1932

Abstract

Developing transformative pathways for industry's compliance with international climate targets requires model-based insights into how supply- and demand-side measures affect industry, material cycles, global supply chains, socioeconomic activities, and service provisioning that support societal well-being. We review the recent literature modeling the industrial system in low energy and material demand futures, which mitigates environmental impacts without relying on risky future negative emissions and technological fixes. We identify 77 innovative studies drawing on nine distinct industry modeling traditions. We critically assess system definitions and scopes, biophysical and thermodynamic consistency, granularity and heterogeneity, and operationalization of demand and service provisioning. We find that combined supply- and demand-side measures could reduce current economy-wide material use by 56%, energy use by 40% to 60%, and greenhouse gas emissions by 70% to net zero. We call for strengthened interdisciplinary collaborations between industry modeling traditions and demand-side research to produce more insightful scenarios, and we discuss challenges and recommendations for this emerging field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-110822-044428
2024-10-18
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-110822-044428.html?itemId=/content/journals/10.1146/annurev-environ-110822-044428&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.). 2019.. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Rep. , IPBES, Bonn, Ger.: https://www.ipbes.net/global-assessment-report-biodiversity-ecosystem-services
    [Google Scholar]
  2. 2.
    IPCC (Int. Panel. Clim. Change). 2022.. Climate Change 2022. Mitigation of Climate Change: Working Group III Contribution to the 6th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York:: Cambridge Univ. Press. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Full_Report.pdf
    [Google Scholar]
  3. 3.
    UNEP-IRP (U. N. Environ. Progr. Int. Resour. Panel). 2019.. Global resources outlook 2019: natural resources for the future we want. Rep. , UNEP, Nairobi:. http://www.resourcepanel.org/reports/global-resources-outlook
    [Google Scholar]
  4. 4.
    Richardson K, Steffen W, Lucht W, Bendtsen J, Cornell SE, et al. 2023.. Earth beyond six of nine planetary boundaries. . Sci. Adv. 9:(37):eadh2458
    [Crossref] [Google Scholar]
  5. 5.
    Gadgil A, Tomich TP, Agrawal A, Allouche J, Azevedo IML, et al. 2022.. The great intergenerational robbery: a call for concerted action against environmental crises. . Annu. Rev. Environ. Resour. 47::14
    [Crossref] [Google Scholar]
  6. 6.
    Stoddard I, Anderson K, Capstick S, Carton W, Depledge J, et al. 2021.. Three decades of climate mitigation: Why haven't we bent the global emissions curve?. Annu. Rev. Environ. Resour. 46::65389
    [Crossref] [Google Scholar]
  7. 7.
    Hickel J, Brockway P, Kallis G, Keyßer L, Lenzen M, et al. 2021.. Urgent need for post-growth climate mitigation scenarios. . Nat. Energy 6:(8):76668
    [Crossref] [Google Scholar]
  8. 8.
    Keyßer LT, Lenzen M. 2021.. 1.5°C degrowth scenarios suggest the need for new mitigation pathways. . Nat. Commun. 12::2676
    [Crossref] [Google Scholar]
  9. 9.
    Lamb WF, Steinberger JK. 2017.. Human well-being and climate change mitigation: human well-being and climate change mitigation. . Wiley Interdiscip. Rev. Clim. Change 8:(6):e485
    [Crossref] [Google Scholar]
  10. 10.
    Haberl H, Wiedenhofer D, Virág D, Kalt G, Plank B, et al. 2020.. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions. Part II: Synthesizing the insights. . Environ. Res. Lett. 15::065003
    [Crossref] [Google Scholar]
  11. 11.
    Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J, et al. 2018.. Negative emissions. Part 1: Research landscape and synthesis. . Environ. Res. Lett. 13::063001
    [Crossref] [Google Scholar]
  12. 12.
    Anderson K, Peters G. 2016.. The trouble with negative emissions. . Science 354:(6309):18283
    [Crossref] [Google Scholar]
  13. 13.
    Green C, Fagerström S, Ke D, Metzinger P, Myllynen M, et al. 2022.. Shared Socioeconomic Pathways (SSPs), version 2, 2020–2021 (preliminary release). Database, NASA Socioecon. Data Appl. Cent., Palisades, NY:. https://doi.org/10.7927/vtsk-hf73
    [Google Scholar]
  14. 14.
    Edelenbosch OY, van Vuuren DP, Blok K, Calvin K, Fujimori S. 2020.. Mitigating energy demand sector emissions: the integrated modelling perspective. . Appl. Energy 261::114347
    [Crossref] [Google Scholar]
  15. 15.
    Hickel J, Slamersak A. 2022.. Existing climate mitigation scenarios perpetuate colonial inequalities. . Lancet Planet. Health 6:(7):e62831
    [Crossref] [Google Scholar]
  16. 16.
    Pauliuk S, Arvesen A, Stadler K, Hertwich EG. 2017.. Industrial ecology in integrated assessment models. . Nat. Clim. Change 7:(1):1320
    [Crossref] [Google Scholar]
  17. 17.
    Hertwich EG, Ali S, Ciacci L, Fishman T, Heeren N, et al. 2019.. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. . Environ. Res. Lett. 14::043004
    [Crossref] [Google Scholar]
  18. 18.
    Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V, et al. 2018.. A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. . Nat. Energy 3:(6):51527
    [Crossref] [Google Scholar]
  19. 19.
    Creutzig F, Roy J, Devine-Wright P, Díaz-José J, Geels FW, et al. 2022.. Demand, services and social aspects of mitigation. . See Ref. 2 , pp. 503612
  20. 20.
    Creutzig F, Niamir L, Bai X, Callaghan M, Cullen J, et al. 2021.. Demand-side solutions to climate change mitigation consistent with high levels of well-being. . Nat. Clim. Change 12::3646
    [Crossref] [Google Scholar]
  21. 21.
    Wilson C, Grubler A, Nemet GF, Pachauri S, Pauliuk S, Wiedenhofer D. 2023.. The ‘high-with-low’ scenario narrative: key themes, cross-cutting linkages, and implications for modelling. Work. Pap. 23-009 , Int. Inst. Appl. Syst. Anal., Laxenburg, Austria:
    [Google Scholar]
  22. 22.
    Creutzig F, Roy J, Minx J. 2024.. Demand-side climate change mitigation: Where do we stand and where do we go?. Environ. Res. Lett. 19::040201
    [Crossref] [Google Scholar]
  23. 23.
    Sugiyama M, Wilson C, Wiedenhofer D, Boza-Kiss B, Cao T, et al. 2024.. High with low: harnessing the power of demand-side solutions for high wellbeing with low energy and material demand. . Joule 8:(1):16
    [Crossref] [Google Scholar]
  24. 24.
    Hoekstra R. 2019.. Replacing GDP by 2030: Towards a Common Language for the Well-Being and Sustainability Community. Cambridge, UK/New York:: Cambridge Univ. Press
    [Google Scholar]
  25. 25.
    Jungell-Michelsson J, Heikkurinen P. 2022.. Sufficiency: a systematic literature review. . Ecol. Econ. 195::107380
    [Crossref] [Google Scholar]
  26. 26.
    Sandberg M. 2021.. Sufficiency transitions: a review of consumption changes for environmental sustainability. . J. Clean. Prod. 293::126097
    [Crossref] [Google Scholar]
  27. 27.
    Jackson T. 2017.. Prosperity Without Growth: Foundations for the Economy of Tomorrow. London:: Routledge. , 2nd ed..
    [Google Scholar]
  28. 28.
    O'Neill DW. 2015.. What should be held steady in a steady-state economy? Interpreting Daly's definition at the national level. . J. Ind. Ecol. 19:(4):55263
    [Crossref] [Google Scholar]
  29. 29.
    Victor PA. 2022.. Herman Daly's Economics for a Full World: His Life and Ideas. Abingdon, UK:: Routledge
    [Google Scholar]
  30. 30.
    Fuchs D, Sahakian M, Gumbert T, Giulio AD, Maniates M, et al. 2021.. Consumption Corridors: Living a Good Life Within Sustainable Limits. London:: Routledge
    [Google Scholar]
  31. 31.
    Kallis G, Kostakis V, Lange S, Muraca B, Paulson S, Schmelzer M. 2018.. Research on degrowth. . Annu. Rev. Environ. Resour. 43::291316
    [Crossref] [Google Scholar]
  32. 32.
    Hickel J, Kallis G, Jackson T, O'Neill DW, Schor JB, et al. 2022.. Degrowth can work—here's how science can help. . Nature 612:(7940):4003
    [Crossref] [Google Scholar]
  33. 33.
    Leipold S, Petit-Boix A, Luo A, Helander H, Simoens M, et al. 2023.. Lessons, narratives, and research directions for a sustainable circular economy. . J. Ind. Ecol. 27:(1):618
    [Crossref] [Google Scholar]
  34. 34.
    Korhonen J, Honkasalo A, Seppälä J. 2018.. Circular economy: the concept and its limitations. . Ecol. Econ. 143::3746
    [Crossref] [Google Scholar]
  35. 35.
    Mastrucci A, Niamir L, Boza-Kiss B, Bento N, Wiedenhofer D, et al. 2023.. Modeling low energy demand futures for buildings: current state and research needs. . Annu. Rev. Environ. Resour. 48::76192
    [Crossref] [Google Scholar]
  36. 36.
    Creutzig F, Callaghan M, Ramakrishnan A, Javaid A, Niamir L, et al. 2021.. Reviewing the scope and thematic focus of 100 000 publications on energy consumption, services and social aspects of climate change: a big data approach to demand-side mitigation. . Environ. Res. Lett. 16::033001
    [Crossref] [Google Scholar]
  37. 37.
    Kalt G, Wiedenhofer D, Görg C, Haberl H. 2019.. Conceptualizing energy services: a review of energy and well-being along the Energy Service Cascade. . Energy Res. Soc. Sci. 53::4758
    [Crossref] [Google Scholar]
  38. 38.
    Fell MJ. 2017.. Energy services: a conceptual review. . Energy Res. Soc. Sci. 27::12940
    [Crossref] [Google Scholar]
  39. 39.
    Krausmann F, Wiedenhofer D, Haberl H. 2020.. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets. . Glob. Environ. Change 61::102034
    [Crossref] [Google Scholar]
  40. 40.
    Hertwich EG. 2021.. Increased carbon footprint of materials production driven by rise in investments. . Nat. Geosci. 14:(3):15155
    [Crossref] [Google Scholar]
  41. 41.
    Lamb WF, Wiedmann T, Pongratz J, Andrew R, Crippa M, et al. 2021.. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. . Environ. Res. Lett. 16::073005
    [Crossref] [Google Scholar]
  42. 42.
    Buck HJ, Carton W, Lund JF, Markusson N. 2023.. Why residual emissions matter right now. . Nat. Clim. Change 13:(4):35158
    [Crossref] [Google Scholar]
  43. 43.
    Pauliuk S, Heeren N, Berrill P, Fishman T, Nistad A, et al. 2021.. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. . Nat. Commun. 12::5097
    [Crossref] [Google Scholar]
  44. 44.
    Bataille C, Nilsson LJ, Jotzo F. 2021.. Industry in a net-zero emissions world: new mitigation pathways, new supply chains, modelling needs and policy implications. . Energy Clim. Change 2::100059
    [Crossref] [Google Scholar]
  45. 45.
    Stern DI. 2011.. The role of energy in economic growth. . Ann. N. Y. Acad. Sci. 1219:(1):2651
    [Crossref] [Google Scholar]
  46. 46.
    Aguilar-Hernandez GA, Sigüenza-Sanchez CP, Donati F, Rodrigues JFD, Tukker A. 2018.. Assessing circularity interventions: a review of EEIOA-based studies. . J. Econ. Struct. 7:(1):14
    [Crossref] [Google Scholar]
  47. 47.
    McCarthy A, Dellink R, Bibas R. 2018.. The macroeconomics of the circular economy transition: a critical review of modelling approaches. Work. Pap. 130 , OECD, Paris:
    [Google Scholar]
  48. 48.
    Haberl H, Wiedenhofer D, Erb K-H, Görg C, Krausmann F. 2017.. The material stock–flow–service nexus: a new approach for tackling the decoupling conundrum. . Sustainability 9:(7):1049
    [Crossref] [Google Scholar]
  49. 49.
    Martinez-Alier J, Kallis G, Veuthey S, Walter M, Temper L. 2010.. Social metabolism, ecological distribution conflicts, and valuation languages. . Ecol. Econ. 70:(2):15358
    [Crossref] [Google Scholar]
  50. 50.
    Keen S. 2021.. The appallingly bad neoclassical economics of climate change. . Globalizations 18:(7):114977
    [Crossref] [Google Scholar]
  51. 51.
    Mercure JF, Knobloch F, Pollitt H, Paroussos L, Scrieciu SS, Lewney R. 2019.. Modelling innovation and the macroeconomics of low-carbon transitions: theory, perspectives and practical use. . Clim. Policy 19:(8):101937
    [Crossref] [Google Scholar]
  52. 52.
    Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, et al. 2016.. The FAIR Guiding Principles for scientific data management and stewardship. . Sci. Data 3::160018
    [Crossref] [Google Scholar]
  53. 53.
    Stadler K, Wood R, Bulavskaya T, Södersten CJ, Simas M, et al. 2018.. EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input–output tables. . J. Ind. Ecol. 22:(3):50215
    [Crossref] [Google Scholar]
  54. 54.
    Lenzen M, Geschke A, West J, Fry J, Malik A, et al. 2021.. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. . Nat. Sustain. 5::15766
    [Crossref] [Google Scholar]
  55. 55.
    Jackson T, Victor PA. 2020.. The transition to a sustainable prosperity—a stock-flow-consistent ecological macroeconomic model for Canada. . Ecol. Econ. 177::106787
    [Crossref] [Google Scholar]
  56. 56.
    Jacques P, Delannoy L, Andrieu B, Yilmaz D, Jeanmart H, Godin A. 2023.. Assessing the economic consequences of an energy transition through a biophysical stock–flow consistent model. . Ecol. Econ. 209::107832
    [Crossref] [Google Scholar]
  57. 57.
    Nieto J, Carpintero Ó, Lobejón LF, Miguel LJ. 2020.. An ecological macroeconomics model: the energy transition in the EU. . Energy Policy 145::111726
    [Crossref] [Google Scholar]
  58. 58.
    Pulido-Sánchez D, Capellán-Pérez I, de Castro C, Frechoso F. 2022.. Material and energy requirements of transport electrification. . Energy Environ. Sci. 15:(12):4872910
    [Crossref] [Google Scholar]
  59. 59.
    Capellán-Pérez I, de Blas I, Nieto J, de Castro C, Miguel LJ, et al. 2020.. MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints. . Energy Environ. Sci. 13:(3):9861017
    [Crossref] [Google Scholar]
  60. 60.
    Vita G, Lundström JR, Hertwich EG, Quist J, Ivanova D, et al. 2019.. The environmental impact of green consumption and sufficiency lifestyles scenarios in Europe: connecting local sustainability visions to global consequences. . Ecol. Econ. 164::106322
    [Crossref] [Google Scholar]
  61. 61.
    Wenz L, Weddige U, Jakob M, Steckel JC. 2020.. Road to glory or highway to hell? Global road access and climate change mitigation. . Environ. Res. Lett. 15::075010
    [Crossref] [Google Scholar]
  62. 62.
    Donati F, Aguilar-Hernandez GA, Sigüenza-Sánchez CP, de Koning A, Rodrigues JFD, Tukker A. 2020.. Modeling the circular economy in environmentally extended input–output tables: methods, software and case study. . Resour. Conserv. Recycl. 152::104508
    [Crossref] [Google Scholar]
  63. 63.
    Wiebe KS, Harsdorff M, Montt G, Simas MS, Wood R. 2019.. Global circular economy scenario in a multiregional input–output framework. . Environ. Sci. Technol. 53:(11):636273
    [Crossref] [Google Scholar]
  64. 64.
    Garvey A, Norman JB, Owen A, Barrett J. 2021.. Towards net zero nutrition: the contribution of demand-side change to mitigating UK food emissions. . J. Clean. Prod. 290::125672
    [Crossref] [Google Scholar]
  65. 65.
    Hayashi A, Homma T, Akimoto K. 2022.. The potential contribution of food wastage reductions driven by information technology on reductions of energy consumption and greenhouse gas emissions in Japan. . Environ. Chall. 8::100588
    [Crossref] [Google Scholar]
  66. 66.
    Gast L, Cabrera Serrenho A, Allwood JM. 2022.. What contribution could industrial symbiosis make to mitigating industrial greenhouse gas (GHG) emissions in bulk material production?. Environ. Sci. Technol. 56:(14):1026978
    [Crossref] [Google Scholar]
  67. 67.
    Pollitt H, Neuhoff K, Lin X. 2020.. The impact of implementing a consumption charge on carbon-intensive materials in Europe. . Clim. Policy 20:(Suppl. 1):S7489
    [Crossref] [Google Scholar]
  68. 68.
    de Souza JFT, Pacca SA. 2023.. A low carbon future for Brazilian steel and cement: a joint assessment under the circular economy perspective. . Resour. Conserv. Recycl. Adv. 17::200141
    [Google Scholar]
  69. 69.
    van Ruijven BJ, van Vuuren DP, Boskaljon W, Neelis ML, Saygin D, Patel MK. 2016.. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. . Resour. Conserv. Recycl. 112::1536
    [Crossref] [Google Scholar]
  70. 70.
    Keen S, Ayres RU, Standish R. 2019.. A note on the role of energy in production. . Ecol. Econ. 157::4046
    [Crossref] [Google Scholar]
  71. 71.
    Zhang X, Shinozuka M, Tanaka Y, Kanamori Y, Masui T. 2022.. How ICT can contribute to realize a sustainable society in the future: a CGE approach. . Environ. Dev. Sustain. 24:(4):561440
    [Crossref] [Google Scholar]
  72. 72.
    Nong D, Schandl H, Lu Y, Verikios G. 2023.. Resource efficiency and climate change policies to support West Asia's move towards sustainability: a computable general equilibrium analysis of material flows. . J. Clean. Prod. 421::138458
    [Crossref] [Google Scholar]
  73. 73.
    OECD. 2019.. Global material resources outlook to 2060: economic drivers and environmental consequences. Rep. , OECD, Paris:. https://www.oecd.org/publications/global-material-resources-outlook-to-2060-9789264307452-en.htm
    [Google Scholar]
  74. 74.
    Schandl H, Lu Y, Che N, Newth D, West J, et al. 2020.. Shared socio-economic pathways and their implications for global materials use. . Resour. Conserv. Recycl. 160::104866
    [Crossref] [Google Scholar]
  75. 75.
    Cao Z, Liu G, Zhong S, Dai H, Pauliuk S. 2019.. Integrating dynamic material flow analysis and computable general equilibrium models for both mass and monetary balances in prospective modeling: a case for the Chinese building sector. . Environ. Sci. Technol. 53:(1):22433
    [Crossref] [Google Scholar]
  76. 76.
    Tong X, Dai H, Lu P, Zhang A, Ma T. 2022.. Saving global platinum demand while achieving carbon neutrality in the passenger transport sector: linking material flow analysis with integrated assessment model. . Resour. Conserv. Recycl. 179::106110
    [Crossref] [Google Scholar]
  77. 77.
    Bachner G, Mayer J, Fischer L, Frei E, Steininger K, Sommer MW, et al. 2021.. Application of the concept of ‘functionalities’ in macroeconomic modelling frameworks—insights for Austria and methodological lessons learned. Work. Pap. 636 , Austrian Inst. Econ. Res. (WIFO), Vienna:
    [Google Scholar]
  78. 78.
    Oshiro K, Fujimori S, Ochi Y, Ehara T. 2021.. Enabling energy system transition toward decarbonization in Japan through energy service demand reduction. . Energy 227::120464
    [Crossref] [Google Scholar]
  79. 79.
    Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V, et al. 2018.. A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. . Nat. Energy 3:(6):51527
    [Crossref] [Google Scholar]
  80. 80.
    Barrett J, Pye S, Betts-Davies S, Broad O, Price J, et al. 2022.. Energy demand reduction options for meeting national zero-emission targets in the United Kingdom. . Nat. Energy 7:(8):72635
    [Crossref] [Google Scholar]
  81. 81.
    Costa L, Moreau V, Thurm B, Yu W, Clora F, et al. 2021.. The decarbonisation of Europe powered by lifestyle changes. . Environ. Res. Lett. 16::044057
    [Crossref] [Google Scholar]
  82. 82.
    Günther J, Lehmann H, Nuss P, Purr K. 2019.. Resource-efficient pathways towards greenhouse-gas neutrality—RESCUE. Tech. Rep. , Umweltbundesamt, Dessau-Roßlau, Ger.: http://rgdoi.net/10.13140/RG.2.2.17700.01929
    [Google Scholar]
  83. 83.
    Kermeli K, Edelenbosch OY, Crijns-Graus W, van Ruijven BJ, van Vuuren DP, Worrell E. 2022.. Improving material projections in Integrated Assessment Models: the use of a stock-based versus a flow-based approach for the iron and steel industry. . Energy 239::122434
    [Crossref] [Google Scholar]
  84. 84.
    Zhang S, Yi BW, Worrell E, Wagner F, Crijns-Graus W, et al. 2019.. Integrated assessment of resource-energy-environment nexus in China's iron and steel industry. . J. Clean. Prod. 232::23549
    [Crossref] [Google Scholar]
  85. 85.
    Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL, et al. 2018.. Options for keeping the food system within environmental limits. . Nature 562:(7728):51925
    [Crossref] [Google Scholar]
  86. 86.
    Daigneault A, Baker JS, Guo J, Lauri P, Favero A, et al. 2022.. How the future of the global forest sink depends on timber demand, forest management, and carbon policies. . Glob. Environ. Change 76::102582
    [Crossref] [Google Scholar]
  87. 87.
    Austin KG, Baker JS, Sohngen BL, Wade CM, Daigneault A, et al. 2020.. The economic costs of planting, preserving, and managing the world's forests to mitigate climate change. . Nat. Commun. 11::5946
    [Crossref] [Google Scholar]
  88. 88.
    Stegmann P, Daioglou V, Londo M, van Vuuren DP, Junginger M. 2022.. Plastic futures and their CO2 emissions. . Nature 612:(7939):27276
    [Crossref] [Google Scholar]
  89. 89.
    Akimoto K, Sano F, Oda J. 2022.. Impacts of ride and car-sharing associated with fully autonomous cars on global energy consumptions and carbon dioxide emissions. . Technol. Forecast. Soc. Change 174::121311
    [Crossref] [Google Scholar]
  90. 90.
    Tokimatsu K, Höök M, McLellan B, Wachtmeister H, Murakami S, et al. 2018.. Energy modeling approach to the global energy-mineral nexus: exploring metal requirements and the well-below 2°C target with 100 percent renewable energy. . Appl. Energy 225::115875
    [Crossref] [Google Scholar]
  91. 91.
    Lechtenböhmer S, Schneider C, Roche MY, Höller S. 2015.. Re-industrialisation and low-carbon economy—can they go together? Results from stakeholder-based scenarios for energy-intensive industries in the German state of North Rhine Westphalia. . Energies 8:(10):1140429
    [Crossref] [Google Scholar]
  92. 92.
    Deetman S, de Boer HS, Van Engelenburg M, van der Voet E, van Vuuren DP. 2021.. Projected material requirements for the global electricity infrastructure—generation, transmission and storage. . Resour. Conserv. Recycl. 164::105200
    [Crossref] [Google Scholar]
  93. 93.
    Deetman S, Marinova S, van der Voet E, van Vuuren DP, Edelenbosch O, Heijungs R. 2020.. Modelling global material stocks and flows for residential and service sector buildings towards 2050. . J. Clean. Prod. 245::118658
    [Crossref] [Google Scholar]
  94. 94.
    Deetman S, Pauliuk S, van Vuuren DP, van der Voet E, Tukker A. 2018.. Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances. . Environ. Sci. Technol. 52:(8):495059
    [Crossref] [Google Scholar]
  95. 95.
    Allen C, Metternicht G, Wiedmann T, Pedercini M. 2019.. Greater gains for Australia by tackling all SDGs but the last steps will be the most challenging. . Nat. Sustain. 2:(11):104150
    [Crossref] [Google Scholar]
  96. 96.
    Moallemi EA, Eker S, Gao L, Hadjikakou M, Liu Q, et al. 2022.. Early systems change necessary for catalyzing long-term sustainability in a post-2030 agenda. . One Earth 5:(7):792811
    [Crossref] [Google Scholar]
  97. 97.
    Neumann K, Hirschnitz-Garbers M. 2022.. Material efficiency and global pathways towards 100% renewable energy systems—system dynamics findings on potentials and constraints. . J. Sustain. Dev. Energy Water Environ. Syst. 10:(4):1100427
    [Crossref] [Google Scholar]
  98. 98.
    Sverdrup HU, Olafsdottir AH. 2023.. Dynamical modelling of the global cement production and supply system, assessing climate impacts of different future scenarios. . Water Air Soil Pollut. 234:(3):191
    [Crossref] [Google Scholar]
  99. 99.
    Kumar P, Natarajan R, Ashok K. 2021.. Sustainable alternative futures for urban India: the resource, energy, and emissions implications of urban form scenarios. . Environ. Res. Infrastruct. Sustain. 1::011004
    [Crossref] [Google Scholar]
  100. 100.
    Verhoef LA, Budde BW, Chockalingam C, García Nodar B, van Wijk AJM. 2018.. The effect of additive manufacturing on global energy demand: an assessment using a bottom-up approach. . Energy Policy 112::34960
    [Crossref] [Google Scholar]
  101. 101.
    van der Voet E, Van Oers L, Verboon M, Kuipers K. 2019.. Environmental implications of future demand scenarios for metals: methodology and application to the case of seven major metals. . J. Ind. Ecol. 23:(1):14155
    [Crossref] [Google Scholar]
  102. 102.
    Buschbeck C, Pauliuk S. 2022.. Required displacement factors for evaluating and comparing climate impacts of intensive and extensive forestry in Germany. . Carbon Balance Manag. 17:(1):14
    [Crossref] [Google Scholar]
  103. 103.
    Bjørn A, Kalbar P, Nygaard SE, Kabins S, Jensen CL, et al. 2018.. Pursuing necessary reductions in embedded GHG emissions of developed nations: Will efficiency improvements and changes in consumption get us there?. Glob. Environ. Change 52::31424
    [Crossref] [Google Scholar]
  104. 104.
    Rammelt CF, Gupta J, Liverman D, Scholtens J, Ciobanu D, et al. 2022.. Impacts of meeting minimum access on critical earth systems amidst the Great Inequality. . Nat. Sustain. 6::21221
    [Crossref] [Google Scholar]
  105. 105.
    Mastrucci A, Min J, Usubiaga-Liaño A, Rao ND. 2020.. A framework for modelling consumption-based energy demand and emission pathways. . Environ. Sci. Technol. 54:(3):1799807
    [Crossref] [Google Scholar]
  106. 106.
    Mastrucci A, Rao ND. 2019.. Bridging India's housing gap: lowering costs and CO2 emissions. . Build. Res. Inf. 47:(1):823
    [Crossref] [Google Scholar]
  107. 107.
    Rao ND, Min J, Mastrucci A. 2019.. Energy requirements for decent living in India, Brazil and South Africa. . Nat. Energy 4:(12):102532
    [Crossref] [Google Scholar]
  108. 108.
    Kikstra JS, Mastrucci A, Min J, Riahi K, Rao ND. 2021.. Decent living gaps and energy needs around the world. . Environ. Res. Lett. 16::095006
    [Crossref] [Google Scholar]
  109. 109.
    Millward-Hopkins J, Steinberger JK, Rao ND, Oswald Y. 2020.. Providing decent living with minimum energy: a global scenario. . Glob. Environ. Change 65::102168
    [Crossref] [Google Scholar]
  110. 110.
    Vélez-Henao JA, Pauliuk S. 2023.. Material requirements of decent living standards. . Environ. Sci. Technol. 57:(38):1420617
    [Crossref] [Google Scholar]
  111. 111.
    Cao Z, Masanet E, Tiwari A, Akolawala S. 2021.. Decarbonizing concrete: deep decarbonization pathways for the cement and concrete cycle in the United States, India, and China. Rep. , Ind. Sustain. Anal. Lab., Northwest Univ., Evanston, IL:. https://www.climateworks.org/wp-content/uploads/2021/03/Decarbonizing_Concrete.pdf
    [Google Scholar]
  112. 112.
    Cao Z, Myers RJ, Lupton RC, Duan H, Sacchi R, et al. 2020.. The sponge effect and carbon emission mitigation potentials of the global cement cycle. . Nat. Commun. 11::3777
    [Crossref] [Google Scholar]
  113. 113.
    Ciacci L, Fishman T, Elshkaki A, Graedel TE, Vassura I, Passarini F. 2020.. Exploring future copper demand, recycling and associated greenhouse gas emissions in the EU-28. . Glob. Environ. Change 63::102093
    [Crossref] [Google Scholar]
  114. 114.
    Kalt G, Thunshirn P, Wiedenhofer D, Krausmann F, Haas W, Haberl H. 2021.. Material stocks in global electricity infrastructures—an empirical analysis of the power sector's stock–flow–service nexus. . Resour. Conserv. Recycl. 173::105723
    [Crossref] [Google Scholar]
  115. 115.
    Watari T, Cao Z, Hata S, Nansai K. 2022.. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. . Nat. Commun. 13::4158
    [Crossref] [Google Scholar]
  116. 116.
    Watari T, Nansai K, Giurco D, Nakajima K, McLellan B, Helbig C. 2020.. Global metal use targets in line with climate goals. . Environ. Sci. Technol. 54:(19):1247683
    [Crossref] [Google Scholar]
  117. 117.
    Watari T, Yokoi R. 2021.. International inequality in in-use metal stocks: what it portends for the future. . Resour. Policy 70::101968
    [Crossref] [Google Scholar]
  118. 118.
    Zhong X, Hu M, Deetman S, Steubing B, Lin HX, Hernandez GA, et al. 2021.. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. . Nat. Commun. 12::6126
    [Crossref] [Google Scholar]
  119. 119.
    Zhou S, Gu A, Tong Q, Guo Y, Wei X. 2022.. Multi-scenario simulation on reducing CO2 emissions from China's major manufacturing industries targeting 2060. . J. Ind. Ecol. 26:(3):85061
    [Crossref] [Google Scholar]
  120. 120.
    Kalt G, Thunshirn P, Krausmann F, Haberl H. 2022.. Material requirements of global electricity sector pathways to 2050 and associated greenhouse gas emissions. . J. Clean. Prod. 358::132014
    [Crossref] [Google Scholar]
  121. 121.
    Song L, van Ewijk S, Masanet E, Watari T, Meng F, et al. 2023.. China's bulk material loops can be closed but deep decarbonization requires demand reduction. . Nat. Clim. Change 13:(10):113643
    [Crossref] [Google Scholar]
  122. 122.
    Wang T, Berrill P, Zimmerman JB, Rao ND, Min J, Hertwich EG. 2022.. Improved copper circularity as a result of increased material efficiency in the U.S. housing stock. . Environ. Sci. Technol. 56:(7):456577
    [Crossref] [Google Scholar]
  123. 123.
    Zhang Q, Xu J, Wang Y, Hasanbeigi A, Zhang W, et al. 2018.. Comprehensive assessment of energy conservation and CO2 emissions mitigation in China's iron and steel industry based on dynamic material flows. . Appl. Energy 209::25165
    [Crossref] [Google Scholar]
  124. 124.
    Mayer A, Kalt G, Kaufmann L, Röös E, Muller A, et al. 2022.. Impacts of scaling up agroecology on the sustainability of European agriculture in 2050. . EuroChoices 21:(3):2736
    [Crossref] [Google Scholar]
  125. 125.
    Bailis R, Drigo R, Ghilardi A, Masera O. 2015.. The carbon footprint of traditional woodfuels. . Nat. Clim. Change 5:(3):26672
    [Crossref] [Google Scholar]
  126. 126.
    Le Noë J, Erb KH, Matej S, Magerl A, Bhan M, Gingrich S. 2021.. Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020. . Nat. Commun. 12::6075
    [Crossref] [Google Scholar]
  127. 127.
    Lamperti F, Dosi G, Napoletano M, Roventini A, Sapio A. 2018.. Faraway, so close: coupled climate and economic dynamics in an agent-based integrated assessment model. . Ecol. Econ. 150::31539
    [Crossref] [Google Scholar]
  128. 128.
    Lamperti F, Mandel A, Napoletano M, Sapio A, Roventini A, et al. 2019.. Towards agent-based integrated assessment models: examples, challenges, and future developments. . Reg. Environ. Change 19:(3):74762
    [Crossref] [Google Scholar]
  129. 129.
    Savin I, Creutzig F, Filatova T, Foramitti J, Konc T, et al. 2023.. Agent-based modelling to integrate elements from different disciplines for ambitious climate policy. . Wiley Interdiscip. Rev. Clim. Change 14:(2):e811
    [Crossref] [Google Scholar]
  130. 130.
    Safarzyńska K, van den Bergh JCJM. 2022.. ABM-IAM: optimal climate policy under bounded rationality and multiple inequalities. . Environ. Res. Lett. 17::094022
    [Crossref] [Google Scholar]
  131. 131.
    Yazan DM, Fraccascia L. 2020.. Sustainable operations of industrial symbiosis: an enterprise input-output model integrated by agent-based simulation. . Int. J. Prod. Res. 58:(2):392414
    [Crossref] [Google Scholar]
  132. 132.
    Koide R, Yamamoto H, Nansai K, Murakami S. 2023.. Agent-based model for assessment of multiple circular economy strategies: quantifying product-service diffusion, circularity, and sustainability. . Resour. Conserv. Recycl. 199::107216
    [Crossref] [Google Scholar]
  133. 133.
    Safarzyńska K, Di Domenico L, Raberto M. 2023.. The leakage effect may undermine the circular economy efforts. . Sci. Rep. 13::16677
    [Crossref] [Google Scholar]
  134. 134.
    Kikstra JS, Mastrucci A, Min J, Riahi K, Rao ND. 2021.. Decent living gaps and energy needs around the world. . Environ. Res. Lett. 16::095006
    [Crossref] [Google Scholar]
  135. 135.
    Gaur A, Balyk O, Glynn J, Curtis J, Daly H. 2022.. Low energy demand scenario for feasible deep decarbonisation: whole energy systems modelling for Ireland. . Renew. Sustain. Energy Transit. 2::100024
    [Google Scholar]
  136. 136.
    Nemet G, Greene J. 2022.. Innovation in low-energy demand and its implications for policy. . Oxford Open Energy 1::oiac003
    [Crossref] [Google Scholar]
  137. 137.
    Cullen JM, Allwood JM. 2010.. Theoretical efficiency limits for energy conversion devices. . Energy 35:(5):205969
    [Crossref] [Google Scholar]
  138. 138.
    Sakai M, Brockway PE, Barrett JR, Taylor PG. 2019.. Thermodynamic efficiency gains and their role as a key ‘engine of economic growth. ’. Energies 12:(1):110
    [Crossref] [Google Scholar]
  139. 139.
    Krausmann F, Schandl H, Eisenmenger N, Giljum S, Jackson T. 2017.. Material flow accounting: measuring global material use for sustainable development. . Annu. Rev. Environ. Resour. 42::64775
    [Crossref] [Google Scholar]
  140. 140.
    Plank B, Streeck J, Virág D, Krausmann F, Haberl H, Wiedenhofer D. 2022.. From resource extraction to manufacturing and construction: flows of stock-building materials in 177 countries from 1900 to 2016. . Resour. Conserv. Recycl. 179::106122
    [Crossref] [Google Scholar]
  141. 141.
    Streeck J, Pauliuk S, Wieland H, Wiedenhofer D. 2023.. A review of methods to trace material flows into final products in dynamic material flow analysis: from industry shipments in physical units to monetary input-output tables. Part 1. . J. Ind. Ecol. 27:(2):43656
    [Crossref] [Google Scholar]
  142. 142.
    Tisserant A, Pauliuk S, Merciai S, Schmidt J, Fry J, et al. 2017.. Solid waste and the circular economy: a global analysis of waste treatment and waste footprints. . J. Ind. Ecol. 21:(3):62840
    [Crossref] [Google Scholar]
  143. 143.
    UNEP (U. N. Environ. Progr.), ISWA (Int. Solid Waste Assoc.). 2024.. . Global waste management outlook 2024—beyond an age of waste: turning rubbish into a resource. Rep. , UNEP, Nairobi:. https://wedocs.unep.org/20.500.11822/44939
    [Google Scholar]
  144. 144.
    UNEP (U. N. Environ. Progr.). 2023.. The use of natural resources in the economy: a global manual on economy wide material flow accounting. Handb., UNEP, Nairobi:
    [Google Scholar]
  145. 145.
    United Nations, Eur. Union, Food Agric. Organ., Int. Monet. Fund, OECD, World Bank. 2014.. System of Environmental Economic Accounting 2012: Central Framework. New York:: United Nations
    [Google Scholar]
  146. 146.
    Chen WQ, Graedel TE. 2015.. In-use product stocks link manufactured capital to natural capital. . PNAS 112::626570
    [Crossref] [Google Scholar]
  147. 147.
    Haberl H, Wiedenhofer D, Pauliuk S, Krausmann F, Müller DB, Fischer-Kowalski M. 2019.. Contributions of sociometabolic research to sustainability science. . Nat. Sustain. 2:(3):17384
    [Crossref] [Google Scholar]
  148. 148.
    Virág D, Wiedenhofer D, Baumgart A, Matej S, Krausmann F, et al. 2022.. How much infrastructure is required to support decent mobility for all? An exploratory assessment. . Ecol. Econ. 200::107511
    [Crossref] [Google Scholar]
  149. 149.
    Hertwich E, Heeren N, Kuczenski B, Majeau-Bettez G, Myers RJ, et al. 2018.. Nullius in verba: advancing data transparency in industrial ecology. . J. Ind. Ecol. 22:(1):617
    [Crossref] [Google Scholar]
  150. 150.
    Pauliuk S. 2020.. Making sustainability science a cumulative effort. . Nat. Sustain. 3:(1):24
    [Crossref] [Google Scholar]
  151. 151.
    van Ruijven BJ, Carlsen H, Chaturvedi V, Ebi K, Fuglestvedt J, et al. 2022.. Scenarios Forum 2022: forum on scenarios for climate and societal futures. Meet. Rep. , Int. Inst. Appl. Syst. Anal., Laxenburg, Austria:. https://pure.iiasa.ac.at/id/eprint/18522/1/2022%20Scenarios%20Forum%20Meeting%20Report_Final.pdf
    [Google Scholar]
  152. 152.
    Fishman T, Heeren N, Pauliuk S, Berrill P, Tu Q, et al. 2021.. A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling. . J. Ind. Ecol. 25:(2):30520
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-110822-044428
Loading
/content/journals/10.1146/annurev-environ-110822-044428
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error