of society over time and space: a comprehensive account of the construction material stock of Japan, 1945–2010. J. Ind. Ecol. 19:5778–91 [Google Scholar]
  167. Moriguchi Y, Hashimoto S. 167.  2016. Material flow analysis and waste management. See Ref. 171 247–62
  168. Giljum S, Wieland H, Lutter S, Bruckner M, Wood R. 168.  et al. 2016. Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. J. Econ. Struct. 5:11–24 [Google Scholar]
  169. Godar J, Persson UM, Tizado EJ, Meyfroidt P. 169.  2015. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112:25–35 [Google Scholar]
  170. Huysman S, Schaubroeck T, Dewulf J. 170.  2014. Quantification of spatially differentiated resource footprints for products and services through a macro-economic and thermodynamic approach. Environ. Sci. Technol. 48:169709–16 [Google Scholar]
  171. Clift R, Druckman A. 171. , eds. 2016. Taking Stock of Industrial Ecology Cham, Switz.: Springer
  172. Haberl H, Fischer-Kowalski M, Krausmann F, Winiwarter V. 172. , eds. Social Ecology: Society-Nature Relations Across Time and Space Cham, Switz.: Springer
  173. Bleischwitz R, Welfens PJJ, Zhang ZX. 173. , eds. 2009. Sustainable Growth and Resource Productivity: Economic and Global Policy Issues Sheffield, UK: Greenleaf Publ.
  174. Bringezu S, Bleischwitz R. 174.  2009. Sustainable Resource Management: Global Trends, Visions and Policies Sheffield, UK: Greenleaf Publ.
  175. Hák T, Moldan B, Dahl AL. 175.  2007. Sustainability Indicators: A Scientific Assessment Washington, DC: Island Press

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error