1932

Abstract

Driven by the need for integrated management of groundwater (GW) and surface water (SW), quantification of GW–SW interactions and associated contaminant transport has become increasingly important. This is due to their substantial impact on water quantity and quality. In this review, we provide an overview of the methods developed over the past several decades to investigate GW–SW interactions. These methods include geophysical, hydrometric, and tracer techniques, as well as various modeling approaches. Different methods reveal valuable information on GW–SW interactions at different scales with their respective advantages and limitations. Interpreting data from these techniques can be challenging due to factors like scale effects, heterogeneous hydrogeological conditions, sediment variability, and complex spatiotemporal connections between GW and SW. To facilitate the selection of appropriate methods for specific sites, we discuss the strengths, weaknesses, and challenges of each technique, and we offer perspectives on knowledge gaps in the current science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-111522-104534
2024-10-18
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-111522-104534.html?itemId=/content/journals/10.1146/annurev-environ-111522-104534&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kalbus E, Reinstorf F, Schirmer M. 2006.. Measuring methods for groundwater-surface water interactions: a review. . Hydrol. Earth Syst. Sci. 10::87387
    [Crossref] [Google Scholar]
  2. 2.
    Shanafield M, Cook PG. 2014.. Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: a review of applied methods. . J. Hydrol. 511::51829
    [Crossref] [Google Scholar]
  3. 3.
    Magliozzi C, Grabowski RC, Packman AI, Krause S. 2018.. Toward a conceptual framework of hyporheic exchange across spatial scales. . Hydrol. Earth Syst. Sci. 22::616385
    [Crossref] [Google Scholar]
  4. 4.
    Condon LE, Maxwell RM. 2019.. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. . Sci. Adv. 5::eaav4574
    [Crossref] [Google Scholar]
  5. 5.
    Sechu GL, Nilsson B, Iversen BV, Møller AB, Greve MB, et al. 2022.. Mapping groundwater-surface water interactions on a national scale for the stream network in Denmark. . J. Hydrol. Reg. Stud. 40::101015
    [Crossref] [Google Scholar]
  6. 6.
    Ma R, Liu C, Greskowiak J, Prommer H, Zachara J, Zheng C. 2014.. Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone. . J. Contam. Hydrol. 156::2737
    [Crossref] [Google Scholar]
  7. 7.
    Gómez-Gener L, Siebers AR, Arce MI, Arnon S, Bernal S, et al. 2021.. Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams. . Earth-Sci. Rev. 220::103724
    [Crossref] [Google Scholar]
  8. 8.
    Stegen JC, Johnson T, Fredrickson JK, Wilkins MJ, Konopka AE, et al. 2018.. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. . Nat. Commun. 9::585
    [Crossref] [Google Scholar]
  9. 9.
    Wallis I, Prommer H, Berg M, Siade AJ, Sun J, Kipfer R. 2020.. The river-groundwater interface as a hotspot for arsenic release. . Nat. Geosci. 13:(4):28895
    [Crossref] [Google Scholar]
  10. 10.
    Cardenas MB. 2009.. A model for lateral hyporheic flow based on valley slope and channel sinuosity. . Water Resour. Res. 45::W01501
    [Google Scholar]
  11. 11.
    McCallum AM, Andersen MS, Rau GC, Larsen JR, Acworth RI. 2014.. River-aquifer interactions in a semiarid environment investigated using point and reach measurements. . Water Resour. Res. 50::281529
    [Crossref] [Google Scholar]
  12. 12.
    Jackson TR, Haggerty R, Apte SV, O'Connor BL. 2013.. A mean residence time relationship for lateral cavities in gravel-bed rivers and streams: incorporating streambed roughness and cavity shape. . Water Resour. Res. 49::364250
    [Crossref] [Google Scholar]
  13. 13.
    Sawyer AH, Bayani Cardenas M, Buttles J. 2011.. Hyporheic exchange due to channel-spanning logs. . Water Resour. Res. 47::W08502
    [Crossref] [Google Scholar]
  14. 14.
    Harvey JW, Gooseff MN. 2015.. River corridor science: hydrologic exchange and ecological consequences from bedforms to basins. . Water Resour. Res. 51::6893922
    [Crossref] [Google Scholar]
  15. 15.
    Jiang X, Ma R, Ma T, Sun Z. 2022.. Modeling the effects of water diversion projects on surface water and groundwater interactions in the central Yangtze River basin. . Sci. Total Environ. 830::154606
    [Crossref] [Google Scholar]
  16. 16.
    Song X, Chen X, Zachara JM, Gomez-Velez JD, Shuai P, et al. 2020.. River dynamics control transit time distributions and biogeochemical reactions in a dam-regulated river corridor. . Water Resour. Res. 56::e2019WR026470
    [Crossref] [Google Scholar]
  17. 17.
    Larsen LG, Harvey JW, Maglio MM. 2014.. Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses. . Water Resour. Res. 50::31835
    [Crossref] [Google Scholar]
  18. 18.
    Malzone J, Lowry C, Ward A. 2016.. Response of the hyporheic zone to transient groundwater fluctuations on the annual and storm event time scales. . Water Resour. Res. 52::530121
    [Crossref] [Google Scholar]
  19. 19.
    Ward AS. 2016.. The evolution and state of interdisciplinary hyporheic research. . Wiley Interdiscip. Rev. Water. 3::83103
    [Crossref] [Google Scholar]
  20. 20.
    McLachlan PJ, Chambers JE, Uhlemann SS, Binley A. 2017.. Geophysical characterisation of the groundwater-surface water interface. . Adv. Water Resour. 109::30219
    [Crossref] [Google Scholar]
  21. 21.
    Hammett S, Day-Lewis FD, Trottier B, Barlow PM, Briggs MA, et al. 2022.. GW/SW-MST: a groundwater/surface-water method selection tool. . Groundwater 60:(6):78491
    [Crossref] [Google Scholar]
  22. 22.
    Briggs MA, Lautz LK, McKenzie JM, Gordon RP, Hare DK. 2012.. Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. . Water Resour. Res. 48::W02527
    [Crossref] [Google Scholar]
  23. 23.
    Coluccio K, Morgan LK. 2019.. A review of methods for measuring groundwater-surface water exchange in braided rivers. . Hydrol. Earth Syst. Sci. 23::4397417
    [Crossref] [Google Scholar]
  24. 24.
    Cook PG, Herczeg AL. 2000.. Environmental Tracers in Subsurface Hydrology. New York:: Springer
    [Google Scholar]
  25. 25.
    Lamontagne S, Taylor AR, Batlle-Aguilar J, Suckow A, Cook PG, et al. 2015.. River infiltration to a subtropical alluvial aquifer inferred using multiple environmental tracers. . Water Resour. Res. 51::453249
    [Crossref] [Google Scholar]
  26. 26.
    Doughty M, Sawyer AH, Wohl E, Singha K. 2020.. Mapping increases in hyporheic exchange from channel-spanning logjams. . J. Hydrol. 587::124931
    [Crossref] [Google Scholar]
  27. 27.
    Nelson AR, Sawyer AH, Gabor RS, Saup CM, Bryant SR, et al. 2019.. Heterogeneity in hyporheic flow, pore water chemistry, and microbial community composition in an alpine streambed. . J. Geophys. Res. Biogeosci. 124:(11):346578
    [Crossref] [Google Scholar]
  28. 28.
    Cook PG. 2013.. Estimating groundwater discharge to rivers from river chemistry surveys. . Hydrol. Process. 27:(25):3694707
    [Crossref] [Google Scholar]
  29. 29.
    Lukens E, Neilson BT, Williams KH, Brahney J. 2022.. Evaluation of hydrograph separation techniques with uncertain end-member composition. . Hydrol. Process. 36:(9):e14693
    [Crossref] [Google Scholar]
  30. 30.
    Pelletier A, Andréassian V. 2020.. Hydrograph separation: an impartial parametrisation for an imperfect method. . Hydrol. Earth Syst. Sci. 24:(3):117187
    [Crossref] [Google Scholar]
  31. 31.
    Irvine DJ, Briggs MA, Lautz LK, Gordon RP, McKenzie JM, Cartwright I. 2017.. Using diurnal temperature signals to infer vertical groundwater-surface water exchange. . Groundwater 55:(1):1026
    [Crossref] [Google Scholar]
  32. 32.
    Koch FW, Voytek EB, Day-Lewis FD, Healy R, Briggs MA, et al. 2016.. 1DTempPro V2: new features for inferring groundwater/surface-water exchange. . Groundwater 54:(3):43439
    [Crossref] [Google Scholar]
  33. 33.
    McAliley WA, Day-Lewis FD, Rey D, Briggs MA, Shapiro AM, Werkema D. 2022.. Application of recursive estimation to heat tracing for groundwater/surface-water exchange. . Water Resour. Res. 58::e2021WR030443
    [Crossref] [Google Scholar]
  34. 34.
    Chen K, Chen X, Song X, Briggs MA, Jiang P, et al. 2022.. Using ensemble data assimilation to estimate transient hydrologic exchange flow under highly dynamic flow conditions. . Water Resour. Res. 58::e2021WR030735
    [Crossref] [Google Scholar]
  35. 35.
    Boano F, Harvey JW, Marion A, Packman AI, Revelli R, et al. 2014.. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. . Rev. Geophys. 52::60379
    [Crossref] [Google Scholar]
  36. 36.
    Hester ET, Cardenas MB, Haggerty R, Apte SV. 2017.. The importance and challenge of hyporheic mixing. . Water Resour. Res. 53::356575
    [Crossref] [Google Scholar]
  37. 37.
    Cremeans MM, Devlin JF, Osorno TC, McKnight US, Bjerg PL. 2020.. A comparison of tools and methods for estimating groundwater-surface water exchange. . Groundw. Monit. Remediat. 40:(1):2434
    [Crossref] [Google Scholar]
  38. 38.
    Sophocleous M. 2002.. Interactions between groundwater and surface water: the state of the science. . Hydrogeol. J. 10::5267
    [Crossref] [Google Scholar]
  39. 39.
    Xin P, Wilson A, Shen C, Ge Z, Moffett KB, et al. 2022.. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. . Rev. Geophys. 60::e2021RG000740
    [Crossref] [Google Scholar]
  40. 40.
    Cranswick RH, Cook PG. 2015.. Scales and magnitude of hyporheic, river-aquifer and bank storage exchange fluxes. . Hydrol. Process. 29:(14):308497
    [Crossref] [Google Scholar]
  41. 41.
    Rosenberry DO, Sheibley RW, Cox SE, Simonds FW, Naftz DL. 2013.. Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface. . Water Resour. Res. 49::297586
    [Crossref] [Google Scholar]
  42. 42.
    Barthel R, Banzhaf S. 2016.. Groundwater and surface water interaction at the regional-scale – a review with focus on regional integrated models. . Water Resour. Manag. 30::132
    [Crossref] [Google Scholar]
  43. 43.
    Brunner P, Therrien R, Renard P, Simmons CT, Franssen HJH. 2017.. Advances in understanding river-groundwater interactions. . Rev. Geophys. 55::81854
    [Crossref] [Google Scholar]
  44. 44.
    Santos IR, Eyre BD, Huettel M. 2012.. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. . Estuar. Coast. Shelf Sci. 98::115
    [Crossref] [Google Scholar]
  45. 45.
    Cook PG, Rodellas V, Stieglitz TC. 2018.. Quantifying surface water, porewater, and groundwater interactions using tracers: tracer fluxes, water fluxes, and end-member concentrations. . Water Resour. Res. 54::245265
    [Crossref] [Google Scholar]
  46. 46.
    Winter TC. 1998.. Relation of streams, lakes, and wetlands to groundwater flow systems. . Hydrogeol. J. 7::2845
    [Crossref] [Google Scholar]
  47. 47.
    Woessner WW. 2000.. Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. . Groundwater 38:(3):42329
    [Crossref] [Google Scholar]
  48. 48.
    Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980.. The river continuum concept. . Can. J. Fish. Aquat. Sci. 37::13037
    [Crossref] [Google Scholar]
  49. 49.
    Wymore AS, Ward AS, Wohl E, Harvey JW. 2023.. Viewing river corridors through the lens of critical zone science. . Front. Water 5::1147561
    [Crossref] [Google Scholar]
  50. 50.
    Richey JE, Mertes LAK, Dunne T, Victoria RL, Forsberg BR, et al. 1989.. Sources and routing of the Amazon River flood wave. . Glob. Biogeochem. Cycles 3:(3):191204
    [Crossref] [Google Scholar]
  51. 51.
    Kiel BA, Bayani Cardenas M. 2014.. Lateral hyporheic exchange throughout the Mississippi River network. . Nat. Geosci. 7::41317
    [Crossref] [Google Scholar]
  52. 52.
    Gomez-Velez JD, Harvey JW. 2014.. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins. . Geophys. Res. Lett. 41::640312
    [Crossref] [Google Scholar]
  53. 53.
    Ma R, Zheng C, Liu C, Greskowiak J, Prommer H, Zachara JM. 2014.. Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions. . Water Resour. Res. 50::100624
    [Crossref] [Google Scholar]
  54. 54.
    Engelhardt I, Prommer H, Schulz M, Vanderborght J, Schüth C, Ternes TA. 2014.. Reactive transport of iomeprol during stream-groundwater interactions. . Environ. Sci. Technol. 48:(1):199207
    [Crossref] [Google Scholar]
  55. 55.
    Chen K, Yang S, Roden EE, Chen X, Chang KY, et al. 2023.. Influence of vertical hydrologic exchange flow, channel flow, and biogeochemical kinetics on CH4 emissions from rivers. . Water Resour. Res. 59::e2023WR035341
    [Crossref] [Google Scholar]
  56. 56.
    Guo Z, Chen K, Yi S, Zheng C. 2023.. Response of groundwater quality to river-aquifer interactions during managed aquifer recharge: a reactive transport modeling analysis. . J. Hydrol. 616::128847
    [Crossref] [Google Scholar]
  57. 57.
    Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, et al. 2016.. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. . Nat. Commun. 7::11237
    [Crossref] [Google Scholar]
  58. 58.
    Stonedahl SH, Harvey JW, Wörman A, Salehin M, Packman AI. 2010.. A multiscale model for integrating hyporheic exchange from ripples to meanders. . Water Resour. Res. 46::W12539
    [Crossref] [Google Scholar]
  59. 59.
    Brunner P, Cook PG, Simmons CT. 2009.. Hydrogeologic controls on disconnection between surface water and groundwater. . Water Resour. Res. 45::W01422
    [Crossref] [Google Scholar]
  60. 60.
    Quichimbo EA, Singer MB, Cuthbert MO. 2020.. Characterising groundwater-surface water interactions in idealised ephemeral stream systems. . Hydrol. Process. 34:(18):3792806
    [Crossref] [Google Scholar]
  61. 61.
    Pumo D, Caracciolo D, Viola F, Noto LV. 2016.. Climate change effects on the hydrological regime of small non-perennial river basins. . Sci. Total Environ. 542::7692
    [Crossref] [Google Scholar]
  62. 62.
    Fortier P, Young NL, Lemieux JM, Walvoord MA, Fortier R. 2023.. Long-term, high-resolution permafrost monitoring reveals coupled energy balance and hydrogeologic controls on talik dynamics near Umiujaq (Nunavik, Québec, Canada).. Water Resour. Res. 59::e2022WR032456
    [Crossref] [Google Scholar]
  63. 63.
    Evans SG, Ge S. 2017.. Contrasting hydrogeologic responses to warming in permafrost and seasonally frozen ground hillslopes. . Geophys. Res. Lett. 44:(4):180313
    [Crossref] [Google Scholar]
  64. 64.
    Martin RL, Jerolmack DJ. 2013.. Origin of hysteresis in bed form response to unsteady flows. . Water Resour. Res. 49::131433
    [Crossref] [Google Scholar]
  65. 65.
    Dent CL, Grimm NB, Martí E, Edmonds JW, Henry JC, Welter JR. 2007.. Variability in surface-subsurface hydrologic interactions and implications for nutrient retention in an arid-land stream. . J. Geophys. Res. Biogeosci. 112::G04004
    [Crossref] [Google Scholar]
  66. 66.
    Cardenas MB, Wilson JL, Zlotnik VA. 2004.. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. . Water Resour. Res. 40::W08307
    [Crossref] [Google Scholar]
  67. 67.
    Sawyer AH, Edmonds DA, Knights D. 2015.. Surface water-groundwater connectivity in deltaic distributary channel networks. . Geophys. Res. Lett. 42::10299306
    [Google Scholar]
  68. 68.
    Cardenas MB, Bennett PC, Zamora PB, Befus KM, Rodolfo RS, et al. 2015.. Devastation of aquifers from tsunami-like storm surge by Supertyphoon Haiyan. . Geophys. Res. Lett. 42::284451
    [Crossref] [Google Scholar]
  69. 69.
    Xiao H, Wang D, Medeiros SC, Bilskie MV, Hagen SC, Hall CR. 2019.. Exploration of the effects of storm surge on the extent of saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). . Sci. Total Environ. 648::100217
    [Crossref] [Google Scholar]
  70. 70.
    Stonedahl SH, Harvey JW, Packman AI. 2013.. Interactions between hyporheic flow produced by stream meanders, bars, and dunes. . Water Resour. Res. 49:(9):545061
    [Crossref] [Google Scholar]
  71. 71.
    Kennedy CD, Genereux DP, Corbett DR, Mitasova H. 2009.. Relationships among groundwater age, denitrification, and the coupled groundwater and nitrogen fluxes through a streambed. . Water Resour. Res. 45::W09402
    [Google Scholar]
  72. 72.
    Aubeneau AF, Martin RL, Bolster D, Schumer R, Jerolmack D, Packman A. 2015.. Fractal patterns in riverbed morphology produce fractal scaling of water storage times. . Geophys. Res. Lett. 42:(13):530915
    [Crossref] [Google Scholar]
  73. 73.
    Power G, Brown RS, Imhof JG. 1999.. Groundwater and fish—insights from northern North America. . Hydrol. Process. 13:(3):40122
    [Crossref] [Google Scholar]
  74. 74.
    Haynes AB, Briggs MA, Moore E, Jackson K, Knighton J, et al. 2023.. Shallow and local or deep and regional? Inferring source groundwater characteristics across mainstem riverbank discharge faces. . Hydrol. Process. 37::e14939
    [Crossref] [Google Scholar]
  75. 75.
    Fox A, Boano F, Arnon S. 2014.. Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. . Water Resour. Res. 50::1895907
    [Crossref] [Google Scholar]
  76. 76.
    Rau GC, Halloran LJS, Cuthbert MO, Andersen MS, Acworth RI, Tellam JH. 2017.. Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures. . Adv. Water Resour. 107::35469
    [Crossref] [Google Scholar]
  77. 77.
    Wang X, Tian Y, Yu J, Lancia M, Chen J, et al. 2023.. Complex effects of tides on coastal groundwater revealed by high-resolution integrated flow modeling. . Water Resour. Res. 59::e2022WR033942
    [Crossref] [Google Scholar]
  78. 78.
    Moore WS, Joye SB. 2021.. Saltwater intrusion and submarine groundwater discharge: acceleration of biogeochemical reactions in changing coastal aquifers. . Front. Earth Sci. 9::600710
    [Crossref] [Google Scholar]
  79. 79.
    Lin J, Ma R, Hu Y, Sun Z, Wang Y, McCarter CPR. 2018.. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China. . Hydrogeol. J. 26:(5):155972
    [Crossref] [Google Scholar]
  80. 80.
    Wang Y, Zhang W, Zhao Y, Peng H, Shi Y. 2016.. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the middle-lower Hanjiang River. . J. Hydrol. 541::134862
    [Crossref] [Google Scholar]
  81. 81.
    Heintzman LJ, Starr SM, Mulligan KR, Barbato LS, McIntyre NE. 2017.. Using satellite imagery to examine the relationship between surface-water dynamics of the salt lakes of western Texas and Ogallala Aquifer depletion. . Wetlands 37:(6):105565
    [Crossref] [Google Scholar]
  82. 82.
    Lamontagne-Hallé P, McKenzie JM, Kurylyk BL, Zipper SC. 2018.. Changing groundwater discharge dynamics in permafrost regions. . Environ. Res. Lett. 13::084017
    [Crossref] [Google Scholar]
  83. 83.
    Kuang X, Liu J, Scanlon BR, Jiao JJ, Jasechko S, et al. 2024.. The changing nature of groundwater in the global water cycle. . Science 383::eadf0630
    [Crossref] [Google Scholar]
  84. 84.
    Johnson TC, Slater LD, Ntarlagiannis D, Day-Lewis FD, Elwaseif M. 2012.. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes. . Water Resour. Res. 48::W07506
    [Google Scholar]
  85. 85.
    Lane JW, Briggs MA, Maurya PK, White EA, Pedersen JB, et al. 2020.. Characterizing the diverse hydrogeology underlying rivers and estuaries using new floating transient electromagnetic methodology. . Sci. Total Environ. 740::140074
    [Crossref] [Google Scholar]
  86. 86.
    Zarroca M, Linares R, Rodellas V, Garcia-Orellana J, Roqué C, et al. 2014.. Delineating coastal groundwater discharge processes in a wetland area by means of electrical resistivity imaging, 224Ra and 222Rn. . Hydrol. Process. 28:(4):238295
    [Crossref] [Google Scholar]
  87. 87.
    Kirkegaard C, Sonnenborg TO, Auken E, Jørgensen F. 2011.. Salinity distribution in heterogeneous coastal aquifers mapped by airborne electromagnetics. . Vadose Zo. J. 10:(1):12535
    [Crossref] [Google Scholar]
  88. 88.
    Prendergast LJ, Gavin K. 2014.. A review of bridge scour monitoring techniques. . J. Rock Mech. Geotech. Eng. 6:(2):13849
    [Crossref] [Google Scholar]
  89. 89.
    Harvey JW, Drummond JD, Martin RL, McPhillips LE, Packman AI, et al. 2012.. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed. . J. Geophys. Res. Biogeosci. 117::G00N11
    [Crossref] [Google Scholar]
  90. 90.
    Christiansen L, Binning PJ, Rosbjerg D, Andersen OB, Bauer-Gottwein P. 2011.. Using time-lapse gravity for groundwater model calibration: an application to alluvial aquifer storage. . Water Resour. Res. 47::W06503
    [Crossref] [Google Scholar]
  91. 91.
    Zhang X, Sawyer AH, Singha K. 2023.. A numerical exploration of hyporheic zone solute transport behavior estimated from electrical resistivity inversions. . J. Hydrol. 621::129577
    [Crossref] [Google Scholar]
  92. 92.
    Chen J, Hubbard SS, Williams KH. 2013.. Data-driven approach to identify field-scale biogeochemical transitions using geochemical and geophysical data and hidden Markov models: development and application at a uranium-contaminated aquifer. . Water Resour. Res. 49:(10):641224
    [Crossref] [Google Scholar]
  93. 93.
    Shanahan PW, Binley A, Whalley WR, Watts CW. 2015.. The use of electromagnetic induction to monitor changes in soil moisture profiles beneath different wheat genotypes. . Soil Sci. Soc. Am. J. 79::45966
    [Crossref] [Google Scholar]
  94. 94.
    Houser C, Hamilton S. 2008.. Bank permeability in an Australian ephemeral dry-land stream: variation with stage resulting from mud deposition and sediment clogging. . Earth Surf. Process. Landf. 33::22643
    [Crossref] [Google Scholar]
  95. 95.
    Batlle-Aguilar J, Cook PG. 2012.. Transient infiltration from ephemeral streams: a field experiment at the reach scale. . Water Resour. Res. 48::W11518
    [Crossref] [Google Scholar]
  96. 96.
    Brodie RS, Sundaram B, Tottenham R, Hostetler S. 2007.. An overview of tools for assessing groundwater-surface water connectivity. Rep., Bur. Rural Sci. , Canberra, ACT, Aust.:
    [Google Scholar]
  97. 97.
    Cremeans MM, Devlin JF, McKnight US, Bjerg PL. 2018.. Application of new point measurement device to quantify groundwater-surface water interactions. . J. Contam. Hydrol. 211::8593
    [Crossref] [Google Scholar]
  98. 98.
    Payn RA, Gooseff MN, McGlynn BL, Bencala KE, Wondzell SM. 2009.. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States. . Water Resour. Res. 45::W11427
    [Crossref] [Google Scholar]
  99. 99.
    Cunge JA. 1969.. On the subject of a flood propagation computation method (Muskingum method). . J. Hydraul. Res. 7:(2):20530
    [Crossref] [Google Scholar]
  100. 100.
    Noorduijn SL, Shanafield M, Trigg MA, Harrington GA, Cook PG, Peeters L. 2014.. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data. . Water Resour. Res. 50::147489
    [Crossref] [Google Scholar]
  101. 101.
    Jolly I, Cook P, Allison G, Hughes M. 1989.. Simultaneous water and solute movement through an unsaturated soil following an increase in recharge. . J. Hydrol. 111::39196
    [Crossref] [Google Scholar]
  102. 102.
    Benito G, Rohde R, Seely M, Külls C, Dahan O, et al. 2010.. Management of alluvial aquifers in two Southern African ephemeral rivers: implications for IWRM. . Water Resour. Manag. 24::64167
    [Crossref] [Google Scholar]
  103. 103.
    Martin JB, Hartl KM, Corbett DR, Swarzenski PW, Cable JE. 2003.. A multi-level pore-water sampler for permeable sediments. . J. Sediment. Res. 73:(1):12832
    [Crossref] [Google Scholar]
  104. 104.
    Comer-Warner S, Knapp JLA, Blaen P, Klaar M, Shelley F, et al. 2020.. The method controls the story – sampling method impacts on the detection of pore-water nitrogen concentrations in streambeds. . Sci. Total Environ. 709::136075
    [Crossref] [Google Scholar]
  105. 105.
    Lee D. 1977.. A device for measuring seepage flux in lakes and estuaries. . Limnol. Oceanogr. 22:(1):14047
    [Crossref] [Google Scholar]
  106. 106.
    Rosenberry DO, Duque C, Lee DR. 2020.. History and evolution of seepage meters for quantifying flow between groundwater and surface water: part 1 – freshwater settings. . Earth-Sci. Rev. 204::103167
    [Crossref] [Google Scholar]
  107. 107.
    Duque C, Russoniello CJ, Rosenberry DO. 2020.. History and evolution of seepage meters for quantifying flow between groundwater and surface water: part 2 – marine settings and submarine groundwater discharge. . Earth-Sci. Rev. 204::103168
    [Crossref] [Google Scholar]
  108. 108.
    Taniguchi M, Ishitobi T, Burnett WC, Wattayakorn G. 2007.. Evaluating ground water-sea water interactions via resistivity and seepage meters. . Groundwater 45:(6):72935
    [Crossref] [Google Scholar]
  109. 109.
    Anderson MP. 2005.. Heat as a ground water tracer. . Groundwater 43:(6):95168
    [Crossref] [Google Scholar]
  110. 110.
    Moffett KB, Tyler SW, Torgersen T, Menon M, Selker JS, Gorelick SM. 2008.. Processes controlling the thermal regime of saltmarsh channel beds. . Environ. Sci. Technol. 42:(3):67176
    [Crossref] [Google Scholar]
  111. 111.
    Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C. 2006.. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: method development. . Water Resour. Res. 42::W10410
    [Crossref] [Google Scholar]
  112. 112.
    Loheide SP, Gorelick SM. 2006.. Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories. . Environ. Sci. Technol. 40:(10):333641
    [Crossref] [Google Scholar]
  113. 113.
    Engelhardt I, Prommer H, Moore C, Schulz M, Schüth C, Ternes TA. 2013.. Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewater-related fluxes in the hyporheic and riparian zone. . Water Resour. Res. 49:(1):42640
    [Crossref] [Google Scholar]
  114. 114.
    Day-Lewis FD, Royer P, Placzek L, Markham K. 2022.. A multi-scale temperature-based strategy to map hydrologic exchange flows in highly dynamic systems. . Front. Earth Sci. 10::1070393
    [Crossref] [Google Scholar]
  115. 115.
    Hare DK, Briggs MA, Rosenberry DO, Boutt DF, Lane JW. 2015.. A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water. . J. Hydrol. 530::15366
    [Crossref] [Google Scholar]
  116. 116.
    Gilmore TE, Johnson M, Korus J, Mittelstet A, Briggs MA, et al. 2019.. Streambed flux measurement informed by distributed temperature sensing leads to a significantly different characterization of groundwater discharge. . Water 11::2312
    [Crossref] [Google Scholar]
  117. 117.
    Harvey MC, Hare DK, Hackman A, Davenport G, Haynes AB, et al. 2019.. Evaluation of stream and wetland restoration using UAS-based thermal infrared mapping. . Water 11::1568
    [Crossref] [Google Scholar]
  118. 118.
    Snyder CD, Hitt NP, Young JA. 2015.. Accounting for groundwater in stream fish thermal habitat responses to climate change. . Ecol. Appl. 25:(5):1397419
    [Crossref] [Google Scholar]
  119. 119.
    Rey DM, Briggs MA, Walvoord MA, Ebel BA. 2023.. Wildfire-induced shifts in groundwater discharge to streams identified with paired air and stream water temperature analyses. . J. Hydrol. 619::129272
    [Crossref] [Google Scholar]
  120. 120.
    Rodellas V, Garcia-Orellana J, Trezzi G, Masqué P, Stieglitz TC, et al. 2017.. Using the radium quartet to quantify submarine groundwater discharge and porewater exchange. . Geochim. Cosmochim. Acta. 196::5873
    [Crossref] [Google Scholar]
  121. 121.
    Sun X, Du Y, Deng Y, Fan H, Zhou Z, et al. 2022.. Spatial patterns and quantification of lacustrine groundwater discharge determined based on 222Rn. . Water Resour. Res. 58::e2022WR031977
    [Crossref] [Google Scholar]
  122. 122.
    Rautio A, Korkka-Niemi K. 2015.. Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland. . Hydrogeol. J. 23::687705
    [Crossref] [Google Scholar]
  123. 123.
    Rodellas V, Stieglitz TC, Tamborski JJ, van Beek P, Andrisoa A, Cook PG. 2021.. Conceptual uncertainties in groundwater and porewater fluxes estimated by radon and radium mass balances. . Limnol. Oceanogr. 66::123755
    [Crossref] [Google Scholar]
  124. 124.
    Wagner B, Bencala K, Harvey J. 1996.. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange. . Water Resour. Res. 32:(8):244151
    [Crossref] [Google Scholar]
  125. 125.
    Fuller CC, Harvey JW. 2000.. Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. . Environ. Sci. Technol. 34:(7):115055
    [Crossref] [Google Scholar]
  126. 126.
    Ward AS, Gooseff MN, Singha K. 2010.. Imaging hyporheic zone solute transport using electrical resistivity. . Hydrol. Process. 24:(7):94853
    [Crossref] [Google Scholar]
  127. 127.
    Briggs MA, Gooseff MN, Arp CD, Baker MA. 2009.. A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage. . Water Resour. Res. 45::W00D27
    [Crossref] [Google Scholar]
  128. 128.
    Kerr PC, Gooseff MN, Bolster D. 2013.. The significance of model structure in one-dimensional stream solute transport models with multiple transient storage zones – competing versus nested arrangements. . J. Hydrol. 497::13344
    [Crossref] [Google Scholar]
  129. 129.
    Haggerty R, Martí E, Argerich A, Von Schiller D, Grimm NB. 2009.. Resazurin as a “smart” tracer for quantifying metabolically active transient storage in stream ecosystems. . J. Geophys. Res. Biogeosci. 114:(3):G03014
    [Google Scholar]
  130. 130.
    Knapp JLA, González-Pinzón R, Drummond JD, Larsen LG, Cirpka OA, Harvey JW. 2017.. Tracer-based characterization of hyporheic exchange and benthic biolayers in streams. . Water Resour. Res. 53::157594
    [Crossref] [Google Scholar]
  131. 131.
    Kelleher C, Ward A, Knapp JLA, Blaen PJ, Kurz MJ, et al. 2019.. Exploring tracer information and model framework trade-offs to improve estimation of stream transient storage processes. . Water Resour. Res. 55::3481501
    [Crossref] [Google Scholar]
  132. 132.
    Höhne A, Müller BM, Schulz H, Dara R, Posselt M, et al. 2022.. Fate of trace organic compounds in the hyporheic zone: influence of microbial metabolism. . Water Res. 224::119056
    [Crossref] [Google Scholar]
  133. 133.
    Wanninkhof R. 2014.. Relationship between wind speed and gas exchange over the ocean revisited. . Limnol. Oceanogr. Methods. 12::35162
    [Crossref] [Google Scholar]
  134. 134.
    Killian CD, Asquith WH, Barlow JRB, Bent GC, Kress WH, et al. 2019.. Characterizing groundwater and surface-water interaction using hydrograph-separation techniques and groundwater-level data throughout the Mississippi Delta, USA. . Hydrogeol. J. 27::216779
    [Crossref] [Google Scholar]
  135. 135.
    Halford KJ, Mayer GC. 2000.. Problems associated with estimating ground water discharge and recharge from stream-discharge records. . Groundwater 38:(3):33142
    [Crossref] [Google Scholar]
  136. 136.
    Krabbenhoft CA, Allen GH, Lin P, Godsey SE, Allen DC, et al. 2022.. Assessing placement bias of the global river gauge network. . Nat. Sustain. 5::58692
    [Crossref] [Google Scholar]
  137. 137.
    Mei Y, Anagnostou EN. 2015.. A hydrograph separation method based on information from rainfall and runoff records. . J. Hydrol. 523::63649
    [Crossref] [Google Scholar]
  138. 138.
    Klaus J, McDonnell JJ. 2013.. Hydrograph separation using stable isotopes: review and evaluation. . J. Hydrol. 505::4764
    [Crossref] [Google Scholar]
  139. 139.
    Rau GC, Andersen MS, McCallum AM, Roshan H, Acworth RI. 2014.. Heat as a tracer to quantify water flow in near-surface sediments. . Earth-Sci. Rev. 129::4058
    [Crossref] [Google Scholar]
  140. 140.
    Hunt B. 1990.. An approximation for the bank storage effect. . Water Resour. Res. 26:(11):276975
    [Crossref] [Google Scholar]
  141. 141.
    Åkesson A, Wörman A, Bottacin-Busolin A. 2015.. Hydraulic response in flooded stream networks. . Water Resour. Res. 51::21340
    [Crossref] [Google Scholar]
  142. 142.
    Liang X, Zlotnik VA, Zhang YK, Xin P. 2020.. Diagnostic analysis of bank storage effects on sloping floodplains. . Water Resour. Res. 56::e2019WR026385
    [Crossref] [Google Scholar]
  143. 143.
    Zhang J, Liang X, Zhang YK, Chen X, Ma E, Schilling K. 2022.. Groundwater responses to recharge and flood in riparian zones of layered aquifers: an analytical model. . J. Hydrol. 614::128547
    [Crossref] [Google Scholar]
  144. 144.
    Zhou Y, Liang X, Ma E, Chen K, Zhang J, Zhang YK. 2023.. Effect of unsaturated flow on groundwater-river interactions induced by flood event in riparian zone. . J. Hydrol. 620::129405
    [Crossref] [Google Scholar]
  145. 145.
    Irvine DJ, Cartwright I, Post VEA, Simmons CT, Banks E. 2016.. Uncertainties in vertical groundwater fluxes from 1-D steady state heat transport analyses caused by heterogeneity, multidimensional flow, and climate change. . Water Resour. Res. 52::81326
    [Crossref] [Google Scholar]
  146. 146.
    Sohn RA, Harris RN. 2021.. Spectral analysis of vertical temperature profile time-series data in Yellowstone Lake sediments. . Water Resour. Res. 57::e2020WR028430
    [Crossref] [Google Scholar]
  147. 147.
    Bokuniewicz HJ. 1992.. Analytical descriptions of subaqueous groundwater seepage. . Estuaries 15:(4):45864
    [Crossref] [Google Scholar]
  148. 148.
    King JN, Mehta AJ, Dean RG. 2010.. Analytical models for the groundwater tidal prism and associated benthic water flux. . Hydrogeol. J. 18::20315
    [Crossref] [Google Scholar]
  149. 149.
    King JN, Mehta AJ, Dean RG. 2009.. Generalized analytical model for benthic water flux forced by surface gravity waves. . J. Geophys. Res. 114::C04004
    [Google Scholar]
  150. 150.
    Sawyer AH, Shi F, Kirby JT, Michael HA. 2013.. Dynamic response of surface water-groundwater exchange to currents, tides, and waves in a shallow estuary. . J. Geophys. Res. Ocean. 118::174958
    [Crossref] [Google Scholar]
  151. 151.
    Sawyer AH, Cardenas MB. 2009.. Hyporheic flow and residence time distributions in heterogeneous cross-bedded sediment. . Water Resour. Res. 45::W08406
    [Crossref] [Google Scholar]
  152. 152.
    Runkel RL. 1998.. One-dimensional transport with inflow and storage (OTIS): a solute transport model for streams and rivers. Rep. , US Geol. Surv., Denver, CO:
    [Google Scholar]
  153. 153.
    Boano F, Packman AI, Cortis A, Revelli R, Ridolfi L. 2007.. A continuous time random walk approach to the stream transport of solutes. . Water Resour. Res. 43::W10425
    [Crossref] [Google Scholar]
  154. 154.
    Ntona MM, Busico G, Mastrocicco M, Kazakis N. 2022.. Modeling groundwater and surface water interaction: an overview of current status and future challenges. . Sci. Total Environ. 846::157355
    [Crossref] [Google Scholar]
  155. 155.
    Fan Y, Clark M, Lawrence DM, Swenson S, Band LE, et al. 2019.. Hillslope hydrology in global change research and earth system modeling. . Water Resour. Res. 55::173772
    [Crossref] [Google Scholar]
  156. 156.
    Cook PG. 2015.. The role of tracers in hydrogeology. . Groundwater 53::12
    [Crossref] [Google Scholar]
  157. 157.
    Genereux DP, Hooper RP. 1998.. Oxygen and hydrogen isotopes in rainfall-runoff studies. . In Isotope Tracers in Catchment Hydrology, ed. C Kendall, JJ McDonnell , pp. 219346. Amsterdam:: Elsevier
    [Google Scholar]
  158. 158.
    Kennedy CD, Murdoch LC, Genereux DP, Corbett DR, Stone K, et al. 2010.. Comparison of Darcian flux calculations and seepage meter measurements in a sandy streambed in North Carolina, United States. . Water Resour. Res. 46::W09501
    [Crossref] [Google Scholar]
  159. 159.
    Goodrich DC, Williams DG, Unkrich CL, Hogan JF, Scott RL, et al. 2013.. Comparison of methods to estimate ephemeral channel recharge, Walnut Gulch, San Pedro River Basin, Arizona. . In Groundwater Recharge in a Desert Environment: The Southwestern United States, Vol. 9, ed. JF Hogan, FM Philips, BR Scanlon , pp. 7799. New York:: Wiley
    [Google Scholar]
  160. 160.
    Post VEA, von Asmuth JR. 2013.. Review: hydraulic head measurements—new technologies, classic pitfalls. . Hydrogeol. J. 21:(4):73750
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-111522-104534
Loading
/content/journals/10.1146/annurev-environ-111522-104534
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error