1932

Abstract

In this review, we thoroughly analyze the state of global rivers, focusing on their physical and ecological characteristics as well as management strategies. The review results have helped us generate four recommendations. Firstly, rivers should be managed under a legally binding global accord at the basin level. Secondly, challenges related to river pollution and inappropriate project implementation can be mitigated by adopting newly defined strategic environmental assessments and the United Nations System of Environmental Economic Accounting. Thirdly, we need data from the latest scientific sources, such as geospatial sources, to better understand rivers at different scales as composite systems. The last recommendation calls for taking into account climate change concerns in river management approaches. We also outline a proposition for developing a river monitoring and assessment program in order to perform comprehensive and planet-wide river assessment. The article elaborates on the strategies for achieving these recommendations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-111022-020951
2024-10-18
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-111022-020951.html?itemId=/content/journals/10.1146/annurev-environ-111022-020951&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    McCraken M, Wolf AT. 2019.. Updating the register of International River Basins of the World. . Int. J. Water Resour. Dev. 35::73282
    [Crossref] [Google Scholar]
  2. 2.
    Houser JN, Richardson WB. 2010.. Nitrogen and phosphorus in the upper Mississippi River: transport, processing, and effects on the river ecosystem. . Hydrobiologia 640::7188
    [Crossref] [Google Scholar]
  3. 3.
    Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002.. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. . Nature 416::61720
    [Crossref] [Google Scholar]
  4. 4.
    Xie Y, Zeng L, Wang P, Wu X, Feng T. 2022.. Water cost for water purification: renewability assessment of a typical wastewater treatment plant in China. . J. Clean. Prod. 349::131474
    [Crossref] [Google Scholar]
  5. 5.
    McCully P. 2001.. Silenced Rivers: The Ecology and Politics of Large Dams. London:: Zed
    [Google Scholar]
  6. 6.
    Molden D, Oweis T, Steduto P, Kijne JW, Hanjra MH, Bindraban PS. 2010.. Pathways for increasing agricultural water productivity. . In Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture, ed. D Molden , pp. 197249. Oxford, UK:: Earthscan
    [Google Scholar]
  7. 7.
    Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, et al. 2011.. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. . Front. Ecol. Environ. 9::494502
    [Crossref] [Google Scholar]
  8. 8.
    IPCC (Intergov. Panel Clim. Change). 2022.. Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck, et al . Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  9. 9.
    Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, et al. 2006.. Freshwater biodiversity: importance, threats, status and conservation challenges. . Biol. Rev. 81::16382
    [Crossref] [Google Scholar]
  10. 10.
    Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, et al. 2010.. Global threats to human water security and river biodiversity. . Nature 467::55561
    [Crossref] [Google Scholar]
  11. 11.
    Richter BD, Postel S, Revenga C, Scudder T, Lehner B, et al. 2010.. Lost in development's shadow: the downstream human consequences of dams. . Water Altern. 3::1442
    [Google Scholar]
  12. 12.
    Lechner AM, Keppel G, Langford WT. 2019.. Conservation of aquatic ecosystems in a changing world: current challenges and potential solutions. . Aquat. Conserv. Mar. Freshw. Ecosyst. 29::86779
    [Google Scholar]
  13. 13.
    Odume ON, Onyima BN, Nnadozie CF, Omovoh GO, Mmachaka T, et al. 2022.. Governance and institutional drivers of ecological degradation in urban river ecosystems: insights from case studies in African cities. . Sustainability 14::14147
    [Crossref] [Google Scholar]
  14. 14.
    Rumrill PD, Fitzgerald SM, Merchant WR. 2009.. Using scoping literature reviews as a means of understanding and interpreting existing literature. . Work 35::399404
    [Crossref] [Google Scholar]
  15. 15.
    Smith KE, Bambra C, Joyce KE, Perkins N, Hunter DJ. 2011.. Blinded by the light? New guidance for conducting systematic reviews in environments with pollution and other environmental hazards, but few human epidemiological studies. . J. Epidemiol. Commun. Health 65::38789
    [Crossref] [Google Scholar]
  16. 16.
    Islam ST, Rahman SH, Rishal FH, Samad S. 2020.. Development of climate change perceptions and programmes (1980–2020) in Bangladesh: lessons learned and way forward. . Int. Energy J. 20::56778
    [Google Scholar]
  17. 17.
    Yang HF, Yang SL, Xu KH, Milliman JD, Wang H, et al. 2018.. Human impacts on sediment in the Yangtze River: a review and new perspectives. . Glob. Planet. Change 162::817
    [Crossref] [Google Scholar]
  18. 18.
    Liu J, Wang J, Tan Y. 2023.. Spatiotemporal pattern and influencing mechanism of the flood-regulating ecosystem service capacity and demand in China's Yellow River basin, 2000–2020. . J. Hydrol. Reg. Stud. 45::101312
    [Crossref] [Google Scholar]
  19. 19.
    Xu M, Kang S, Wang X, Wu H, Hu D, Yang D. 2020.. Climate and hydrological changes in the Ob River Basin during 1936–2017. . Hydrol. Process. 34::182136
    [Crossref] [Google Scholar]
  20. 20.
    Fabre C, Sauvage S, Tananaev N, Noel GE, Teisserenc R, et al. 2019.. Assessment of sediment and organic carbon exports into the Arctic ocean: the case of the Yenisei River basin. . Water Res. 158::11835
    [Crossref] [Google Scholar]
  21. 21.
    Ogden S. 2023.. The impact of China's dams on the Mekong River Basin: governance, sustainable development and the energy–water nexus. . J. Contemp. China 32::15269
    [Crossref] [Google Scholar]
  22. 22.
    Bharati L, Sharma BR, Smakhtin V. 2016.. The Ganges River Basin: Status and Challenges in Water, Environment and Livelihoods. Oxford, UK:: Taylor & Francis
    [Google Scholar]
  23. 23.
    Mirza MMQ, Mandal UK, Rabbani MG, Nishat A. 2019.. Integration of national policies towards addressing the challenges of impacts of climate change in the GBM region. . In The Sundarbans: A Disaster-Prone Eco-Region, ed. HS Sen , pp. 581607. Berlin:: Springer
    [Google Scholar]
  24. 24.
    Issa IE, Al-Ansari NA, Sherwany G, Knutsson S. 2013.. Trends and future challenges of water resources in the Tigris–Euphrates rivers basin in Iraq. . Hydrol. Earth Syst. Sci. Discuss. 10::1461744
    [Google Scholar]
  25. 25.
    Basheer M, Nechifor V, Calzadilla A, Gebrechorkos S, Pritchard D, et al. 2023.. Cooperative adaptive management of the Nile River with climate and socio-economic uncertainties. . Nat. Clim. Change 13::4857
    [Crossref] [Google Scholar]
  26. 26.
    Inogwabini B-I. 2020.. The changing water cycle: freshwater in the Congo. . Wiley Interdiscip. Rev. Water 7::e1410
    [Crossref] [Google Scholar]
  27. 27.
    Bene C, Evans L, Mills D, Ovie S, Raji A, et al. 2011.. Testing resilience thinking in a poverty context: experience from the Niger River basin. . Glob. Environ. Change 21::117384
    [Crossref] [Google Scholar]
  28. 28.
    Martinez-Capel F, Garcia-Lopez L, Beyer M. 2016.. Integrating hydrological modelling and ecosystem functioning for environmental flows in climate change scenarios in the Zambezi River (Zambezi Region, Namibia). . River Res. Appl. 33::25875
    [Crossref] [Google Scholar]
  29. 29.
    Schletterer M, Shaporenko SI, Kuzovlev VV, Minin AE, Geest GLV, et al. 2018.. The Volga: management issues in the largest river basin in Europe. . River Res. Appl. 35::51019
    [Crossref] [Google Scholar]
  30. 30.
    Hein T, Pletterbauer F, Graf W, Zsuffa I, Haidvogl G, et al. 2018.. Management challenges related to long-term ecological impacts, complex stressor interactions, and different assessment approaches in the Danube River Basin. . River Res. Appl. 35::5009
    [Crossref] [Google Scholar]
  31. 31.
    DuBowy PJ. 2013.. Mississippi River ecohydrology: past, present and future. . Ecohydrol. Hydrobiol. 13::7383
    [Crossref] [Google Scholar]
  32. 32.
    Berney P, Hosking T. 2016.. Opportunities and challenges for water-dependent protected area management arising from water management reform in the Murray–Darling Basin: a case study from the Macquarie Marshes in Australia. . Aquat. Conserv. Mar. Freshw. Ecosyst. 26:(Suppl. 1):1228
    [Crossref] [Google Scholar]
  33. 33.
    Chinn T, Mason P. 2016.. The first 25 years of the hydrology of the Onyx River, Wright Valley, Dry Valleys, Antarctica. . Polar Rec. 52::1665
    [Crossref] [Google Scholar]
  34. 34.
    Junk WJ, Bayley PB, Sparks RE. 1989.. The flood pulse concept in river-floodplain systems. . Can. J. Fish. Aquat. Sci. 106::11027
    [Google Scholar]
  35. 35.
    Biggs J, Fumetti SV, Kelly-Quinn M. 2017.. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. . Hydrobiologia 793::339
    [Crossref] [Google Scholar]
  36. 36.
    Nilsson C, Reidy CA, Dynesius M, Revenga C. 2005.. Fragmentation and flow regulation of the world's large river systems. . Science 308::4058
    [Crossref] [Google Scholar]
  37. 37.
    Warrick JA, Fong DA. 2004.. Dispersal scaling from the world's rivers. . Geophys. Res. Lett. 31::L04301
    [Crossref] [Google Scholar]
  38. 38.
    Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. 2015.. A global boom in hydropower dam construction. . Aquat. Sci. 77::16170
    [Crossref] [Google Scholar]
  39. 39.
    Hassan FA. 1997.. The dynamics of a riverine civilization: a geoarchaeological perspective on the Nile Valley, Egypt. . World Archaeol. 29::5174
    [Crossref] [Google Scholar]
  40. 40.
    Hallouin T, Bruen M, Christie M, Bullock C, Kelly-Quinn M. 2018.. Challenges in using hydrology and water quality models for assessing freshwater ecosystem services: a review. . Geosciences 8::45
    [Crossref] [Google Scholar]
  41. 41.
    Mekonnen M, Hoekstra A. 2016.. Four billion people facing severe water scarcity. . Sci. Adv. 2::e1500323
    [Crossref] [Google Scholar]
  42. 42.
    Hoekstra A, Mekonnen M, Chapagain A, Mathews R, Richter B. 2012.. Global monthly water scarcity: blue water footprints versus blue water availability. . PLOS ONE 7::e32688
    [Crossref] [Google Scholar]
  43. 43.
    Veldkamp T, Wada Y, Aerts J, Döll P, Gosling S, et al. 2017.. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. . Nat. Commun. 8::15697
    [Crossref] [Google Scholar]
  44. 44.
    Grill G, Lehner B, Lumsdon A, MacDonald G, Zarfl C, Liermann C. 2015.. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. . Environ. Res. Lett. 10::015001
    [Crossref] [Google Scholar]
  45. 45.
    Palmer MA, Liermann CAR, Nilsson C, Florke M, Alcamo J. 2008.. Climate change and the world's river basins: anticipating management options. . Front. Ecol. Environ. 6::8189
    [Crossref] [Google Scholar]
  46. 46.
    Meybeck M. 2003.. Global analysis of river systems: from Earth system controls to Anthropocene syndromes. . Philos. Trans. R. Soc. B 358::193555
    [Crossref] [Google Scholar]
  47. 47.
    Döll P, Fiedler K, Zhang J. 2009.. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. . Hydrol. Earth Syst. Sci. 13::241332
    [Crossref] [Google Scholar]
  48. 48.
    Dethier E, Renshaw C. 2022.. Rapid changes to global river suspended sediment flux by humans. . Science 376::144752
    [Crossref] [Google Scholar]
  49. 49.
    Reid A, Carlson A, Creed I, Eliason E, Gell P, et al. 2018.. Emerging threats and persistent conservation challenges for freshwater biodiversity. . Biol. Rev. 94::84973
    [Crossref] [Google Scholar]
  50. 50.
    Leigh C, Datry T. 2016.. Drying as a primary hydrological determinant of biodiversity in river systems: a broad-scale analysis. . Ecography 40::48799
    [Crossref] [Google Scholar]
  51. 51.
    Best J. 2019.. Anthropogenic stresses on the world's big rivers. . Nat. Geosci. 12::721
    [Crossref] [Google Scholar]
  52. 52.
    Amtstaetter F, Yen J, Hale R, Koster W, O'Connor J, et al. 2021.. Elevated river discharge enhances the immigration of juvenile catadromous and amphidromous fishes into temperate coastal rivers. . J. Fish Biol. 99::6172
    [Crossref] [Google Scholar]
  53. 53.
    Sabater S, Freixa A, Jiménez L, López-Doval J, Pace G, et al. 2022.. Extreme weather events threaten biodiversity and functions of river ecosystems: evidence from a meta-analysis. . Biol. Rev. 98::45061
    [Crossref] [Google Scholar]
  54. 54.
    Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, et al. 2014.. Global water resources affected by human interventions and climate change. . PNAS 111::325156
    [Crossref] [Google Scholar]
  55. 55.
    Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, et al. 2006.. Freshwater biodiversity: importance, threats, status and conservation challenges. . Biol. Rev. 81::16382
    [Crossref] [Google Scholar]
  56. 56.
    Uitto J, Duda AM. 2002.. Management of transboundary water resources: lessons from international cooperation for conflict prevention. . Geogr. J. 168::36578
    [Crossref] [Google Scholar]
  57. 57.
    Wester P, Mishra A, Mukherji A, Shrestha AB, eds. 2019.. The Hindu Kush Himalaya Assessment—Mountains, Climate Change, Sustainability and People. Cham, Switz:.: Springer Nature
    [Google Scholar]
  58. 58.
    Kattel GR. 2019.. State of future water regimes in the world's river basins: balancing the water between society and nature. . Crit. Rev. Environ. Sci. Technol. 49::110733
    [Crossref] [Google Scholar]
  59. 59.
    Bakker MHN. 2009.. Transboundary river floods: examining countries, international river basins and continents. . Water Policy 11::26988
    [Crossref] [Google Scholar]
  60. 60.
    Mianabadi H, Mostert E, Giesen NVD. 2015.. Trans-boundary river basin management: factors influencing the success or failure of international agreements. . In Conflict Resolution in Water Resources and Environmental Management, ed. K Hipel, L Fang, M Bristow , pp. 13343. New York:: Springer
    [Google Scholar]
  61. 61.
    Yan F, Wang W, Suman D, Yu S, He D. 2019.. Water cooperation priorities in the Lancang-Mekong River Basin based on cooperative events since the Mekong River Commission establishment. . Chin. Geogr. Sci. 29::5869
    [Crossref] [Google Scholar]
  62. 62.
    Dinar S, Katz D, Stefano LD, Blankespoor B. 2015.. Climate change, conflict and cooperation: global analysis of the effectiveness of international river treaties in addressing water variability. . Political Geogr. 45::5566
    [Crossref] [Google Scholar]
  63. 63.
    Mogomotsi G, Mogomotsi P, Mosepele K. 2020.. Legal aspects of transboundary water management: an analysis of the intergovernmental institutional arrangements in the Okavango River basin. . Leiden J. Int. Law 33::391408
    [Crossref] [Google Scholar]
  64. 64.
    Strokal V. 2021.. Transboundary rivers of Ukraine: perspectives for sustainable development and clean water. . J. Integr. Environ. Sci. 18::6787
    [Crossref] [Google Scholar]
  65. 65.
    Leb C. 2014.. One step at a time: international law and the duty to cooperate in the management of shared water resources. . Water Int. 40::2132
    [Crossref] [Google Scholar]
  66. 66.
    Williams J. 2018.. Stagnant rivers: transboundary water security in South and Southeast Asia. . Water 10::1819
    [Crossref] [Google Scholar]
  67. 67.
    Zhang H. 2015.. Sino-Indian water disputes: the coming water wars?. Wiley Interdiscip. Rev. Water 3::15566
    [Crossref] [Google Scholar]
  68. 68.
    Prasad S, Sharma N, Lohani A. 2019.. Novel approach for issues identification in transboundary water management using fuzzy c-means clustering. . Appl. Water Sci. 9::11
    [Crossref] [Google Scholar]
  69. 69.
    Baron JS, Poff NL, Angermeier PL, Dahm CN, Gleick PH, et al. 2002.. Meeting ecological and societal needs for freshwater. . Ecol. Appl. 12::124760
    [Crossref] [Google Scholar]
  70. 70.
    Falkenmark M. 2003.. Water management and ecosystems: living with change. TEC Backgr. Pap. 9 , Glob. Water Partnersh., Stockholm, Swed.:
    [Google Scholar]
  71. 71.
    Acreman MC, Dunbar MJ. 2004.. Defining environmental river flow requirements—a review. . Hydrol. Earth Syst. Sci. 8::86176
    [Crossref] [Google Scholar]
  72. 72.
    Pahl-Wostl C, Sendzimir J, Jeffrey P, Aerts J, Berkamp G, Cross K. 2007.. Managing change toward adaptive water management through social learning. . Ecol. Soc. 12::2
    [Google Scholar]
  73. 73.
    Calow PP, Petts GE, eds. 2009.. The Rivers Handbook: Hydrological and Ecological Principles. New York:: Wiley
    [Google Scholar]
  74. 74.
    Ait-Kadi M. 2016.. Water for development and development for water: realizing the sustainable development goals (SDGs) vision. . Aquat. Proc. 6::106110
    [Crossref] [Google Scholar]
  75. 75.
    Mugagga F, Nabaasa BB. 2016.. The centrality of water resources to the realization of Sustainable Development Goals (SDG). A review of potentials and constraints on the African continent. . Int. Soil Water Conserv. Res. 4::21523
    [Crossref] [Google Scholar]
  76. 76.
    Bridgewater P, Kim RE. 2021.. The Ramsar Convention on Wetlands at 50. . Nat. Ecol. Evol. 5::26870
    [Crossref] [Google Scholar]
  77. 77.
    Matthews GVT. 1993.. The Ramsar Convention on Wetlands: Its History and Development. Gland, Switz:.: Ramsar Conv. Bur.
    [Google Scholar]
  78. 78.
    Hering D, Carvalho L, Argillier C, Beklioglu M, Borja A, et al. 2015.. Managing aquatic ecosystems and water resources under multiple stress—an introduction to the MARS project. . Sci. Total Environ. 503::1021
    [Crossref] [Google Scholar]
  79. 79.
    Jacobs JW. 2002.. The Mekong River Commission: transboundary water resources planning and regional security. . Geogr. J. 168::35464
    [Crossref] [Google Scholar]
  80. 80.
    Zeitoun M, Goulden M, Tickner D. 2013.. Current and future challenges facing transboundary river basin management. . Wiley Interdiscip. Rev. Clim. Change 4::33149
    [Crossref] [Google Scholar]
  81. 81.
    Liska I. 2015.. The Danube River Basin. New York:: Springer
    [Google Scholar]
  82. 82.
    Swain A. 2002.. The Nile River Basin Initiative: too many cooks, too little broth. . SAIS Rev. 22::293308
    [Crossref] [Google Scholar]
  83. 83.
    Alam UZ. 2002.. Questioning the water wars rationale: a case study of the Indus Waters Treaty. . Geogr. J. 168::34153
    [Crossref] [Google Scholar]
  84. 84.
    Rahman KS, Islam Z, Navera UK, Ludwig F. 2019.. A critical review of the Ganges water sharing arrangement. . Water Policy 21::25976
    [Crossref] [Google Scholar]
  85. 85.
    Lane SN, Parsons DR, Best JL, Orfeo O, Kostaschuk R, Hardy RJ. 2008.. Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay, Argentina. . J. Geophys. Res. 113::F02019
    [Crossref] [Google Scholar]
  86. 86.
    Sarker MH, Akter J, Ferdous MR, Noor F. 2011.. Sediment dispersal processes and management in coping with climate change in the Meghna Estuary, Bangladesh. . In Proceedings of the Workshop on Sediment Problems and Sediment Management in Asian River Basins (Hyderabad, India, IAHS), pp. 20318. Wallingford, UK:: Int. Assoc. Hydrol. Sci.
    [Google Scholar]
  87. 87.
    Sarker MH, Choudhury GA, Akter J, Hore SK. 2012.. Bengal Delta is not sinking at a very high rate as indicated by recent research: a pragmatic assessment based on archaeological monuments. . Daily Star, Dec. 22. https://www.thedailystar.net/news-detail-262153
    [Google Scholar]
  88. 88.
    Goodbred SL Jr., Kuehl SA, Stecler MS, Sarker MH. 2003.. Controls on facies distribution and stratigraphic preservation in the Ganges-Brahmaputra Delta sequence. . Sediment. Geol. 155::30116
    [Crossref] [Google Scholar]
  89. 89.
    Sarker MH. 2009.. Morphological response of the Brahmaputra-Jamuna-Padma-Lower Meghna River to the Assam earthquake of 1950. PhD Thesis , Univ. Nottingham, Nottingham, UK:
    [Google Scholar]
  90. 90.
    Ashworth PJ, Lewin J. 2012.. How do big rivers come to be different?. Earth-Sci. Rev. 114::84107
    [Crossref] [Google Scholar]
  91. 91.
    Leopold LB, Wolman MG. 1957.. River channel patterns: braided, meandering and straight. Prof. Pap. 282-B , US Geol. Surv., Reston, VA:
    [Google Scholar]
  92. 92.
    Coleman JM. 1969.. Brahmaputra River: channel processes and sedimentation. . Sediment. Geol. 3::129239
    [Crossref] [Google Scholar]
  93. 93.
    Seybold HJ, Molnar P, Singer HM, Andrade JS Jr., Herrmann HJ, Kinzelbach W. 2009.. Simulation of bird foot delta formation with application to the Mississippi Delta. . J. Geophys. Res. 114::F03012
    [Crossref] [Google Scholar]
  94. 94.
    Akter J, Sarker MH, Popescu I, Roelvink D. 2016.. Evolution of the Bengal Delta and its prevailing processes. . J. Coast. Res. 32::121226
    [Crossref] [Google Scholar]
  95. 95.
    Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P. 2005.. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. . Science 308::37680
    [Crossref] [Google Scholar]
  96. 96.
    Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, et al. 2009.. Sinking deltas due to human activities. . Nat. Geosci. 2::68186
    [Crossref] [Google Scholar]
  97. 97.
    Shah JJF, Kominoski JS, Ardón M, Dodds WK, Gessner MO, et al. 2017.. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. . Glob. Change Biol. 23::306475
    [Crossref] [Google Scholar]
  98. 98.
    Mulligan M. 2013.. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. . Hydrol. Res. 44::74869
    [Crossref] [Google Scholar]
  99. 99.
    Belletti B, Leaniz CG, Jones J, Bizzi S, Borger L, et al. 2020.. More than one million barriers fragment Europe's rivers. . Nature 588::43654
    [Crossref] [Google Scholar]
  100. 100.
    Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM. 2015.. Planetary boundaries: guiding human development on a changing planet. . Science 347::1259855
    [Crossref] [Google Scholar]
  101. 101.
    Allison MA, Kepple EB. 2001.. Modern sediment supply to the lower delta plain of the Ganges-Brahmaputra River in Bangladesh. . Geo-Mar. Lett. 21::6674
    [Crossref] [Google Scholar]
  102. 102.
    Ashworth PJ, Lewin J. 2012.. How do big rivers come to be different?. Earth-Sci. Rev. 114::84107
    [Crossref] [Google Scholar]
  103. 103.
    Allison MA. 1998.. Historical changes in the Ganges-Brahmaputra Delta front. . J. Coast. Res. 14::126975
    [Google Scholar]
  104. 104.
    Link PM, Scheffran J, Ide T. 2016.. Conflict and cooperation in the water–security nexus: a global comparative analysis of river basins under climate change. . Wiley Interdiscip. Rev. Water 3::495515
    [Crossref] [Google Scholar]
  105. 105.
    Singh R, Singh GS. 2020.. Integrated management of the Ganga River: an ecohydrological approach. . Ecohydrol. Hydrobiol. 20::15374
    [Crossref] [Google Scholar]
  106. 106.
    Gupta A. 2007.. The Ganga River. . In Large Rivers: Geomorphology and Management, ed. A Gupta, pp. 34771 New York:: Wiley
    [Google Scholar]
  107. 107.
    Palmer MA, Hondula KL, Koch BJ. 2014.. Ecological restoration of streams and rivers: shifting strategies and shifting goals. . Annu. Rev. Ecol. Evol. Syst. 45::24769
    [Crossref] [Google Scholar]
  108. 108.
    Magilligan FJ, Graber BE, Nislow KH, Chipman JW, Sneddon CS, et al. 2016.. River restoration by dam removal: enhancing connectivity at watershed scales. . Elementa 4::000108
    [Google Scholar]
  109. 109.
    Gore JA, Shields FD Jr. 1995.. Can large rivers be restored?. BioScience 45::14252
    [Crossref] [Google Scholar]
  110. 110.
    Szalkiewicz E, Jusik S, Grygoruk M. 2018.. Status and perspectives on river restoration in Europe: 310,000 euros per hectare of restored river. . Sustainability 10::129
    [Crossref] [Google Scholar]
  111. 111.
    Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, et al. 2012.. Continental-scale effects of nutrient pollution on stream-ecosystem functioning. . Science 336::143840
    [Crossref] [Google Scholar]
  112. 112.
    Hardy A. 1984.. Water and the search for public health in London in the eighteenth and nineteenth centuries. . Med. Hist. 28::25083
    [Crossref] [Google Scholar]
  113. 113.
    Bainus A, Darmawan WB, Yulianti D, Hisin H. 2021.. Between fear and survival: human security issues in Citarum river basin, Indonesia. . J. Hum. Secur. 17::414
    [Google Scholar]
  114. 114.
    Majed M, Islam MAS. 2022.. Contaminant discharge from outfalls and subsequent aquatic ecological risks in the river systems in Dhaka City: extent of waste load contribution in pollution. . Front. Public Health 10::880399
    [Crossref] [Google Scholar]
  115. 115.
    Abell R, Lehner B, Thieme M, Linke S. 2016.. Looking beyond the fenceline: assessing protection gaps for the world's rivers. . Conserv. Lett. 10::38494
    [Crossref] [Google Scholar]
  116. 116.
    Bogardi JJ, Dudgeon D, Lawford R, Flinkerbusch E, Meyn A, et al. 2012.. Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. . Curr. Opin. Environ. Sustain. 4::3543
    [Crossref] [Google Scholar]
  117. 117.
    Lehner B, Verdin K, Jarvis A. 2011.. New global hydrology derived from spaceborne elevation data. . EOS 89::93104
    [Crossref] [Google Scholar]
  118. 118.
    Auerbach DA, Deisenroth DB, McShane RR, McCluney KE, Poff NL. 2014.. Beyond the concrete: accounting for ecosystem services from free-flowing rivers. . Ecosyst. Serv. 10::15
    [Crossref] [Google Scholar]
  119. 119.
    Brown AG, Lespez L, Sear DA, Macaire JJ, Houben P, et al. 2018.. Natural versus anthropogenic streams in Europe: history, ecology and implications for restoration, river-rewilding and riverine ecosystem services. . Earth-Sci. Rev. 180::185205
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-111022-020951
Loading
/content/journals/10.1146/annurev-environ-111022-020951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error