1932

Abstract

Arid areas cover approximately 41% of Earth's land surface and support more than 38% of the global population. As an important part of drylands, oases are the main carriers of human production, socioeconomic activity, and the ecological environment. Oases typically sustain nearly all of an arid region's human population and produce nearly 95% of its gross domestic product. The ongoing intensification of global warming and human activities has resulted in water stress and water-related environmental problems in arid areas, along with land degradation and desertification. The risk of water shortage and natural disasters in these regions has also increased. The solution to mitigate these environmental issues and achieve ecological security and sustainable socioeconomic development is to accelerate the modernization of oasis ecological agriculture. This can be accomplished by coordinating the contradictions between agricultural, industrial, and domestic water use and ecological water use in arid areas, thereby improving the level of management in oases and strengthening their ability to cope with climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-111522-105932
2024-10-18
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-111522-105932.html?itemId=/content/journals/10.1146/annurev-environ-111522-105932&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Berdugo M, Kéfi S, Soliveres S, Maestre FT. 2017.. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. . Nat. Ecol. Evol. 1::3
    [Crossref] [Google Scholar]
  2. 2.
    Li C, Fu B, Wang S, Stringer LC, Wang Y, et al. 2021.. Drivers and impacts of changes in China's drylands. . Nat. Rev. Earth Environ. 2::85873
    [Crossref] [Google Scholar]
  3. 3.
    Huang J, Yu H, Guan X, Wang G, Guo R. 2016.. Accelerated dryland expansion under climate change. . Nat. Clim. Change 6::16671
    [Crossref] [Google Scholar]
  4. 4.
    Li X, Yang K, Zhou Y. 2016.. Progress in the study of oasis-desert interactions. . Agric. For. Meteorol. 230–31::17
    [Crossref] [Google Scholar]
  5. 5.
    Prăvălie R. 2016.. Drylands extent and environmental issues. A global approach. . Earth Sci. Rev. 161::25978
    [Crossref] [Google Scholar]
  6. 6.
    Zhang K, An Z, Cai D, Guo Z, Xiao J. 2017.. Key role of desert–oasis transitional area in avoiding oasis land degradation from aeolian desertification in Dunhuang, northwest China. . Land Degrad. Dev. 28::14250
    [Crossref] [Google Scholar]
  7. 7.
    Stafford Smith DM, Abel N, Walker B, Chapin FS. 2009.. Drylands: coping with uncertainty, thresholds, and changes in state. . In Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World, ed. C Folke, G Kofinas, F Chapin , pp. 17195. New York:: Springer
    [Google Scholar]
  8. 8.
    Bastin J-F, Berrahmouni N, Grainger A, Maniatis D, Mollicone D, et al. 2017.. The extent of forest in dryland biomes. . Science 356::63538
    [Crossref] [Google Scholar]
  9. 9.
    Van Slageren W. 2003.. The Millennium Seed Bank: building partnerships in arid regions for the conservation of wild species. . J. Arid Environ. 54::195201
    [Crossref] [Google Scholar]
  10. 10.
    Chen P, Wang S, Liu Y, Wang Y, Li Z, et al. 2022.. Spatio-temporal patterns of oasis dynamics in China's drylands between 1987 and 2017. . Environ. Res. Lett. 17::064044
    [Crossref] [Google Scholar]
  11. 11.
    Tang X, Zhao Y, Zhang Z, Feng Q, Wei Y. 2018.. Cultivated oasis evolution in the Heihe River Basin over the past 2,000 years. . Land Degrad. Dev. 29::225463
    [Crossref] [Google Scholar]
  12. 12.
    Pointing SB, Belnap J. 2012.. Microbial colonization and controls in dryland systems. . Nat. Rev. Microbiol. 10::55162
    [Crossref] [Google Scholar]
  13. 13.
    Sun F, Wang Y, Chen Y, Li Y, Zhang Q, et al. 2021.. Historic and simulated desert-oasis ecotone changes in the arid Tarim River Basin, China. . Remote Sens. 13::647
    [Crossref] [Google Scholar]
  14. 14.
    Song Q, Hu B, Peng J, Bourennane H, Biswas A, et al. 2022.. Spatio-temporal variation and dynamic scenario simulation of ecological risk in a typical artificial oasis in northwestern China. . J. Clean. Prod. 369::133302
    [Crossref] [Google Scholar]
  15. 15.
    Xue X, Liao J, Hsing Y, Huang C, Liu F. 2015.. Policies, land use, and water resource management in an arid oasis ecosystem. . Environ. Manag. 55::103651
    [Crossref] [Google Scholar]
  16. 16.
    Chen Y, Li Z, Fan Y, Wang H, Deng H. 2015.. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. . Environ. Res. 139::1119
    [Crossref] [Google Scholar]
  17. 17.
    Xue J, Gui D, Zhao Y, Lei J, Zeng F, et al. 2016.. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks. . J. Hydrol. 540::120922
    [Crossref] [Google Scholar]
  18. 18.
    Wang S, Wang L, Zhang M, Shi Y, Hughes CE, et al. 2022.. Quantifying moisture recycling of a leeward oasis in arid central Asia using a Bayesian isotopic mixing model. . J. Hydrol. 613::128459
    [Crossref] [Google Scholar]
  19. 19.
    Wang W, Chen Y, Wang W, Jiang J, Cai M, Xu Y. 2021.. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin. . J. Hydrol. 594::125644
    [Crossref] [Google Scholar]
  20. 20.
    Zhang Y, Wu S, Kang W, Tian Z. 2022.. Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions. . Agric. Water Manag. 271::107814
    [Crossref] [Google Scholar]
  21. 21.
    Zhang Z, Huisingh D. 2018.. Combating desertification in China: monitoring, control, management and revegetation. . J. Clean. Prod. 182::76575
    [Crossref] [Google Scholar]
  22. 22.
    Amiraslani F, Dragovich D. 2011.. Combating desertification in Iran over the last 50 years: an overview of changing approaches. . J. Environ. Manag. 92::113
    [Crossref] [Google Scholar]
  23. 23.
    Hu X, Xiong Y, Li Y, Wang J, Li F, et al. 2014.. Integrated water resources management and water users' associations in the arid region of northwest China: a case study of farmers' perceptions. . J. Environ. Manag. 145::16269
    [Crossref] [Google Scholar]
  24. 24.
    Tal A. 2016.. Rethinking the sustainability of Israel's irrigation practices in the drylands. . Water Res. 90::38794
    [Crossref] [Google Scholar]
  25. 25.
    Carberry P, Bruce S, Walcott J, Keating B. 2011.. Innovation and productivity in dryland agriculture: a return-risk analysis for Australia. . J. Agric. Sci. 149::7789
    [Crossref] [Google Scholar]
  26. 26.
    Huang F, Ochoa CG, Chen X, Zhang D. 2021.. Modeling oasis dynamics driven by ecological water diversion and implications for oasis restoration in arid endorheic basins. . J. Hydrol. 593::125774
    [Crossref] [Google Scholar]
  27. 27.
    Wang T, Wang Z, Guo L, Zhang J, Li W, et al. 2021.. Experiences and challenges of agricultural development in an artificial oasis: a review. . Agric. Syst. 193::103220
    [Crossref] [Google Scholar]
  28. 28.
    Liu B, Sun A, Zhao H, Fan Y, Yang L, et al. 2022.. Physicochemical properties of surface sediments in the Taklimakan Desert, northwestern China, and their relationship with oasis–desert evolution. . Catena 208::105751
    [Crossref] [Google Scholar]
  29. 29.
    Khezzani B, Bouchemal S. 2018.. Variations in groundwater levels and quality due to agricultural over-exploitation in an arid environment: the phreatic aquifer of the Souf oasis (Algerian Sahara). . Environ. Earth Sci. 77::142
    [Crossref] [Google Scholar]
  30. 30.
    Hua ZF, Qi LX, Dong P. 2004.. Characteristics of desert improving temperature effect and distribution of oasis agricultural heat resource. . J. Desert Res. 24::75154
    [Google Scholar]
  31. 31.
    Buerkert A, Dix BA, Al Rawahi MN, Schlecht EJSR. 2021.. Agro-ecological landuse transformation in oasis systems of Al Jabal Al Akhdar, northern Oman. . Sci. Rep. 11::7709
    [Crossref] [Google Scholar]
  32. 32.
    Chen Y, Chen Z. 2013.. Analysis of oasis evolution and suitable development scale for arid regions: a case study of the Tarim River Basin. . Chin. J. Ecol. 21:(1):13440
    [Google Scholar]
  33. 33.
    Bie Q, Xie Y. 2020.. The constraints and driving forces of oasis development in arid region: a case study of the Hexi Corridor in northwest China. . Sci. Rep. 10::17708
    [Crossref] [Google Scholar]
  34. 34.
    Hao X, Li W, Deng H. 2016.. The oasis effect and summer temperature rise in arid regions - case study in Tarim Basin. . Sci. Rep. 6::35418
    [Crossref] [Google Scholar]
  35. 35.
    Mo K, Chen Q, Chen C, Zhang J, Wang L, Bao Z. 2019.. Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in northwest China. . J. Hydrol. 574::13847
    [Crossref] [Google Scholar]
  36. 36.
    Zhou Y, Liao W, Li X. 2022.. The contributions of individual factors to the oasis cold island effect intensity in the Heihe River Basin. . Agric. For. Meteorol. 312::108706
    [Crossref] [Google Scholar]
  37. 37.
    Meng X, Lu S, Zhang T, Ao Y, Li S, et al. 2012.. Impacts of inhomogeneous landscapes in oasis interior on the oasis self-maintenance mechanism by integrating numerical model with satellite data. . Hydrol. Earth Syst. Sci. 16:(10):372938
    [Crossref] [Google Scholar]
  38. 38.
    Matthews LT, Beyeza-Kashesya J, Cooke I, Davies N, Heffron R, et al. 2018.. Consensus statement: Supporting safer conception and pregnancy for men and women living with and affected by HIV. . AIDS Behav. 22::171324
    [Crossref] [Google Scholar]
  39. 39.
    Chen Y, Li Z, Fang G, Li W. 2018.. Large hydrological processes changes in the transboundary rivers of Central Asia. . J. Geophys. Res. Atmos. 123::505969
    [Crossref] [Google Scholar]
  40. 40.
    Hiniker M. 1999.. Sustainable solutions to water conflicts in the Jordan Valley. . Camb. Rev. Intern. Aff. 12::25573
    [Crossref] [Google Scholar]
  41. 41.
    Ogola PFA, Davidsdottir B, Fridleifsson IB. 2012.. Potential contribution of geothermal energy to climate change adaptation: a case study of the arid and semi-arid eastern Baringo lowlands, Kenya. . Renew. Sustain. Energy Rev. 16::422246
    [Crossref] [Google Scholar]
  42. 42.
    Li X, Tong L, Niu J, Kang S, Du T, et al. 2017.. Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, northwest China. . Agric. Water Manag. 179::5563
    [Crossref] [Google Scholar]
  43. 43.
    Moat J, Orellana-Garcia A, Tovar C, Arakaki M, Arana C, et al. 2021.. Seeing through the clouds—mapping desert fog oasis ecosystems using 20 years of MODIS imagery over Peru and Chile. . Int. J. Appl. Earth Obs. Geoinf. 103::102468
    [Google Scholar]
  44. 44.
    Chen Y, Li Z, Fang G, Deng H. 2017.. Impact of climate change on water resources in the Tianshan Mountains, Central Asia. . Acta Geogr. Sin. 72::1826
    [Google Scholar]
  45. 45.
    Chen Y, Zhang X, Fang G, Li Z, Wang F, et al. 2020.. Potential risks and challenges of climate change in the arid region of northwestern China. . Reg. Sustain. 1::2030
    [Google Scholar]
  46. 46.
    Xiao G, Zhang Q, Wang J. 2007.. Impact of global climate change on agro-ecosystem: a review. . J. Appl. Ecol. 18::187785
    [Google Scholar]
  47. 47.
    Jiang L, Hardee K. 2011.. How do recent population trends matter to climate change?. Popul. Res. Policy Rev. 30::287312
    [Crossref] [Google Scholar]
  48. 48.
    Frederic W, Ninar F. 2022.. Cascading climate effects in the Middle East and North Africa: adapting through inclusive governance. . Carnegie Endowment for International Peace, Feb. 24. https://carnegieendowment.org/2022/02/24/cascading-climate-effects-in-middle-east-and-north-africa-adapting-through-inclusive-governance-pub-86510
    [Google Scholar]
  49. 49.
    Cammalleri C, Naumann G, Mentaschi L, Bisselink B, Gelati E, et al. 2020.. Diverging hydrological drought traits over Europe with global warming. . Hydrol. Earth Syst. Sci. 24::591935
    [Crossref] [Google Scholar]
  50. 50.
    Gholizadeh H, Zoghipour MH, Torshizi M, Nazari MR, Moradkhani N. 2021.. Gone with the wind: impact of soil-dust storms on farm income. . Ecol. Econ. 188::107133
    [Crossref] [Google Scholar]
  51. 51.
    FAO. 2021.. The Impact of Disasters and Crises on Agriculture and Food Security: 2021. Rome:: FAO
    [Google Scholar]
  52. 52.
    Sultan B, Defrance D, Iizumi T. 2019.. Evidence of crop production losses in West Africa due to historical global warming in two crop models. . Sci. Rep. 9::12834
    [Crossref] [Google Scholar]
  53. 53.
    Cramer W, Guiot J, Fader M, Garrabou J, Gattuso J-P, et al. 2018.. Climate change and interconnected risks to sustainable development in the Mediterranean. . Nat. Climate Change 8::97280
    [Crossref] [Google Scholar]
  54. 54.
    Gabaldón-Leal C, Ruiz-Ramos M, de la Rosa R, León L, Belaj A, et al. 2017.. Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. . Int. J. Climatol. 37::94057
    [Crossref] [Google Scholar]
  55. 55.
    Ponti L, Gutierrez AP, Ruti PM, Dell'Aquila A. 2014.. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. . PNAS 111::5598603
    [Crossref] [Google Scholar]
  56. 56.
    Fraga H, García de Cortázar Atauri I, Malheiro AC, Santos JA. 2016.. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. . Glob. Change Biol. 22::377488
    [Crossref] [Google Scholar]
  57. 57.
    Jiang F, Mu G, Hu R. 2003.. Present situation of the man-land relationship inconsistency in the oases of Xinjiang and the mitigation measures. . Sci. Geogr. Sin. 23::15763
    [Google Scholar]
  58. 58.
    Ragab R, Hamdy A. 2008.. Climate change and water resources management in arid and semi-arid regions. Paper presented at the Ninth International Conference on Dryland Development: Sustainable Development in Drylands – Meeting the Challenge of Global Climate Change, Alexandria, Egypt:, Nov. 7–10
    [Google Scholar]
  59. 59.
    European Committee of the Regions. 2011.. The relationship between desertification and climate change in the Mediterranean. Luxembourg:: Publ. Off. Eur. Union
    [Google Scholar]
  60. 60.
    Chen Y, Li Z, Xu J, Shen Y, Xing X, et al. 2023.. Changes and protection suggestions in water resources and ecological environment in arid region of northwest China. . Bull. Chin. Acad. Sci. 38::38593
    [Google Scholar]
  61. 61.
    Huber-Sannwald E, Ribeiro Palacios M, Arredondo Moreno JT, Braasch M, Martínez Peña RM, et al. 2012.. Navigating challenges and opportunities of land degradation and sustainable livelihood development in dryland social–ecological systems: a case study from Mexico. . Philos. Trans. R. Soc. B 367::315877
    [Crossref] [Google Scholar]
  62. 62.
    Cheng L, Lu Q, Wu B, Yin C, Bao Y, Gong L. 2018.. Estimation of the costs of desertification in China: a critical review. . Land Degrad. Dev. 29::97583
    [Crossref] [Google Scholar]
  63. 63.
    Skibba R. 2016.. Climate-change study raises spectre of advancing Mediterranean desert. . Nature. https://doi.org/10.1038/nature.2016.20894
    [Google Scholar]
  64. 64.
    Mirzabaev A, Olsson L, Kerr RB, Pradhan P, Ferre MGR, Lotze-Campen H. 2023. Climate change and food systems. . In Science and Innovations for Food Systems Transformation, ed. J von Braun, K Afsana, LO Fresco, MHA Hassan , pp. 51129. Cham, Switz:.: Springer
    [Google Scholar]
  65. 65.
    Allahbakhshi K, Khorasani-Zavareh D, Jazani RK, Ghomian Z. 2019.. Preparedness components of health systems in the Eastern Mediterranean Region for effective responses to dust and sand storms: a systematic review. . F1000Res 8::146
    [Crossref] [Google Scholar]
  66. 66.
    Liu X, Shen Y. 2018.. Quantification of the impacts of climate change and human agricultural activities on oasis water requirements in an arid region: a case study of the Heihe River Basin, China. . Earth Syst. Dyn. 9::21125
    [Crossref] [Google Scholar]
  67. 67.
    Kang S, Su X, Tong L, Zhang J, Zhang L, Davies WJ. 2008.. A warning from an ancient oasis: intensive human activities are leading to potential ecological and social catastrophe. . Int. J. Sustain. Dev. World Ecol. 15::44047
    [Crossref] [Google Scholar]
  68. 68.
    Zhu G, Liu Y, Shi P, Jia W, Zhou J, et al. 2022.. Stable water isotope monitoring network of different water bodies in Shiyang River Basin, a typical arid river in China. . Earth Syst. Sci. Data 14::377389
    [Crossref] [Google Scholar]
  69. 69.
    Fang Y-K, Wang H-C, Fang P-H, Liang B, Zheng K, et al. 2023.. Life cycle assessment of integrated bioelectrochemical-constructed wetland system: environmental sustainability and economic feasibility evaluation. . Resour. Conserv. Recycl. 189::106740
    [Crossref] [Google Scholar]
  70. 70.
    Chen Y, Chen Y, Zhu C, Li W. 2019.. The concept and mode of ecosystem sustainable management in arid desert areas in northwest China. . Acta Ecol. Sin. 39::741017
    [Google Scholar]
  71. 71.
    Wang C, Lei J, Li S, Mao D, Rahmutulla Z, Zhou J. 2014.. Protection benefits of farmland shelterbelt in oasis periphery of Hotan Region. . Bull. Soil Water Conserv. 34:(1):98103
    [Google Scholar]
/content/journals/10.1146/annurev-environ-111522-105932
Loading
/content/journals/10.1146/annurev-environ-111522-105932
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error