1932

Abstract

Nutrient recovery from waste is a promising strategy to conserve inputs while reducing nutrient discharge to the natural environment. Multiple waste streams have shown promise with respect to nutrient recovery. Multiple technologies also show promise at a pilot or full scale. These technologies, however, must not exacerbate other environmental issues, with excessive energy use, unsustainable material extraction (e.g., mineral extraction, cement use), or toxin release into the environment. Such technologies must also be feasible from economic and social perspectives. Work, therefore, should focus on both improving our current suite of available technologies for nutrient recovery from waste and framing policies that blend affordability with incentives, thereby fostering an environment conducive to innovation and adoption of sustainable approaches. This review considers the issues associated with nutrient recovery from waste, including technical feasibility and economic, environmental, and social factors, and identifies current knowledge gaps and emerging opportunities for nutrient waste recovery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112320-082121
2024-10-18
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-112320-082121.html?itemId=/content/journals/10.1146/annurev-environ-112320-082121&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, et al. 2013.. The global nitrogen cycle in the twenty-first century. . Philos. Trans. R. Soc. B 368:(1621):20130164
    [Crossref] [Google Scholar]
  2. 2.
    Zhang X, Zou T, Lassaletta L, Mueller ND, Tubiello FN, et al. 2021.. Quantification of global and national nitrogen budgets for crop production. . Nat. Food 2:(7):52940
    [Crossref] [Google Scholar]
  3. 3.
    Smil V. 2000.. Phosphorus in the environment: natural flows and human interferences. . Annu. Rev. Energy Environ. 25::5388
    [Crossref] [Google Scholar]
  4. 4.
    Mayer BK, Baker LA, Boyer TH, Drechsel P, Gifford M, et al. 2016.. Total value of phosphorus recovery. . Environ. Sci. Technol. 50:(13):660620
    [Crossref] [Google Scholar]
  5. 5.
    Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Étrillard C, et al. 2019.. Eutrophication: a new wine in an old bottle?. Sci. Total Environ. 651:(Part 1):111
    [Crossref] [Google Scholar]
  6. 6.
    Gerten D, Rockström J, Heinke J, Steffen W, Richardson K, Cornell S. 2015.. Response to comment on “Planetary boundaries: guiding human development on a changing planet. .” Science 348:(6240):1217
    [Crossref] [Google Scholar]
  7. 7.
    Biermann F, Kim RE. 2020.. The boundaries of the planetary boundary framework: a critical appraisal of approaches to define a “safe operating space” for humanity. . Annu. Rev. Environ. Resour. 45::497521
    [Crossref] [Google Scholar]
  8. 8.
    Karunanithi R, Szogi AA, Bolan N, Naidu R, Loganathan P, et al. 2015.. Phosphorus recovery and reuse from waste streams. . In Advances in Agronomy, ed. DL Sparks , pp. 173250. Amsterdam:: Elsevier
    [Google Scholar]
  9. 9.
    Matassa S, Batstone DJ, Hülsen T, Schnoor J, Verstraete W. 2015.. Can direct conversion of used nitrogen to new feed and protein help feed the world?. Environ. Sci. Technol. 49:(9):524754
    [Crossref] [Google Scholar]
  10. 10.
    Harder R, Giampietro M, Smukler S. 2021.. Towards a circular nutrient economy. A novel way to analyze the circularity of nutrient flows in food systems. . Resour. Conserv. Recycl. 172::105693
    [Crossref] [Google Scholar]
  11. 11.
    Zhang X, Liu Y. 2022.. Circular economy is game-changing municipal wastewater treatment technology towards energy and carbon neutrality. . Chem. Eng. J. 429::132114
    [Crossref] [Google Scholar]
  12. 12.
    Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, et al. 2020.. Nutrient recovery from wastewater: from technology to economy. . Bioresour. Technol. Rep. 11::100425
    [Crossref] [Google Scholar]
  13. 13.
    Lam KL, Zlatanović L, van der Hoek JP. 2020.. Life cycle assessment of nutrient recycling from wastewater: a critical review. . Water Res. 173::115519
    [Crossref] [Google Scholar]
  14. 14.
    Echevarria D, Trimmer JT, Cusick RD, Guest JS. 2021.. Defining nutrient colocation typologies for human-derived supply and crop demand to advance resource recovery. . Environ. Sci. Technol. 55:(15):1070413
    [Crossref] [Google Scholar]
  15. 15.
    Sato T, Qadir M, Yamamoto S, Endo T, Zahoor A. 2013.. Global, regional, and country level need for data on wastewater generation, treatment, and use. . Agric. Water Manag. 130::113
    [Crossref] [Google Scholar]
  16. 16.
    Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, et al. 2013.. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. . PNAS 110:(52):2088287
    [Crossref] [Google Scholar]
  17. 17.
    Zak D, Kronvang B, Carstensen MV, Hoffmann CC, Kjeldgaard A, et al. 2018.. Nitrogen and phosphorus removal from agricultural runoff in integrated buffer zones. . Environ. Sci. Technol. 52:(11):650817
    [Crossref] [Google Scholar]
  18. 18.
    Bartley R, Speirs WJ, Ellis TW, Waters DK. 2012.. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models. . Mar. Pollut. Bull. 65:(4–9):10116
    [Crossref] [Google Scholar]
  19. 19.
    Xia Y, Zhang M, Tsang DCW, Geng N, Lu D, et al. 2020.. Recent advances in control technologies for non–point source pollution with nitrogen and phosphorous from agricultural runoff: current practices and future prospects. . Appl. Biol. Chem. 63:(1):8
    [Crossref] [Google Scholar]
  20. 20.
    Hejase CA, Weitzel KA, Stokes SC, Grauberger BM, Young RB, et al. 2022.. Opportunities for treatment and reuse of agricultural drainage in the United States. . ACS ES&T Eng. 2:(3):292305
    [Crossref] [Google Scholar]
  21. 21.
    Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 1998.. Nonpoint pollution of surface waters with phosphorus and nitrogen. . Ecol. Appl. 8:(3):55968
    [Crossref] [Google Scholar]
  22. 22.
    Hobbie SE, Finlay JC, Janke BD, Nidzgorski DA, Millet DB, Baker LA. 2017.. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. . PNAS 114:(16):417782
    [Crossref] [Google Scholar]
  23. 23.
    Brezonik PL, Stadelmann TH. 2002.. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA. . Water Res. 36:(7):174357
    [Crossref] [Google Scholar]
  24. 24.
    Yang Y-Y, Lusk MG. 2018.. Nutrients in urban stormwater runoff: current state of the science and potential mitigation options. . Curr. Pollut. Rep. 4:(2):11227
    [Crossref] [Google Scholar]
  25. 25.
    Collins KA, Lawrence TJ, Stander EK, Jontos RJ, Kaushal SS, et al. 2010.. Opportunities and challenges for managing nitrogen in urban stormwater: a review and synthesis. . Ecol. Eng. 36:(11):150719
    [Crossref] [Google Scholar]
  26. 26.
    Hogan DM, Walbridge MR. 2007.. Best management practices for nutrient and sediment retention in urban stormwater runoff. . J. Environ. Qual. 36:(2):38695
    [Crossref] [Google Scholar]
  27. 27.
    Burant A, Selbig W, Furlong ET, Higgins CP. 2018.. Trace organic contaminants in urban runoff: associations with urban land-use. . Environ. Pollut. 242:(Part B):206877
    [Crossref] [Google Scholar]
  28. 28.
    Qadir M, Drechsel P, Jiménez Cisneros B, Kim Y, Pramanik A, et al. 2020.. Global and regional potential of wastewater as a water, nutrient and energy source. . Nat. Resour. Forum 44:(1):4051
    [Crossref] [Google Scholar]
  29. 29.
    Jones ER, Van Vliet MTH, Qadir M, Bierkens MFP. 2021.. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. . Earth Syst. Sci. Data 13:(2):23754
    [Crossref] [Google Scholar]
  30. 30.
    Tchobanoglous G, Burton FL, Stensel HD, Metcalf & Eddy Inc. 2003.. Wastewater Engineering: Treatment and Reuse. Boston:: McGraw-Hill
    [Google Scholar]
  31. 31.
    Almaraz M, Kuempel CD, Salter AM, Halpern BS. 2022.. The impact of excessive protein consumption on human wastewater nitrogen loading of US waters. . Front. Ecol. Environ. 20:(8):45258
    [Crossref] [Google Scholar]
  32. 32.
    Randall DG, Naidoo V. 2018.. Urine: the liquid gold of wastewater. . J. Environ. Chem. Eng. 6:(2):262735
    [Crossref] [Google Scholar]
  33. 33.
    Rose C, Parker A, Jefferson B, Cartmell E. 2015.. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. . Crit. Rev. Environ. Sci. Technol. 45:(17):182779
    [Crossref] [Google Scholar]
  34. 34.
    Mohareb E, Heller M, Novak P, Goldstein B, Fonoll X, Raskin L. 2017.. Considerations for reducing food system energy demand while scaling up urban agriculture. . Environ. Res. Lett. 12::125004
    [Crossref] [Google Scholar]
  35. 35.
    Sorinolu AJ, Tyagi N, Kumar A, Munir M. 2021.. Antibiotic resistance development and human health risks during wastewater reuse and biosolids application in agriculture. . Chemosphere 265::129032
    [Crossref] [Google Scholar]
  36. 36.
    Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J. 2017.. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. . J. Hazard. Mater. 323:(Part A):27498
    [Crossref] [Google Scholar]
  37. 37.
    Willers HC, Karamanlis XN, Schulte DD. 1999.. Potential of closed water systems on dairy farms. . Water Sci. Technol. 39:(5):11319
    [Crossref] [Google Scholar]
  38. 38.
    Mehta N, Shah KJ, Lin Y-I, Sun Y, Pan S-Y. 2021.. Advances in circular bioeconomy technologies: from agricultural wastewater to value-added resources. . Environments 8:(3):20
    [Crossref] [Google Scholar]
  39. 39.
    Kumar R, Pal P. 2015.. Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. . Environ. Sci. Pollut. Res. Int. 22:(22):1745364
    [Crossref] [Google Scholar]
  40. 40.
    Heuer H, Schmitt H, Smalla K. 2011.. Antibiotic resistance gene spread due to manure application on agricultural fields. . Curr. Opin. Microbiol. 14:(3):23643
    [Crossref] [Google Scholar]
  41. 41.
    Tamang M, Paul KK. 2022.. Advances in treatment of coking wastewater: a state of art review. . Water Sci. Technol. 85:(1):44973
    [Crossref] [Google Scholar]
  42. 42.
    Ehrig H. 1983.. Quality and quantity of sanitary landfill leachate. . Waste Manag. Res. 1:(1):5368
    [Crossref] [Google Scholar]
  43. 43.
    Lo IM-C. 1996.. Characteristics and treatment of leachates from domestic landfills. . Environ. Int. 22:(4):43342
    [Crossref] [Google Scholar]
  44. 44.
    Paskuliakova A, Tonry S, Touzet N. 2016.. Phycoremediation of landfill leachate with chlorophytes: phosphate a limiting factor on ammonia nitrogen removal. . Water Res. 99::18087
    [Crossref] [Google Scholar]
  45. 45.
    Iskander S, Brazil B, Novak JT, He Z. 2016.. Resource recovery from landfill leachate using bioelectrochemical systems: opportunities, challenges, and perspectives. . Bioresour. Technol. 201::34754
    [Crossref] [Google Scholar]
  46. 46.
    Khasawneh OFS, Palaniandy P, Kamaruddin MA, Aziz HA, Hung Y-T. 2022.. Landfill leachate collection and characterization. . In Solid Waste Engineering and Management, ed. LK Wang, MHS Wang, YT Huang , pp. 599657. Cham, Switz:.: Springer
    [Google Scholar]
  47. 47.
    Tarpeh WA, Wald I, Wiprächtiger M, Nelson KL. 2018.. Effects of operating and design parameters on ion exchange columns for nutrient recovery from urine. . Environ. Sci. 4:(6):82838
    [Google Scholar]
  48. 48.
    Xu K, Lin F, Dou X, Zheng M, Tan W, Wang C. 2018.. Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides. . J. Clean. Prod. 187::20514
    [Crossref] [Google Scholar]
  49. 49.
    Pinelli D, Foglia A, Fatone F, Papa E, Maggetti C, et al. 2022.. Ammonium recovery from municipal wastewater by ion exchange: development and application of a procedure for sorbent selection. . J. Environ. Chem. Eng. 10:(6):108829
    [Crossref] [Google Scholar]
  50. 50.
    Pinelli D, Bovina S, Rubertelli G, Martinelli A, Guida S, et al. 2022.. Regeneration and modelling of a phosphorous removal and recovery hybrid ion exchange resin after long term operation with municipal wastewater. . Chemosphere 286:(Part 1):131581
    [Crossref] [Google Scholar]
  51. 51.
    Tarpeh WA, Wald I, Omollo MO, Egan T, Nelson KL. 2018.. Evaluating ion exchange for nitrogen recovery from source-separated urine in Nairobi, Kenya. . Dev. Eng. 3::18895
    [Crossref] [Google Scholar]
  52. 52.
    Beler-Baykal B, Bayram S, Akkaymak E, Cinar S. 2004.. Removal of ammonium from human urine through ion exchange with clinoptilolite and its recovery for further reuse. . Water Sci. Technol. 50:(6):14956
    [Crossref] [Google Scholar]
  53. 53.
    Huang X, Guida S, Jefferson B, Soares A. 2020.. Economic evaluation of ion-exchange processes for nutrient removal and recovery from municipal wastewater. . npj Clean Water 3:(1):7
    [Crossref] [Google Scholar]
  54. 54.
    Tarpeh WA, Udert KM, Nelson KL. 2017.. Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine. . Environ. Sci. Technol. 51:(4):237381
    [Crossref] [Google Scholar]
  55. 55.
    Kavvada O, Tarpeh WA, Horvath A, Nelson KL. 2017.. Life-cycle cost and environmental assessment of decentralized nitrogen recovery using ion exchange from source-separated urine through spatial modeling. . Environ. Sci. Technol. 51:(21):1206171
    [Crossref] [Google Scholar]
  56. 56.
    Cruz H, Law YY, Guest JS, Rabaey K, Batstone D, et al. 2019.. Mainstream ammonium recovery to advance sustainable urban wastewater management. . Environ. Sci. Technol. 53:(19):1106679
    [Crossref] [Google Scholar]
  57. 57.
    Aguado D, Barat R, Bouzas A, Seco A, Ferrer J. 2019.. P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. . Sci. Total Environ. 672::8896
    [Crossref] [Google Scholar]
  58. 58.
    Lind B-B, Ban Z, Bydén S. 2000.. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. . Bioresour. Technol. 73:(2):16974
    [Crossref] [Google Scholar]
  59. 59.
    Jagtap N, Boyer TH. 2020.. Integrated decentralized treatment for improved N and K recovery from urine. . J. Sustain. Water Built Environ. 6:(2):04019015
    [Crossref] [Google Scholar]
  60. 60.
    Huang H, Zhang P, Yang L, Zhang D, Guo G, Liu J. 2017.. A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization. . Chem. Eng. J. 317::64050
    [Crossref] [Google Scholar]
  61. 61.
    Garcia-Belinchón C, Rieck T, Bouchy L, Galí A, Rougé P, Fàbregas C. 2013.. Struvite recovery: pilot-scale results and economic assessment of different scenarios. . Water Pract. Technol. 8:(1):11930
    [Crossref] [Google Scholar]
  62. 62.
    Wang S, Sun K, Xiang H, Zhao Z, Shi Y, et al. 2022.. Biochar-seeded struvite precipitation for simultaneous nutrient recovery and chemical oxygen demand removal in leachate: from laboratory to pilot scale. . Front. Chem. 10::990321
    [Crossref] [Google Scholar]
  63. 63.
    Zamora P, Georgieva T, Salcedo I, Elzinga N, Kuntke P, Buisman CJN. 2017.. Long-term operation of a pilot-scale reactor for phosphorus recovery as struvite from source-separated urine. . J. Chem. Technol. Biotechnol. 92:(5):103545
    [Crossref] [Google Scholar]
  64. 64.
    Wei SP, van Rossum F, van de Pol GJ, Winkler M-KH. 2018.. Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: a pilot study. . Chemosphere 212::103037
    [Crossref] [Google Scholar]
  65. 65.
    Shu L, Schneider P, Jegatheesan V, Johnson J. 2006.. An economic evaluation of phosphorus recovery as struvite from digester supernatant. . Bioresour. Technol. 97:(17):221116
    [Crossref] [Google Scholar]
  66. 66.
    Ishii SKL, Boyer TH. 2015.. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: focus on urine nutrient management. . Water Res. 79::88103
    [Crossref] [Google Scholar]
  67. 67.
    Morales N, Boehler M, Buettner S, Liebi C, Siegrist H. 2013.. Recovery of N and P from urine by struvite precipitation followed by combined stripping with digester sludge liquid at full scale. . Water 5:(3):126278
    [Crossref] [Google Scholar]
  68. 68.
    Xiong J, Zheng Z, Yang X, Dai X, Zhou T, et al. 2018.. Recovery of NH3-N from mature leachate via negative pressure steam-stripping pretreatment and its benefits on MBR systems: a pilot scale study. . J. Clean. Prod. 203::91825
    [Crossref] [Google Scholar]
  69. 69.
    Kinidi L, Tan IAW, Abdul Wahab NB, Tamrin KFB, Hipolito CN, Salleh SF. 2018.. Recent development in ammonia stripping process for industrial wastewater treatment. . Int. J. Chem. Eng. 2018::3181087
    [Crossref] [Google Scholar]
  70. 70.
    Ochs P, Martin B, Germain-Cripps E, Stephenson T, van Loosdrecht M, Soares A. 2023.. Techno-economic analysis of sidestream ammonia removal technologies: biological options versus thermal stripping. . Environ. Sci. Ecotechnol. 13::100220
    [Crossref] [Google Scholar]
  71. 71.
    Maurer M, Pronk W, Larsen TA. 2006.. Treatment processes for source-separated urine. . Water Res. 40:(17):315166
    [Crossref] [Google Scholar]
  72. 72.
    Ray H, Perreault F, Boyer TH. 2020.. Ammonia recovery from hydrolyzed human urine by forward osmosis with acidified draw solution. . Environ. Sci. Technol. 54:(18):1155665
    [Crossref] [Google Scholar]
  73. 73.
    Xie M, Nghiem LD, Price WE, Elimelech M. 2014.. Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis-membrane distillation process. . Environ. Sci. Technol. Lett. 1:(2):19195
    [Crossref] [Google Scholar]
  74. 74.
    Wang Z, Zheng J, Tang J, Wang X, Wu Z. 2016.. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications. . Sci. Rep. 6::21653
    [Crossref] [Google Scholar]
  75. 75.
    Valladares Linares R, Li Z, Yangali-Quintanilla V, Ghaffour N, Amy G, et al. 2016.. Life cycle cost of a hybrid forward osmosis: low pressure reverse osmosis system for seawater desalination and wastewater recovery. . Water Res. 88::22534
    [Crossref] [Google Scholar]
  76. 76.
    Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G. 2011.. Rejection of micropollutants by clean and fouled forward osmosis membrane. . Water Res. 45:(20):673744
    [Crossref] [Google Scholar]
  77. 77.
    Adam G, Mottet A, Lemaigre S, Tsachidou B, Trouvé E, Delfosse P. 2018.. Fractionation of anaerobic digestates by dynamic nanofiltration and reverse osmosis: an industrial pilot case evaluation for nutrient recovery. . J. Environ. Chem. Eng. 6:(5):672332
    [Crossref] [Google Scholar]
  78. 78.
    Gerardo ML, Zacharof MP, Lovitt RW. 2013.. Strategies for the recovery of nutrients and metals from anaerobically digested dairy farm sludge using cross-flow microfiltration. . Water Res. 47:(14):483342
    [Crossref] [Google Scholar]
  79. 79.
    Diamantis V, Verstraete W, Eftaxias A, Bundervoet B, Siegfried V, et al. 2013.. Sewage pre-concentration for maximum recovery and reuse at decentralized level. . Water Sci. Technol. 67:(6):118893
    [Crossref] [Google Scholar]
  80. 80.
    Boehler MA, Heisele A, Seyfried A, Grömping M, Siegrist H. 2015.. (NH4)2SO4 recovery from liquid side streams. . Environ. Sci. Pollut. Res. Int. 22:(10):7295305
    [Crossref] [Google Scholar]
  81. 81.
    Rothrock MJ Jr., Szögi AA, Vanotti MB. 2013.. Recovery of ammonia from poultry litter using flat gas permeable membranes. . Waste Manag. 33:(6):153138
    [Crossref] [Google Scholar]
  82. 82.
    Zico MM, Ricci BC, Reis BG, Magalhães NC, Amaral MCS. 2021.. Sustainable ammonia resource recovery from landfill leachate by solar-driven modified direct contact membrane distillation. . Sep. Purif. Technol. 264::118356
    [Crossref] [Google Scholar]
  83. 83.
    Noriega-Hevia G, Serralta J, Seco A, Ferrer J. 2021.. Economic analysis of the scale-up and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatment plant. . Sep. Purif. Technol. 275::119128
    [Crossref] [Google Scholar]
  84. 84.
    Högstrand S, Uzkurt Kaljunen J, Al-Juboori RA, Jönsson K, Kjerstadius H, et al. 2023.. Incorporation of main line impact into life cycle assessment of nutrient recovery from reject water using novel membrane contactor technology. . J. Clean. Prod. 408::137227
    [Crossref] [Google Scholar]
  85. 85.
    Darestani M, Haigh V, Couperthwaite SJ, Millar GJ, Nghiem LD. 2017.. Hollow fibre membrane contactors for ammonia recovery: current status and future developments. . J. Environ. Chem. Eng. 5:(2):134959
    [Crossref] [Google Scholar]
  86. 86.
    Rodrigues M, Molenaar S, Barbosa J, Sleutels T, Hamelers HVM, et al. 2023.. Effluent pH correlates with electrochemical nitrogen recovery efficiency at pilot scale operation. . Sep. Purif. Technol. 306::122602
    [Crossref] [Google Scholar]
  87. 87.
    Zamora P, Georgieva T, Ter Heijne A, Sleutels THJA, Jeremiasse AW, et al. 2017.. Ammonia recovery from urine in a scaled-up microbial electrolysis cell. . J. Power Sour. 356::49199
    [Crossref] [Google Scholar]
  88. 88.
    Ward AJ, Arola K, Thompson Brewster E, Mehta CM, Batstone DJ. 2018.. Nutrient recovery from wastewater through pilot scale electrodialysis. . Water Res. 135::5765
    [Crossref] [Google Scholar]
  89. 89.
    Wang Z, He P, Zhang H, Zhang N, F. 2022.. Desalination, nutrients recovery, or products extraction: Is electrodialysis an effective way to achieve high-value utilization of liquid digestate?. Chem. Eng. J. 446::136996
    [Crossref] [Google Scholar]
  90. 90.
    Cid CA, Jasper JT, Hoffmann MR. 2018.. Phosphate recovery from human waste via the formation of hydroxyapatite during electrochemical wastewater treatment. . ACS Sustain. Chem. Eng. 6:(3):313542
    [Crossref] [Google Scholar]
  91. 91.
    De Paepe J, De Pryck L, Verliefde ARD, Rabaey K, Clauwaert P. 2020.. Electrochemically induced precipitation enables fresh urine stabilization and facilitates source separation. . Environ. Sci. Technol. 54:(6):361827
    [Crossref] [Google Scholar]
  92. 92.
    Huang H, Zhang P, Zhang Z, Liu J, Xiao J, Gao F. 2016.. Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology. . J. Clean. Prod. 127::30210
    [Crossref] [Google Scholar]
  93. 93.
    Aka RJN, Hossain M, Yuan Y, Agyekum-Oduro E, Zhan Y, et al. 2023.. Nutrient recovery through struvite precipitation from anaerobically digested poultry wastewater in an air-lift electrolytic reactor: process modeling and cost analysis. . Chem. Eng. J. 465::142825
    [Crossref] [Google Scholar]
  94. 94.
    Liu Y, He L-F, Deng Y-Y, Zhang Q, Jiang G-M, Liu H. 2022.. Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: a review. . Chem. Eng. J. 442::136200
    [Crossref] [Google Scholar]
  95. 95.
    Morillas-España A, Lafarga T, Sánchez-Zurano A, Acién-Fernández FG, Rodríguez-Miranda E, et al. 2021.. Year-long evaluation of microalgae production in wastewater using pilot-scale raceway photobioreactors: assessment of biomass productivity and nutrient recovery capacity. . Algal Res. 60::102500
    [Crossref] [Google Scholar]
  96. 96.
    Rossi S, Pizzera A, Bellucci M, Marazzi F, Mezzanotte V, et al. 2022.. Piggery wastewater treatment with algae-bacteria consortia: pilot-scale validation and techno-economic evaluation at farm level. . Bioresour. Technol. 351::127051
    [Crossref] [Google Scholar]
  97. 97.
    Kapoore RV, Wood EE, Llewellyn CA. 2021.. Algae biostimulants: a critical look at microalgal biostimulants for sustainable agricultural practices. . Biotechnol. Adv. 49::107754
    [Crossref] [Google Scholar]
  98. 98.
    Cai T, Park SY, Li Y. 2013.. Nutrient recovery from wastewater streams by microalgae: status and prospects. . Renew. Sustain. Energy Rev. 19::36069
    [Crossref] [Google Scholar]
  99. 99.
    Cullen N, Baur R, Schauer P. 2013.. Three years of operation of North America's first nutrient recovery facility. . Water Sci. Technol. 68:(4):76368
    [Crossref] [Google Scholar]
  100. 100.
    Onnis-Hayden A, Srinivasan V, Tooker NB, Li G, Wang D, et al. 2020.. Survey of full-scale sidestream enhanced biological phosphorus removal (S2EBPR) systems and comparison with conventional EBPRs in North America: process stability, kinetics, and microbial populations. . Water Environ. Res. 92:(3):40317
    [Crossref] [Google Scholar]
  101. 101.
    Uzkurt Kaljunen J, Al-Juboori RA, Khunjar W, Mikola A, Wells G. 2022.. Phosphorus recovery alternatives for sludge from chemical phosphorus removal processes: technology comparison and system limitations. . Sustain. Mater. Technol. 34::e00514
    [Google Scholar]
  102. 102.
    Zheng X, Sun P, Han J, Song Y, Hu Z, et al. 2014.. Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR): a mini-review. . Process Biochem. 49:(12):220713
    [Crossref] [Google Scholar]
  103. 103.
    O'Neal JA, Boyer TH. 2013.. Phosphate recovery using hybrid anion exchange: applications to source-separated urine and combined wastewater streams. . Water Res. 47:(14):500317
    [Crossref] [Google Scholar]
  104. 104.
    Kalaitzidou K, Mitrakas M, Raptopoulou C, Tolkou A, Palasantza P-A, Zouboulis A. 2016.. Pilot-scale phosphate recovery from secondary wastewater effluents. . Environ. Process. 3:(Suppl. 1):522
    [Crossref] [Google Scholar]
  105. 105.
    Drenkova-Tuhtan A, Mandel K, Paulus A, Meyer C, Hutter F, et al. 2013.. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers. . Water Res. 47:(15):567077
    [Crossref] [Google Scholar]
  106. 106.
    Zhang X, Tian J, Jiang Y, Geng Y, Liu Y. 2023.. Direct ammonium recovery from the permeate of a pilot-scale anaerobic MBR by biochar to advance low-carbon municipal wastewater reclamation and urban agriculture. . Sci. Total Environ. 877::162872
    [Crossref] [Google Scholar]
  107. 107.
    Munasinghe-Arachchige SP, Nirmalakhandan N. 2020.. Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge. . Environ. Sci. Technol. Lett. 7:(7):45059
    [Crossref] [Google Scholar]
  108. 108.
    Guo X, Chen J, Wang X, Li Y, Liu Y, Jiang B. 2023.. Sustainable ammonia recovery from low strength wastewater by the integrated ion exchange and bipolar membrane electrodialysis with membrane contactor system. . Sep. Purif. Technol. 305::122429
    [Crossref] [Google Scholar]
  109. 109.
    Lu Z, Zhang K, Liu F, Gao X, Zhai Z, et al. 2022.. Simultaneous recovery of ammonium and phosphate from aqueous solutions using Mg/Fe modified NaY zeolite: integration between adsorption and struvite precipitation. . Sep. Purif. Technol. 299::121713
    [Crossref] [Google Scholar]
  110. 110.
    Ostara. Nutrient recovery solutions. Brochure, Ostara. http://ostara.com/wp-content/uploads/2017/03/Ostara_NRS_BROCHURE_170328.pdf
    [Google Scholar]
  111. 111.
    Huang H, Xiao D, Zhang Q, Ding L. 2014.. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. . J. Environ. Manag. 145::19198
    [Crossref] [Google Scholar]
  112. 112.
    Jagtap N, Boyer TH. 2018.. Integrated, multi-process approach to total nutrient recovery from stored urine. . Environ. Sci. Water Res. Technol. 4:(10):163950
    [Crossref] [Google Scholar]
  113. 113.
    Maurer M, Abramovich D, Siegrist H, Gujer W. 1999.. Kinetics of biologically induced phosphorus precipitation in waste-water treatment. . Water Res. 33:(2):48493
    [Crossref] [Google Scholar]
  114. 114.
    Li C, Sheng Y, Xu H. 2021.. Phosphorus recovery from sludge by pH enhanced anaerobic fermentation and vivianite crystallization. . J. Environ. Chem. Eng. 9:(1):104663
    [Crossref] [Google Scholar]
  115. 115.
    Miles A, Ellis TG. 2001.. Struvite precipitation potential for nutrient recovery from anaerobically treated wastes. . Water Sci. Technol. 43:(11):25966
    [Crossref] [Google Scholar]
  116. 116.
    Xu K, Lu J, Hu L, Li J, Cheng S, et al. 2022.. Pathogens inactivation in nutrient recovery from urine: a review. . Front. Environ. Sci. 10::1056019
    [Crossref] [Google Scholar]
  117. 117.
    Ukwuani AT, Tao W. 2016.. Developing a vacuum thermal stripping: acid absorption process for ammonia recovery from anaerobic digester effluent. . Water Res. 106::10815
    [Crossref] [Google Scholar]
  118. 118.
    Jamaludin Z, Rollings-Scattergood S, Lutes K, Vaneeckhaute C. 2018.. Evaluation of sustainable scrubbing agents for ammonia recovery from anaerobic digestate. . Bioresour. Technol. 270::596602
    [Crossref] [Google Scholar]
  119. 119.
    Lu X, Boo C, Ma J, Elimelech M. 2014.. Bidirectional diffusion of ammonium and sodium cations in forward osmosis: role of membrane active layer surface chemistry and charge. . Environ. Sci. Technol. 48:(24):1436976
    [Crossref] [Google Scholar]
  120. 120.
    Ansari AJ, Hai FI, Price WE, Drewes JE, Nghiem LD. 2017.. Forward osmosis as a platform for resource recovery from municipal wastewater: a critical assessment of the literature. . J. Membr. Sci. 529::195206
    [Crossref] [Google Scholar]
  121. 121.
    Schütte T, Niewersch C, Wintgens T, Yüce S. 2015.. Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode. . J. Membr. Sci. 480::7482
    [Crossref] [Google Scholar]
  122. 122.
    Gerardo ML, Lord AM, Lovitt RW. 2015.. An investigation of pH mediated extraction and precipitation of phosphorus from sludge using microfiltration: processing and costs. . Sep. Sci. Technol. 50:(14):215563
    [Google Scholar]
  123. 123.
    Hube S, Eskafi M, Hrafnkelsdóttir KF, Bjarnadóttir B, Bjarnadóttir , et al. 2020.. Direct membrane filtration for wastewater treatment and resource recovery: a review. . Sci. Total Environ. 710::136375
    [Crossref] [Google Scholar]
  124. 124.
    Xie M, Shon HK, Gray SR, Elimelech M. 2016.. Membrane-based processes for wastewater nutrient recovery: technology, challenges, and future direction. . Water Res. 89::21021
    [Crossref] [Google Scholar]
  125. 125.
    Santoro C, Garcia MJS, Walter XA, You J, Theodosiou P, et al. 2020.. Urine in bioelectrochemical systems: an overall review. . ChemElectroChem 7:(6):131231
    [Crossref] [Google Scholar]
  126. 126.
    Zhang C, Ma J, Waite TD. 2019.. Ammonia-rich solution production from wastewaters using chemical-free flow-electrode capacitive deionization. . ACS Sustain. Chem. Eng. 7:(7):648085
    [Crossref] [Google Scholar]
  127. 127.
    Wang Y-K, Geng Y-K, Pan X-R, Sheng G-P. 2017.. In situ utilization of generated electricity for nutrient recovery in urine treatment using a selective electrodialysis membrane bioreactor. . Chem. Eng. Sci. 171::45158
    [Crossref] [Google Scholar]
  128. 128.
    Cid CA, Qu Y, Hoffmann MR. 2018.. Design and preliminary implementation of onsite electrochemical wastewater treatment and recycling toilets for the developing world. . Environ. Sci. 4:(10):143950
    [Google Scholar]
  129. 129.
    Diaz R, Mackey B, Chadalavada S, Kainthola J, Heck P, Goel R. 2022.. Enhanced Bio-P removal: past, present, and future—a comprehensive review. . Chemosphere 309:(Part 2):136518
    [Crossref] [Google Scholar]
  130. 130.
    Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, et al. 2007.. Advances in enhanced biological phosphorus removal: from micro to macro scale. . Water Res. 41:(11):2271300
    [Crossref] [Google Scholar]
  131. 131.
    Wong PY, Cheng KY, Krishna KCB, Kaksonen AH, Sutton DC, Ginige MP. 2018.. Improvement of carbon usage for phosphorus recovery in EBPR-r and the shift in microbial community. . J. Environ. Manag. 218::56978
    [Crossref] [Google Scholar]
  132. 132.
    Melia PM, Cundy AB, Sohi SP, Hooda PS, Busquets R. 2017.. Trends in the recovery of phosphorus in bioavailable forms from wastewater. . Chemosphere 186::38195
    [Crossref] [Google Scholar]
  133. 133.
    Wang Q, Prasad R, Higgins BT. 2019.. Aerobic bacterial pretreatment to overcome algal growth inhibition on high-strength anaerobic digestates. . Water Res. 162::42026
    [Crossref] [Google Scholar]
  134. 134.
    Kanchanamala Delanka-Pedige HM, Munasinghe-Arachchige SP, Abeysiriwardana-Arachchige ISA, Nirmalakhandan N. 2021.. Evaluating wastewater treatment infrastructure systems based on UN Sustainable Development Goals and targets. . J. Clean. Prod. 298::126795
    [Crossref] [Google Scholar]
  135. 135.
    Sanyé-Mengual E, Sala S. 2022.. Life cycle assessment support to environmental ambitions of EU policies and the Sustainable Development Goals. . Integr. Environ. Assess. Manag. 18:(5):122132
    [Crossref] [Google Scholar]
  136. 136.
    Rockström J, Steffen W, Noone K, Persson A, Chapin FS 3rd, et al. 2009.. A safe operating space for humanity. . Nature 461:(7263):47275
    [Crossref] [Google Scholar]
  137. 137.
    Räike A, Taskinen A, Knuuttila S. 2020.. Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite water protection measures. . Ambio 49:(2):46074
    [Crossref] [Google Scholar]
  138. 138.
    Savchenko OM, Kecinski M, Li T, Messer KD. 2019.. Reclaimed water and food production: cautionary tales from consumer research. . Environ. Res. 170::32031
    [Crossref] [Google Scholar]
  139. 139.
    Massoud MA, Kazarian A, Alameddine I, Al-Hindi M. 2018.. Factors influencing the reuse of reclaimed water as a management option to augment water supplies. . Environ. Monit. Assess. 190:(9):531
    [Crossref] [Google Scholar]
  140. 140.
    Lyu S, Chen W, Zhang W, Fan Y, Jiao W. 2016.. Wastewater reclamation and reuse in China: opportunities and challenges. . J. Environ. Sci. 39::8696
    [Crossref] [Google Scholar]
  141. 141.
    Duong K, Saphores J-DM. 2015.. Obstacles to wastewater reuse: an overview. . Wiley Interdiscip. Rev. Water 2:(3):199214
    [Crossref] [Google Scholar]
  142. 142.
    Ormerod KJ, Scott CA. 2013.. Drinking wastewater. . Sci. Technol. Hum. Values 38:(3):35173
    [Crossref] [Google Scholar]
  143. 143.
    Shaddel S, Bakhtiary-Davijany H, Kabbe C, Dadgar F, Østerhus S. 2019.. Sustainable sewage sludge management: from current practices to emerging nutrient recovery technologies. . Sustain. Sci. Pract. Policy 11:(12):3435
    [Google Scholar]
  144. 144.
    Sampat AM, Hicks A, Ruiz-Mercado GJ, Zavala VM. 2021.. Valuing economic impact reductions of nutrient pollution from livestock waste. . Resour. Conserv. Recycl. 164::105199
    [Crossref] [Google Scholar]
  145. 145.
    McCartney SN, Watanabe NS, Yip NY. 2021.. Emerging investigator series: thermodynamic and energy analysis of nitrogen and phosphorous recovery from wastewaters. . Environ. Sci. 7:(11):207588
    [Google Scholar]
  146. 146.
    Smith C, Hill AK, Torrente-Murciano L. 2020.. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. . Energy Environ. Sci. 13::331
    [Crossref] [Google Scholar]
  147. 147.
    Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD. 2017.. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. . Science 356:(6343):eaab0530
    [Crossref] [Google Scholar]
  148. 148.
    Vandezande P, Gevers LEM, Vankelecom IFJ. 2008.. Solvent resistant nanofiltration: separating on a molecular level. . Chem. Soc. Rev. 37:(2):365405
    [Crossref] [Google Scholar]
  149. 149.
    Tarpeh WA, Barazesh JM, Cath TY, Nelson KL. 2018.. Electrochemical stripping to recover nitrogen from source-separated urine. . Environ. Sci. Technol. 52:(3):145360
    [Crossref] [Google Scholar]
  150. 150.
    Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO. 2016.. Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. . Front. Microbiol. 7::2106
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112320-082121
Loading
/content/journals/10.1146/annurev-environ-112320-082121
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error