Recent changes in arctic vegetation might not be driven by climate change alone. Legacies of human activities have received little attention as a contributing factor. We examine the extent to which traditional human activities (hunting, herding, fire, wood extraction, and agriculture) have had lasting effects on arctic woody plant communities and therefore might continue to affect biome-wide responses to climate change. Evidence suggests that legacies are likely to be evident across meters to hundreds of kilometers and for decades, centuries, and millennia. The evidence, however, is currently sparse, and we highlight the potential to develop systematic assessments through a circumarctic collaboratory consisting of a network of interdisciplinary field sites, standardized protocols, participatory research, and new approaches. We suggest that human activities should be brought into consideration to increase our understanding of arctic vegetation dynamics in general and to assess woody plant responses to climate change in particular.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q. 1.  et al. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–58 [Google Scholar]
  2. Larsen JN, Anisimov OA, Constable A, Hollowed A, Maynard N. 2.  et al. 2014. Polar regions. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects VR Barros, CB Field, DJ Dokken, MD Mastrandrea, KJ Mach, et al 1567–612 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. Tape K, Sturm M, Racine C. 3.  2006. The evidence for shrub expansion in northern Alaska and the Pan-Arctic. Glob. Change Biol. 12:4686–702 [Google Scholar]
  4. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T. 4.  et al. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6:445509 [Google Scholar]
  5. Naito AT, Cairns DM. 5.  2015. Patterns of shrub expansion in Alaskan arctic river corridors suggest phase transition. Ecol. Evol. 5:187–101 [Google Scholar]
  6. Payette S. 6.  2007. Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lag. Ecology 88:3770–80 [Google Scholar]
  7. Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M. 7.  et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5:9887–91 [Google Scholar]
  8. Damgaard C, Raundrup K, Aastrup P, Langen PL, Feilberg J, Nabe-Nielsen J. 8.  2016. Arctic resilience: no evidence of vegetation change in response to grazing and climate changes in South Greenland. Arct. Antarct. Alp. Res. 48:3531–49 [Google Scholar]
  9. Jorgenson JC, Raynolds MK, Reynolds JH, Benson A-M. 9.  2015. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arct. Antarct. Alp. Res. 47:4785–806 [Google Scholar]
  10. Daniëls FJA, de Molenaar JG, Chytrý M, Tichý L. 10.  2011. Vegetation change in southeast Greenland? Tasiilaq revisited after 40 years. Appl. Veg. Sci. 14:2230–41 [Google Scholar]
  11. Phoenix GK, Bjerke JW. 11.  2016. Arctic browning: extreme events and trends reversing arctic greening. Glob. Chang Biol. 22:92960–62 [Google Scholar]
  12. Lévesque E, Svoboda J. 12.  1999. Vegetation re-establishment in polar “lichen-kill” landscapes: a case study of the Little Ice Age impact. Polar Res 18:2221–28 [Google Scholar]
  13. Normand S, Randin C, Ohlemuller R, Bay C, Hoye TT. 13.  et al. 2013. A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philos. Trans. R. Soc. B 368:162420120479 [Google Scholar]
  14. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD. 14.  et al. 2012. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15:2164–75 [Google Scholar]
  15. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N. 15.  et al. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2:6453–57 [Google Scholar]
  16. Loranty MM, Lieberman-Cribbin W, Berner LT, Natali SM, Goetz SJ. 16.  et al. 2016. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environ. Res. Lett. 11:995008 [Google Scholar]
  17. Odling-Smee J, Erwin DH, Palkovacs EP, Feldman MW, Laland KN. 17.  2013. Niche construction theory: a practical guide for ecologists. Q. Rev. Biol. 88:14–28 [Google Scholar]
  18. Goebel T, Waters MR, O'Rourke DH. 18.  2008. The Late Pleistocene dispersal of modern humans in the Americas. Science 319:58691497–502 [Google Scholar]
  19. Giampoudakis K, Marske KA, Borregaard MK, Ugan A, Singarayer JS. 19.  et al. 2017. Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Glob. Ecol. Biogeogr. 26:3359–70 [Google Scholar]
  20. Hoffecker JF, Elias SA, O'Rourke DH. 20.  2014. Out of Beringia?. Science 343:6174979–80 [Google Scholar]
  21. Pitulko VV, Nikolsky PA, Girya EY, Basilyan AE, Tumskoy VE. 21.  et al. 2004. The Yana RHS site: humans in the Arctic before the Last Glacial Maximum. Science 303:565452–56 [Google Scholar]
  22. Kozlowski J, Bandi H-G. 22.  1984. The paleohistory of circumpolar arctic colonization. Arctic 37:4359–72 [Google Scholar]
  23. Hoffecker JF, Elias SA, O'Rourke DH, Scott GR, Bigelow NH. 23.  2016. Beringia and the global dispersal of modern humans. Evol. Anthropol. 25:264–78 [Google Scholar]
  24. Pitulko VV, Tikhonov AN, Pavlova EY, Nikolskiy PA, Kuper KE, Polozov RN. 24.  2016. Paleoanthropology. Early human presence in the Arctic: evidence from 45,000-year-old mammoth remains. Science 351:6270260–63 [Google Scholar]
  25. Willerslev R. 25.  2007. Soul Hunters Berkeley: Univ. Calif. Press
  26. Odling-Smee JF, Laland KN, Feldman MW. 26.  2003. Niche Construction: The Neglected Process in Evolution Princeton, NJ: Princeton Univ. Press
  27. Post E, Pedersen C. 27.  2008. Opposing plant community responses to warming with and without herbivores. PNAS 105:3412353–58 [Google Scholar]
  28. Kitti H, Forbes BC, Oksanen J. 28.  2009. Long- and short-term effects of reindeer grazing on tundra wetland vegetation. Polar Biol 32:2253–61 [Google Scholar]
  29. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O. 29.  2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Glob. Change Biol. 15:112681–93 [Google Scholar]
  30. Speed JDM, Austrheim G, Hester AJ, Mysterud A. 30.  2010. Experimental evidence for herbivore limitation of the treeline. Ecology 91:113414–20 [Google Scholar]
  31. Sjögren P, Solem T, Stenvik LF, Tretvik AM, Daverdin M. 31.  et al. 2014. Quantification of past plant abundances based on the R-value model: exemplified by an impact assessment of pre-historic iron production and summer farming in Budalen, central Norway. Holocene 24:4454–65 [Google Scholar]
  32. Svenning J-C, Eiserhardt WL, Normand S, Ordonez A, Sandel B. 32.  2015. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46:1551–72 [Google Scholar]
  33. Wolkovich EM, Cook BI, McLauchlan KK, Davies TJ. 33.  2014. Temporal ecology in the Anthropocene. Ecol. Lett. 17:111365–79 [Google Scholar]
  34. Svenning J-C, Sandel B. 34.  2013. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100:71266–86 [Google Scholar]
  35. Eriksson O. 35.  1996. Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:2248 [Google Scholar]
  36. Eriksson O. 36.  2000. Functional roles of remnant plant populations in communities and ecosystems. Glob. Ecol. Biogeogr. 9:6443–49 [Google Scholar]
  37. Beisner B, Haydon D, Cuddington K. 37.  2003. Alternative stable states in ecology. Front. Ecol. Environ. 1:7376–82 [Google Scholar]
  38. Freschet GT, Ostlund L, Kichenin E, Wardle DA. 38.  2014. Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment. Ecology 95:4963–77 [Google Scholar]
  39. Fredskild B, Holt S. 39.  1993. The West Greenland “greens”—favourite caribou summer grazing areas and Late Holocene climatic changes. Geogr. Tidsskr. J. Geogr. 93:130–38 [Google Scholar]
  40. Eriksson O. 40.  2013. Species pools in cultural landscapes: niche construction, ecological opportunity and niche shifts. Ecography 36:4403–13 [Google Scholar]
  41. van der Wal R. 41.  2006. Do herbivores cause habitat degradation or vegetation state transition? Evidence from the tundra. Oikos 114:1177–86 [Google Scholar]
  42. Yu Q, Epstein HE, Walker DA, Frost GV, Forbes BC. 42.  2011. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia, in response to climate change and grazing pressure. Environ. Res. Lett. 6:445505 [Google Scholar]
  43. Walker LR, Wardle DA. 43.  2014. Plant succession as an integrator of contrasting ecological time scales. Trends Ecol. Evol. 29:9504–10 [Google Scholar]
  44. Goebel T. 44.  1999. Pleistocene human colonization of Siberia and peopling of the Americas: an ecological approach. Evol. Anthropol. 8:6208–27 [Google Scholar]
  45. Kay CE. 45.  1997. Aboriginal overkill and the biogeography of moose in western North America. Alces 33:141–64 [Google Scholar]
  46. Bisi J, Kurki S, Svensberg M, Liukkonen T. 46.  2007. Human dimensions of wolf (Canis lupus) conflicts in Finland. Eur. J. Wildl. Res. 53:4304–14 [Google Scholar]
  47. Nyström V, Humphrey J, Skoglund P, McKeown NJ, Vartanyan S. 47.  et al. 2012. Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation. Mol. Ecol. 21:143391–402 [Google Scholar]
  48. Sandom C, Faurby S, Sandel B, Svenning J-C. 48.  2014. Global Late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281:178720133254 [Google Scholar]
  49. Sheremetev IS, Rozenfeld SB, Sipko TP, Gruzdev AR. 49.  2014. Extinction of large herbivore mammals: niche characteristics of the musk ox Ovibos moschatus and the reindeer Rangifer tarandus coexisting in isolation. Biol. Bull. Rev. 4:5433–42 [Google Scholar]
  50. Boeskorov GG. 50.  2006. Arctic Siberia: refuge of the mammoth fauna in the Holocene. Quat. Int. 142–43:119–23 [Google Scholar]
  51. Veltre DW, Yesner DR, Crossen KJ, Graham RW, Coltrain JB. 51.  2008. Patterns of faunal extinction and paleoclimatic change from mid-Holocene mammoth and polar bear remains, Pribilof Islands, Alaska. Quat. Res. 70:140–50 [Google Scholar]
  52. Stuart AJ, Lister AM. 52.  2012. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of Late Quaternary megafaunal extinctions in northern Eurasia. Quat. Sci. Rev. 51:1–17 [Google Scholar]
  53. Markova AK, Puzachenko AY, van Kolfschoten T, van der Plicht J, Ponomarev DV. 53.  2013. New data on changes in the European distribution of the mammoth and the woolly rhinoceros during the second half of the Late Pleistocene and the Early Holocene. Quat. Int. 292:4–14 [Google Scholar]
  54. Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS III, Reynolds JF, Chapin MC. 54.  1995. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146:5765–94 [Google Scholar]
  55. Willerslev E, Davison J, Moora M, Zobel M, Coissac E. 55.  et al. 2014. Fifty thousand years of arctic vegetation and megafaunal diet. Nature 506:748647–51 [Google Scholar]
  56. Kienast F, Wetterich S, Kuzmina S, Schirrmeister L, Andreev AA. 56.  et al. 2011. Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day arctic coast in western Beringia during the Last Interglacial. Quat. Sci. Rev. 30:17–182134–59 [Google Scholar]
  57. Mann DH, Groves P, Reanier RE, Gaglioti BV, Kunz ML, Shapiro B. 57.  2015. Life and extinction of megafauna in the ice-age Arctic. PNAS 112:4614301–6 [Google Scholar]
  58. Lent PC. 58.  1998. Alaska's indigenous muskoxen: a history. Rangifer 18:5133 [Google Scholar]
  59. Burch ES. 59.  1972. The caribou/wild reindeer as a human resource. Am. Antiq. 37:339–68 [Google Scholar]
  60. Geist V. 60.  2003. Of reindeer and man, modern and Neanderthal: a creation story founded on a historic perspective on how to conserve wildlife, woodland caribou in particular. Rangifer 23:557 [Google Scholar]
  61. Müller-Wille L, Heinrich D, Lehtola V-P, Aikio P, Konstantinov Y, Vladimirova V. 61.  2006. Dynamics in human-reindeer relations: reflections on prehistoric, historic and contemporary practices in northernmost Europe. See Ref. 201 27–45
  62. Brink JW. 62.  2005. Inukshuk: caribou drive lanes on southern Victoria Island, Nunavut, Canada. Arctic Anthropol 42:11–28 [Google Scholar]
  63. Helskog K. 63.  2011. Reindeer corrals 4700–4200 BC: myth or reality?. Quat. Int. 238:1–225–34 [Google Scholar]
  64. Van Bogaert R, Haneca K, Hoogesteger J, Jonasson C, De Dapper M Callaghan TV. 64.  2011. A century of tree line changes in sub-arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J. Biogeogr. 38:5907–21 [Google Scholar]
  65. Spencer DL, Lensink CJ. 65.  1970. The muskox of Nunivak Island, Alaska. J. Wildl. Manag. 34:11–15 [Google Scholar]
  66. Jingfors KT, Klein DR. 66.  1982. Productivity in recently established muskox populations in Alaska. J. Wildl. Manag. 46:41092–96 [Google Scholar]
  67. 67. Alsk. Dep. Fish Game. 2010. Muskox: a guide to identification, hunting and viewing Div. Wildl. Conserv., Nome, AK
  68. Klein DR, Yakushkin GD, Pospelova EB. 68.  1993. Comparative habitat selection by muskoxen introduced to northeastern Alaska and the Taimyr Peninsula, Russia. Rangifer 13:121 [Google Scholar]
  69. Sipko TP. 69.  2009. Status of reintroductions of three large herbivores in Russia. Alces 45:35–42 [Google Scholar]
  70. Chubbs TE, Brazil J. 70.  2007. The occurrence of muskoxen, Ovibosmoschatus, in Labrador. Can. Field-Nat. 121:181 [Google Scholar]
  71. Nielsen AM, Küter L. 71.  2000. Flytningen af moskusokser fra Øst- til Vestgrønland. Tidsskr. Grønl. 3:111–34 [Google Scholar]
  72. Olesen CR. 72.  1993. Rapid population increase in an introduced muskox population, West Greenland. Rangifer 13:127 [Google Scholar]
  73. 73. Greenl. Inst. Nat. Resour. 2011. Muskoxen. http://www.natur.gl/en/birds-and-mammals/terrestrial-mammals/muskoxen/
  74. Roberts P, Jørgensen D. 74.  2016. Animals as instruments of Norwegian imperial authority in the interwar Arctic. J. Hist. Environ. Soc. 12016:65–87 [Google Scholar]
  75. Laikre L, Ryman N, Lundh NG. 75.  1997. Estimated inbreeding in a small, wild muskox Ovibos moschatus population and its possible effects on population reproduction. Biol. Conserv. 79:2–3197–204 [Google Scholar]
  76. Vikøren T, Lillehaug A, Åkerstedt J, Bretten T, Haugum M, Tryland M. 76.  2008. A severe outbreak of contagious ecthyma (orf) in a free-ranging musk ox (Ovibos moschatus) population in Norway. Vet. Microbiol. 127:1–210–20 [Google Scholar]
  77. Heard DC, Ouellet J-P. 77.  1994. Dynamics of an introduced caribou population. Arctic 47:188–95 [Google Scholar]
  78. Cahoon SMP, Sullivan PF, Post E, Welker JM. 78.  2012. Large herbivores limit CO2 uptake and suppress carbon cycle responses to warming in West Greenland. Glob. Change Biol. 18:469–79 [Google Scholar]
  79. Ballard WB, Ayres LA, Krausman PR, Reed DJ, Steven GF. 79.  1997. Ecology of wolves in relation to a migratory caribou herd in northwest Alaska. Wildl. Monogr. 61:25–47 [Google Scholar]
  80. Kellert SR, Black M, Rush CR, Bath AJ. 80.  1996. Human culture and large carnivore conservation in North America. Conserv. Biol. 10:4977–90 [Google Scholar]
  81. Lopez BH. 81.  1978. Of Wolves and Men New York: Macmillan
  82. Pitulko VV, Kasparov AK. 82.  1996. Ancient arctic hunters: material culture and survival strategy. Arct. Anthropol. 33:11–36 [Google Scholar]
  83. Wenzel GW. 83.  2005. Nunavut Inuit and polar bear: the cultural politics of the sport hunt. Senri Ethnol. Stud. 67:363–88 [Google Scholar]
  84. Bisi J, Liukkonen T, Mykrä S, Pohja-Mykrä M, Kurki S. 84.  2010. The good bad wolf—wolf evaluation reveals the roots of the Finnish wolf conflict. Eur. J. Wildl. Res. 56:5771–79 [Google Scholar]
  85. Hebblewhite M, White CA, Nietvelt CG, McKenzie JA, Hurd TE. 85.  et al. 2005. Human activity mediates a trophic cascade caused by wolves. Ecology 86:82135–44 [Google Scholar]
  86. Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV. 86.  2005. Introduced predators transform subarctic islands from grassland to tundra. Science 307:57171959–61 [Google Scholar]
  87. Ingold T. 87.  1986. Reindeer economies: and the origins of pastoralism. Anthropol. Today 2:45 [Google Scholar]
  88. Ventsel A. 88.  2006. Hunter-herder continuum in Anabarski District, NW Sakha, Siberia, Russian Federation. Nomadic Peoples 10:268–86 [Google Scholar]
  89. Krupnik I. 89.  2000. Reindeer pastoralism in modern Siberia: research and survival during the time of crash. Polar Res 19:149–56 [Google Scholar]
  90. Pohlhausen H. 90.  1972. Standpunkte zur Diskussion über das Alter der Viehzucht. Anthropos 67:176–95 [Google Scholar]
  91. Pohlhausen H. 91.  1953. Nachweisbare Ansätze zum Wanderhirtentum in der niederdeutschen Mittelsteinzeit. Z. Ethnol. 78:164–82 [Google Scholar]
  92. Mirov NT. 92.  1945. Notes on the domestication of reindeer. Am. Anthropol. 47:3393–408 [Google Scholar]
  93. Gordon B. 93.  2003. Rangifer and man: an ancient relationship. Rangifer 23:515 [Google Scholar]
  94. Storli I. 94.  1996. On the historiography of Sami reindeer pastoralism. Acta Boreal 13:181–115 [Google Scholar]
  95. Krupnik I. 95.  1993. Arctic Adaptations: Native Whalers and Reindeer Herders of Northern Eurasia Hanover, CT: Dartmouth Coll. Press
  96. Syroechkovski EE. 96.  2000. Wild and semi-domesticated reindeer in Russia: status, population dynamics and trends under the present social and economic conditions. Rangifer 20:2–3113 [Google Scholar]
  97. Baskin LM. 97.  2000. Reindeer husbandry/hunting in Russia in the past, present and future. Polar Res 19:123–29 [Google Scholar]
  98. Willerslev R, Vitebsky P, Alekseyev A. 98.  2015. Sacrifice as the ideal hunt: a cosmological explanation for the origin of reindeer domestication. J. R. Anthropol. Inst. 21:11–23 [Google Scholar]
  99. Treude E. 99.  1968. The development of reindeer husbandry in Canada. Polar Rec 14:8815 [Google Scholar]
  100. Scotter GW. 100.  1972. Reindeer ranching in northern Canada. J. Range Manag. 25:3167–74 [Google Scholar]
  101. Klein DR. 101.  1968. The introduction, increase, and crash of reindeer on St. Matthew Island. J. Wildl. Manag. 32:2350–67 [Google Scholar]
  102. Emanuelsson U. 102.  1987. Human influence on vegetation in the Torneträsk area during the last three centuries. Ecol. Bull. 38:95–111 [Google Scholar]
  103. Karlsson H, Hornberg G, Hannon G, Nordstrom E-M. 103.  2007. Long-term vegetation changes in the northern Scandinavian forest limit: a human impact-climate synergy?. Holocene 17:137–49 [Google Scholar]
  104. Potthoff K. 104.  2009. Grazing history affects the tree-line ecotone: a case study from Hardanger, western Norway. Fennia 187:281–98 [Google Scholar]
  105. Bryn A. 105.  2008. Recent forest limit changes in south-east Norway: effects of climate change or regrowth after abandoned utilisation?. Nor. J. Geogr. 62:4251–70 [Google Scholar]
  106. Potthoff K. 106.  2017. Spatio-temporal patterns of birch regrowth in a western Norwegian treeline ecotone. Landsc. Res. 42:163–77 [Google Scholar]
  107. Ravolainen VT, Bråthen KA, Ims RA, Yoccoz NG, Henden J-A, Killengreen ST. 107.  2011. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl. Ecol. 12:8643–53 [Google Scholar]
  108. Zamin TJ, Grogan P. 108.  2013. Caribou exclusion during a population low increases deciduous and evergreen shrub species biomass and nitrogen pools in low Arctic tundra. J. Ecol. 101:3671–83 [Google Scholar]
  109. Bernes C, Bråthen KA, Forbes BC, Hofgaard A, Moen J, Speed JD. 109.  2013. What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review. Environ. Evid. 2:16 [Google Scholar]
  110. Sitters J, te Beest M, Cherif M, Giesler R, Olofsson J. 110.  2017. Interactive effects between reindeer and habitat fertility drive soil nutrient availabilities in arctic tundra. Ecosystems https://doi.org/10.1007/s10021-017-0108-1
  111. Anderson DG, Ineshin EM, Kulagina NV, Lavento M, Vinkovskaya OP. 111.  2014. Landscape agency and Evenki-Iakut reindeer husbandry along the Zhuia River, Eastern Siberia. Hum. Ecol. 42:2249–66 [Google Scholar]
  112. van der Wal R, Bardgett RD, Harrison KA, Stien A. 112.  2004. Vertebrate herbivores and ecosystem control: cascading effects of faeces on tundra ecosystems. Ecography 27:242–52 [Google Scholar]
  113. Olofsson J. 113.  2006. Short- and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation. J. Ecol. 94:2431–40 [Google Scholar]
  114. Forbes BC. 114.  1996. Plant communities of archaeological sites, abandoned dwellings, and trampled tundra in the eastern Canadian Arctic: a multivariate analysis. Arctic 49:2141–54 [Google Scholar]
  115. Potthoff K. 115.  2007. Persistence of alpine grass-dominated vegetation on abandoned mountain summer farms in western Norway. Nor. J. Geogr. 61:4192–206 [Google Scholar]
  116. Staland H, Salmonsson J, Hörnberg G. 116.  2011. A thousand years of human impact in the northern Scandinavian mountain range: long-lasting effects on forest lines and vegetation. Holocene 21:3379–91 [Google Scholar]
  117. Schofield JE, Edwards KJ. 117.  2011. Grazing impacts and woodland management in Eriksfjord: Betula, coprophilous fungi and the Norse settlement of Greenland. Veg. Hist. Archaeobot. 20:3181–97 [Google Scholar]
  118. Jones A, Stolbovoy V, Tarnocai C, Broll G, Spaargaren O. 118.  et al. 2010. Soil Atlas of the Northern Circumpolar Region Luxembourg City, Luxembourg: Off. Off. Publ. Eur. Communities
  119. Bogoras W. 119.  1904. The Chukchee Leiden, Neth.: Brill
  120. Cohen J, Pulliainen J, Ménard CB, Johansen B, Oksanen L. 120.  et al. 2013. Effect of reindeer grazing on snowmelt, albedo and energy balance based on satellite data analyses. Remote Sens. Environ. 135:107–17 [Google Scholar]
  121. Forbes BC, Kumpula T. 121.  2009. The ecological role and geography of reindeer (Rangifer tarandus) in northern Eurasia. Geogr. Compass 3:41356–80 [Google Scholar]
  122. Kumpula T. 122.  2006. Very high resolution remote sensing data in reindeer pasture inventory in northern Fennoscandia. See Ref. 201 167–85
  123. Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning J-C. 123.  2011. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. R. Soc. B 278:17253644–53 [Google Scholar]
  124. Poschlod P, Bonn S. 124.  1998. Changing dispersal processes in the Central European landscape since the last Ice Age: an explanation for the actual decrease of plant species richness in different habitats?. Acta Bot. Neerl. 47:127–44 [Google Scholar]
  125. Ozinga WA, Schaminée JHJ, Bekker RM, Bonn S, Poschlod P. 125.  et al. 2005. Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:3555–61 [Google Scholar]
  126. Manzano P, Malo JE. 126.  2006. Extreme long-distance seed dispersal via sheep. Front. Ecol. Environ. 4:5244–48 [Google Scholar]
  127. González VT, Bråthen KA, Ravolainen VT, Iversen M, Hagen SB. 127.  2010. Large-scale grazing history effects on arctic-alpine germinable seed banks. Plant Ecol 207:2321–31 [Google Scholar]
  128. Cooper EJ. 128.  2006. Reindeer grazing reduces seed and propagule bank in the High Arctic. Can. J. Bot. 84:111740–52 [Google Scholar]
  129. Day GM. 129.  1953. The Indian as an ecological factor in the northeastern forest. Ecology 34:2329–46 [Google Scholar]
  130. Zvelebil M. 130.  1994. Plant use in the Mesolithic and its role in the transition to farming. Proc. Prehist. Soc. 60:35–74 [Google Scholar]
  131. Mellars P. 131.  1976. Fire ecology, animal populations and man: a study of some ecological relationships in prehistory. Proc. Prehist. Soc. 42:15–45 [Google Scholar]
  132. Moore J. 132.  2000. Forest fire and human interaction in the Early Holocene woodlands of Britain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164:1–4125–37 [Google Scholar]
  133. Chapin FS III, Trainor SF, Huntington O, Lovecraft AL, Zavaleta E. 133.  et al. 2008. Increasing wildfire in Alaska's boreal forest: pathways to potential solutions of a wicked problem. Bioscience 58:6531 [Google Scholar]
  134. Higuera PE, Brubaker LB, Anderson PM, Brown TA, Kennedy AT, Hu FS. 134.  2008. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change. PLOS ONE 3:3e0001744 [Google Scholar]
  135. Bergman I, Zackrisson O. 135.  2007. Early Mesolithic hunter-gatherers and landscape acquisition by the Arctic Circle. J. North. Stud. 1–2:123–42 [Google Scholar]
  136. Carcaillet C, Bergman I, Delorme S, Hornberg G, Zackrisson O. 136.  2007. Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest. Ecology 88:2465–77 [Google Scholar]
  137. Natcher DC, Calef M, Huntington O, Trainor S, Huntington HP. 137.  et al. 2007. Factors contributing to the cultural and spatial variability of landscape burning by native peoples of interior Alaska. Ecol. Soc. 12:7 [Google Scholar]
  138. Natcher DC. 138.  2004. Implications of fire policy on native land use in the Yukon Flats, Alaska. Hum. Ecol. 32:421–41 [Google Scholar]
  139. Lewis HT, Ferguson TA. 139.  1988. Yards, corridors, and mosaics: how to burn a boreal forest. Hum. Ecol. 16:157–77 [Google Scholar]
  140. Moore J. 140.  2003. Enculturation through fire: beyond hazelnuts and into the forest. Mesolithic on the Move: Papers Presented at the Sixth International Conference on Mesolithic in Europe L Larsson, H Kindgren, K Knutsson, D Leoffler, A Åkerlund 139–44 Oxford, UK: Oxbow [Google Scholar]
  141. Edwards KJ, Schofield JE, Mauquoy D. 141.  2008. High resolution paleoenvironmental and chronological investigations of Norse landnám at Tasiusaq, Eastern Settlement, Greenland. Quat. Res. 69:11–15 [Google Scholar]
  142. Dugmore AJ, Church MJ, Buckland PC, Edwards KJ, Lawson I. 142.  et al. 2005. The Norse landnám on the North Atlantic islands: an environmental impact assessment. Polar Rec 41:121–37 [Google Scholar]
  143. Ledger PM, Edwards KJ, Schofield JE. 143.  2013. Shieling activity in the Norse Eastern Settlement: palaeoenvironment of the “mountain farm,” Vatnahverfi, Greenland. Holocene 23:6810–22 [Google Scholar]
  144. Bishop RR, Church MJ, Dugmore AJ, Madsen CK, Møller NA. 144.  2013. A charcoal-rich horizon at Ø69, Greenland: evidence for vegetation burning during the Norse landnám?. J. Archaeol. Sci. 40:113890–902 [Google Scholar]
  145. Ledger PM, Edwards KJ, Schofield JE. 145.  2014. A multiple profile approach to the palynological reconstruction of Norse landscapes in Greenland's Eastern Settlement. Quat. Res. 82:122–37 [Google Scholar]
  146. Bret-Harte MS, Mack MC, Shaver GR, Huebner DC, Johnston M. 146.  et al. 2013. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B 368:162420120490 [Google Scholar]
  147. Racine CH, Johnson LA, Viereck LA. 147.  1987. Patterns of vegetation recovery after tundra fires in northwestern Alaska, U.S.A. Arct. Alp. Res. 19:4461 [Google Scholar]
  148. Rocha AV, Loranty MM, Higuera PE, Mack MC, Hu FS. 148.  et al. 2012. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7:444039 [Google Scholar]
  149. Vaté V. 149.  2013. Building a home for the hearth: an analysis of a Chukchi reindeer herding ritual. About the Hearth: Perspectives on the Home, Hearth and Household in the Circumpolar North DG Anderson, RP Wishart, V Vaté 183–99 Oxford, UK: Berghahn Books [Google Scholar]
  150. Smith KP. 150.  1995. Landnám: the settlement of Iceland in archaeological and historical perspective. World Archaeol 26:3319–47 [Google Scholar]
  151. Ledger PM, Edwards KJ, Schofield JE. 151.  2014. Vatnahverfi: a green and pleasant land? Palaeoecological reconstructions of environmental and land-use change. J. N. Atl. 601:29–46 [Google Scholar]
  152. Schofield JE, Edwards KJ, Christensen C. 152.  2008. Environmental impacts around the time of Norse landnám in the Qorlortoq Valley, Eastern Settlement, Greenland. J. Archaeol. Sci. 35:61643–57 [Google Scholar]
  153. Gauthier E, Bichet V, Massa C, Petit C, Vannière B, Richard H. 153.  2010. Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland. Veg. Hist. Archaeobot. 19:5–6427–38 [Google Scholar]
  154. Lahtinen M, Oinonen M, Tallavaara M, Walker JW, Rowley-Conwy P. 154.  2017. The advance of cultivation at its northern European limit: process or event?. Holocene 27:3427–38 [Google Scholar]
  155. Cramp LJE, Evershed RP, Lavento M, Halinen P, Mannermaa K. 155.  et al. 2014. Neolithic dairy farming at the extreme of agriculture in northern Europe. Proc. R. Soc. B 281:179120140819 [Google Scholar]
  156. Bläuer A, Kantanen J. 156.  2013. Transition from hunting to animal husbandry in southern, western and eastern Finland: new dated osteological evidence. J. Archaeol. Sci. 40:41646–66 [Google Scholar]
  157. Holopainen J, Helama S. 157.  2009. Little Ice Age farming in Finland: preindustrial agriculture on the edge of the grim reaper's scythe. Hum. Ecol. 37:2213–25 [Google Scholar]
  158. Buckland PC, Edwards KJ, Panagiotakopulu E, Schofield JE. 158.  2009. Palaeoecological and historical evidence for manuring and irrigation at Garthar (Igaliku), Norse Eastern Settlement, Greenland. Holocene 19:1105–16 [Google Scholar]
  159. Golding KA, Simpson IA, Schofield JE, Edwards KJ. 159.  2011. Norse-Inuit interaction and landscape change in southern Greenland? A geochronological, pedological, and palynological investigation. Geoarchaeology 26:3315–45 [Google Scholar]
  160. Gísladóttir G, Erlendsson E, Lal R, Bigham J. 160.  2010. Erosional effects on terrestrial resources over the last millennium in Reykjanes, southwest Iceland. Quat. Res. 73:120–32 [Google Scholar]
  161. Sandgren P, Fredskild B. 161.  1991. Magnetic measurements recording Late Holocene man-induced erosion in S. Greenland. Boreas 20:315–31 [Google Scholar]
  162. Massa C, Bichet V, Gauthier É, Perren BB, Mathieu O. 162.  et al. 2012. A 2500 year record of natural and anthropogenic soil erosion in South Greenland. Quat. Sci. Rev. 32:119–30 [Google Scholar]
  163. Gísladóttir G, Erlendsson E, Lal R. 163.  2011. Soil evidence for historical human-induced land degradation in west Iceland. Appl. Geochem. 26:Suppl.S28–31 [Google Scholar]
  164. Ledger PM, Edwards KJ, Schofield JE. 164.  2017. Competing hypotheses, ordination and pollen preservation: landscape impacts of Norse landnám in southern Greenland. Rev. Palaeobot. Palynol. 236:1–11 [Google Scholar]
  165. McGovern TH, Vésteinsson O, Fridriksson A, Church M, Lawson I. 165.  et al. 2007. Landscapes of settlement in northern Iceland: historical ecology of human impact and climate fluctuation on the millennial scale. Am. Anthropol. 109:127–51 [Google Scholar]
  166. Forbes BC, Stammler F, Kumpula T, Meschtyb N, Pajunen A, Kaarlejarvi E. 166.  2009. High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia. PNAS 106:5222041–48 [Google Scholar]
  167. Fitzhugh B. 167.  2012. Hazards, impacts, and resilience among hunter-gatherers of the Kuril Islands. Surviving Sudden Environmental Change: Answers from Archaeology J Cooper, P Sheets 19–42 Boulder: Univ. Press Colo. [Google Scholar]
  168. Harrison R, Maher RA. 168.  2014. Human Ecodynamics in the North Atlantic: A Collaborative Model of Humans and Nature through Space and Time Lanham, MD: Lexington Books
  169. Buanes A, Jentoft S. 169.  2009. Building bridges: institutional perspectives on interdisciplinarity. Futures 41:7446–54 [Google Scholar]
  170. Bos N, Zimmerman A, Olson J, Yew J, Yerkie J. 170.  et al. 2007. From shared databases to communities of practice: a taxonomy of collaboratories. J. Comput. Commun. 12:2652–72 [Google Scholar]
  171. Cogburn DL. 171.  2003. HCI in the so-called developing world. Interactions 10:280 [Google Scholar]
  172. Starkweather S, Uttal T. 172.  2016. Cyberinfrastructure and collaboratory support for the integration of arctic atmospheric research. Bull. Am. Meteorol. Soc. 97:6917–22 [Google Scholar]
  173. Rose DB, van Dooren T, Chrulew M, Cooke S, Kearnes M, O'Gorman E. 173.  2012. Thinking through the environment, unsettling the humanities. Environ. Humanit. 1:11–5 [Google Scholar]
  174. Sörlin S. 174.  2012. Environmental humanities: Why should biologists interested in the environment take the humanities seriously?. Bioscience 62:9788–89 [Google Scholar]
  175. Briggs JM, Spielmann KA, Schaafsma H, Kintigh KW, Kruse M. 175.  et al. 2006. Why ecology needs archaeologists and archaeology needs ecologists. Front. Ecol. Environ. 4:4180–88 [Google Scholar]
  176. Dunning T. 176.  2008. Improving causal inference. Polit. Res. Q. 61:2282–93 [Google Scholar]
  177. Dunning T. 177.  2012. Natural Experiments in the Social Sciences: A Design-Based Approach Cambridge, UK: Cambridge Univ. Press
  178. Coombes P, Barber K. 178.  2005. Environmental determinism in Holocene research: causality or coincidence?. Area 37:3303–11 [Google Scholar]
  179. Diamond J, Robinson JA. 179. , eds. 2010. Natural Experiments of History Cambridge, MA: Belknap Press
  180. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N. 180.  et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51:4335 [Google Scholar]
  181. Westergaard-Nielsen A, Bjørnsson AB, Jepsen MR, Stendel M, Hansen BU, Elberling B. 181.  2015. Greenlandic sheep farming controlled by vegetation response today and at the end of the 21st century. Sci. Total Environ. 512–13:672–81 [Google Scholar]
  182. Kumpula T, Pajunen A, Kaarlejärvi E, Forbes BC, Stammler F. 182.  2011. Land use and land cover change in Arctic Russia: ecological and social implications of industrial development. Glob. Environ. Change 21:550–62 [Google Scholar]
  183. Forbes BC, Stammler F. 183.  2009. Arctic climate change discourse: the contrasting politics of research agendas in the West and Russia. Polar Res 28:128–42 [Google Scholar]
  184. D'Andrea WJ, Huang YS, Fritz SC, Anderson NJ. 184.  2011. Abrupt Holocene climate change as an important factor for human migration in West Greenland. PNAS 108:9765–69 [Google Scholar]
  185. Myers-Smith IH, Hallinger M, Blok D, Sass-Klaassen U, Rayback SA. 185.  et al. 2015. Methods for measuring arctic and alpine shrub growth: a review. Earth-Sci. Rev. 140:1–13 [Google Scholar]
  186. Meltofte H. 186.  2013. Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity Akureyri, Den.: Conserv. Arct. Flora Fauna
  187. Schofield JE, Edwards KJ, McMullen JA. 187.  2007. Modern pollen-vegetation relationships in subarctic southern Greenland and the interpretation of fossil pollen data from the Norse landnám. . J. Biogeogr. 34:3473–88 [Google Scholar]
  188. Sugita S. 188.  2007. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 17:2229–41 [Google Scholar]
  189. Sugita S. 189.  2007. Theory of quantitative reconstruction of vegetation II: All you need is love. Holocene 17:2243–57 [Google Scholar]
  190. Epp LS, Gussarova G, Boessenkool S, Olsen J, Haile J. 190.  et al. 2015. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes. Quat. Sci. Rev. 117:318152–63 [Google Scholar]
  191. Räsänen S, Froyd C, Goslar T. 191.  2007. The impact of tourism and reindeer herding on forest vegetation at Saariselka, Finnish Lapland: a pollen analytical study of a high-resolution peat profile. Holocene 17:4447–56 [Google Scholar]
  192. Guillemot T, Bichet V, Gauthier E, Zocatelli R, Massa C. 192.  et al. 2017. Environmental responses of past and recent agropastoral activities on south Greenlandic ecosystems through molecular biomarkers. Holocene 27:783–95 [Google Scholar]
  193. Seppä H, Alenius T, Muukkonen P, Giesecke T, Miller PA, Ojala AEK. 193.  2009. Calibrated pollen accumulation rates as a basis for quantitative tree biomass reconstructions. Holocene 19:2209–20 [Google Scholar]
  194. Lasaponara R, Masini N. 194.  2007. Detection of archaeological crop marks by using satellite quickbird multispectral imagery. J. Archaeol. Sci. 34:2214–21 [Google Scholar]
  195. Lasaponara R, Masini N. 195.  2011. Satellite remote sensing in archaeology: past, present and future perspectives. J. Archaeol. Sci. 38:91995–2002 [Google Scholar]
  196. Lasaponara R, Coluzzi R, Masini N. 196.  2011. Flights into the past: full-waveform airborne laser scanning data for archaeological investigation. J. Archaeol. Sci. 38:92061–70 [Google Scholar]
  197. Bauer AM. 197.  2014. Impacts of mid- to late-Holocene land use on residual hill geomorphology: a remote sensing and archaeological evaluation of human-related soil erosion in central Karnataka, South India. Holocene 24:13–14 [Google Scholar]
  198. Keeney J, Hickey R. 198.  2015. Using satellite image analysis for locating prehistoric archaeological sites in Alaska's central brooks range. J. Archaeol. Sci. Rep. 3:80–89 [Google Scholar]
  199. Landry DB, Milne SB, Park RW, Ferguson IJ, Fayek M. 199.  2016. Manual point cloud classification and extraction for hunter-gatherer feature investigation: a test case from two low Arctic Paleo-Inuit sites. Open Archaeol 2:1232–42 [Google Scholar]
  200. Urban T, Rasic J, Alix C, Anderson D, Manning S. 200.  et al. 2016. Frozen: the potential and pitfalls of ground-penetrating radar for archaeology in the Alaskan Arctic. Remote Sens 8:121007 [Google Scholar]
  201. Forbes BC, Bölter L, Müller-Wille L, Hukkinen L, Müller J. 201.  et al., eds. 2006. Reindeer Management in Northernmost Europe: Linking Practical and Scientific Knowledge in Social-Ecological Systems Ecol. Stud. 184 Berlin/Heidelberg, Ger: Springer-Verlag

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error