1932

Abstract

Solar geoengineering, also called sunlight reflection or solar radiation modification (SRM), is a potential climate response that would cool the Earth's surface and reduce many other climate changes by scattering on order 1% of incoming sunlight back to space. SRM can only imperfectly correct for elevated greenhouse gases, but it might complement other climate responses to reduce risks, while also bringing new risks and new challenges to global governance. As climate alarm and calls for effective near-term action mount, SRM is attracting sharply increased attention and controversy, with many calls for expanded research and governance consultations along with ongoing concerns about risks, misuse, or overreliance. We review SRM's history, methods, potential uses and impacts, and governance needs, prioritizing the approach that is most prominent and promising, stratospheric aerosol injection. We identify several policy-relevant characteristics of SRM interventions and identify four narratives that capture current arguments over how SRM might be developed or used in sociopolitical context to either beneficial or destructive effect, with implications for near-term research, assessment, and governance activity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112321-081911
2024-10-18
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-112321-081911.html?itemId=/content/journals/10.1146/annurev-environ-112321-081911&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Int. Energy Agency. 2023.. World energy investment 2023. Rep. , Int. Energy Agency, Paris:
    [Google Scholar]
  2. 2.
    Clim. Overshoot Comm. 2023.. Reducing the risks of climate overshoot. Rep. , Clim. Overshoot Comm., Paris:
    [Google Scholar]
  3. 3.
    UN Environ. Progr. 2023.. Emissions gap report 2023. Rep. , UN Environ. Progr., Nairobi, Kenya:
    [Google Scholar]
  4. 4.
    Intergov. Panel Clim. Change. 2023.. Climate change 2023: synthesis report. Rep. , Intergov. Panel Clim. Change, Geneva, Switz.:
    [Google Scholar]
  5. 5.
    Natl. Acad. Sci. Eng. Med. 2021.. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  6. 6.
    Shepherd J, Caldeira K, Haigh J, Keith D, Launder B, et al. 2009.. Geoengineering the climate – science, governance and uncertainty. Rep. , R. Soc., London
    [Google Scholar]
  7. 7.
    Keith DW, Dowlatabadi H. 1992.. A serious look at geoengineering. . EOS 73:(27):289, 292–93
    [Crossref] [Google Scholar]
  8. 8.
    Keith DW. 2000.. Geoengineering the climate: history and prospect. . Annu. Rev. Energy Environ. 25::24584
    [Crossref] [Google Scholar]
  9. 9.
    Natl. Res. Counc. 2015.. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  10. 10.
    Natl. Res. Counc. 2015.. Climate Intervention: Reflecting Sunlight to Cool Earth. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  11. 11.
    Riahi K, Schaeffer R, Arango J, Calvin K, Guivarch C, et al. 2023.. Mitigation pathways compatible with long-term goals. . In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. PR Shukla, J Skea, R Slade, A Al Khourdajie, R van Diemen, et al. , pp. 295408. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  12. 12.
    Budyko MI. 1977.. Climatic Changes. Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  13. 13.
    Natl. Res. Counc., Geophys. Stud. Comm. 1977.. Energy and Climate: Studies in Geophysics. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  14. 14.
    Natl. Res. Counc. (US) Carbon Dioxide Assess. Comm. 1983.. Changing Climate: Report of the Carbon Dioxide Assessment Committee. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  15. 15.
    Inst. Med., Natl. Acad. Sci., Natl. Acad. Eng. 1992.. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  16. 16.
    Schneider SH. 1996.. Geoengineering: Could—or should—we do it?. Clim. Change 33:(3):291302
    [Crossref] [Google Scholar]
  17. 17.
    Teller E, Hyde R, Wood L. 1997.. Global warming and ice ages: I. Prospects for physics-based modulation of global change. Rep. UCRL-JC-128715 , Lawrence Livermore Natl. Lab., Livermore, CA:
    [Google Scholar]
  18. 18.
    Govindasamy B, Caldeira K. 2000.. Geoengineering Earth's radiation balance to mitigate CO2-induced climate change. . Geophys. Res. Lett. 27:(14):214144
    [Crossref] [Google Scholar]
  19. 19.
    UN Environ. Progr., World Meteorol. Organ. 1988.. The Changing Atmosphere: Implications for Global Security - Conference Proceedings. Geneva, Switz.:: World Meteorol. Organ.
    [Google Scholar]
  20. 20.
    Intergov. Panel Clim. Change. 1990.. Policymakers summary of the formulation of the Response Strategies Working Group of the Intergovernmental Panel on Climate Change (Working Group III). Bracknell, UK:: World Meteorol. Organ., UN Environ. Progr.
    [Google Scholar]
  21. 21.
    Crutzen PJ. 2006.. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?. Clim. Change 77:(3):21120
    [Crossref] [Google Scholar]
  22. 22.
    Lawrence M. 2006.. The geoengineering dilemma: to speak or not to speak. . Clim. Change 77:(3):24548
    [Crossref] [Google Scholar]
  23. 23.
    Cicerone R. 2006.. Geoengineering: encouraging research and overseeing implementation. . Clim. Change 77:(3):22126
    [Crossref] [Google Scholar]
  24. 24.
    Schneider SH. 2001.. Earth systems engineering and management. . Nature 409:(6818):41720
    [Crossref] [Google Scholar]
  25. 25.
    Asilomar Sci. Organ. Comm. 2010.. The Asilomar Conference Recommendations on Principles for Research into Climate Engineering Techniques. Washington, DC:: Clim. Inst.
    [Google Scholar]
  26. 26.
    Bipartisan Policy Cent. Task Force Clim. Remediat. Res. 2013.. Geoengineering: a national strategic plan for research on the potential effectiveness, feasibility, and consequences of climate remediation technologies. Rep. , Bipartisan Policy Cent., Washington, DC:
    [Google Scholar]
  27. 27.
    Rayner S, Heyward C, Kruger T, Pidgeon N, Redgwell C, Savulescu J. 2013.. The Oxford principles. . Clim. Change 121:(3):499512
    [Crossref] [Google Scholar]
  28. 28.
    Robock A. 2008.. 20 reasons why geoengineering may be a bad idea. . Bull. At. Sci. 64:(2):1418
    [Crossref] [Google Scholar]
  29. 29.
    ETC Group. 2007.. Gambling with Gaia. . ETC Group Commun. 93::118
    [Google Scholar]
  30. 30.
    Keith DW, Duren R, MacMartin DG. 2014.. Field experiments on solar geoengineering: report of a workshop exploring a representative research portfolio. . Philos. Trans. R. Soc. A 372::20140175
    [Crossref] [Google Scholar]
  31. 31.
    Parker A. 2014.. Governing solar geoengineering research as it leaves the laboratory. . Philos. Trans. R. Soc. A 372::20140173
    [Crossref] [Google Scholar]
  32. 32.
    Dykema JA, Keith DW, Anderson JG, Weisenstein D. 2014.. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering. . Philos. Trans. R. Soc. A 372::20140059
    [Crossref] [Google Scholar]
  33. 33.
    Gardiner SM, Fragnière A. 2018.. The Tollgate Principles for the governance of geoengineering: moving beyond the Oxford Principles to an ethically more robust approach. . Ethics Policy Environ. 21:(2):14374
    [Crossref] [Google Scholar]
  34. 34.
    Biermann F, Oomen J, Gupta A, Ali SH, Conca K, et al. 2022.. Solar geoengineering: the case for an international non-use agreement. . WIREs Clim. Change 13:(3):e754
    [Crossref] [Google Scholar]
  35. 35.
    Long JCS, Loy F, Morgan MG. 2015.. Start research on climate engineering. . Nature 518:(7537):2931
    [Crossref] [Google Scholar]
  36. 36.
    Parson EA, Keith DW. 2013.. End the deadlock on governance of geoengineering research. . Science 339:(6125):127879
    [Crossref] [Google Scholar]
  37. 37.
    Felgenhauer T, Bala G, Borsuk M, Brune M, Camilloni I, et al. 2022.. Solar radiation modification: a risk-risk analysis. Rep. , Carnegie Clim. Gov. Initiat., New York, NY:
    [Google Scholar]
  38. 38.
    Parson EA. 2021.. Geoengineering: symmetric precaution. . Science 374:(6569):79595
    [Crossref] [Google Scholar]
  39. 39.
    Carnegie Counc. 2017.. Carnegie Council announces launch of Carnegie Climate Geoengineering Governance Initiative (C2G2). Press Release, Jan. 30
    [Google Scholar]
  40. 40.
    SilverLining. 2023.. Near-term climate risk and intervention. Rep. , SilverLining, Washington, DC:
    [Google Scholar]
  41. 41.
    Horton JB, Brent K, Dai Z, Felgenhauer T, Geden O, et al. 2023.. Solar geoengineering research programs on national agendas: a comparative analysis of Germany, China, Australia, and the United States. . Clim. Change 176:(4):37
    [Crossref] [Google Scholar]
  42. 42.
    Thornberry T, Jensen E. 2023.. The NOAA Stratospheric Aerosol processes, Budget and Radiative Effects (SABRE) Project. Presented at EGU Gen. Assembl., Vienna, Austria:, Apr. 24–28
    [Google Scholar]
  43. 43.
    World Meteorol. Organ. 2022.. Scientific assessment of ozone depletion 2022. GAW Rep. 278 , NOAA Chem. Sci. Lab., Boulder, CO:
    [Google Scholar]
  44. 44.
    Clim. Interv. Res. Lett. 2023.. An open letter regarding research on reflecting sunlight to reduce the risks of climate change. Climate Intervention Research Letter. https://climate-intervention-research-letter.org
    [Google Scholar]
  45. 45.
    Wieners CE, Hofbauer BP, de Vries IE, Honegger M, Visioni D, et al. 2023.. Solar radiation modification is risky, but so is rejecting it: a call for balanced research. . Oxford Open Clim. Change 3:(1):kgad002
    [Crossref] [Google Scholar]
  46. 46.
    Natl. Acad. Sci. Eng. Med. 2021.. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  47. 47.
    Off. Sci. Technol. Policy, Exec. Off. Pres. 2023.. Congressionally-mandated report on solar radiation modification. Rep. , White House, Washington, DC:
    [Google Scholar]
  48. 48.
    UN Environ. Progr. 2023.. One atmosphere: an independent expert review on solar radiation modification research and deployment. Rep. , UN Environ. Progr., Nairobi, Kenya:
    [Google Scholar]
  49. 49.
    UN Hum. Rights Counc. 2023.. Impact of new technologies for climate protection on the enjoyment of human rights. Rep. , UN Hum. Rights Counc., Geneva, Switz.:
    [Google Scholar]
  50. 50.
    World Clim. Res. Progr. 2024.. Research on climate intervention. . World Climate Research Programme. https://www.wcrp-climate.org/ci-overview
    [Google Scholar]
  51. 51.
    Eur. Comm. Group Chief Sci. Advis. 2023.. Scoping paper: solar radiation modification. Rep. , Eur. Comm. Sci. Advice Mech., Berlin:
    [Google Scholar]
  52. 52.
    COMEST (World Comm. Ethics Sci. Knowl. Technol.). 2023.. Report of the World Commission on the Ethics of Scientific Knowledge and Technology (COMEST) on the ethics of climate engineering. Rep. , UNESCO, Paris:
    [Google Scholar]
  53. 53.
    Am. Geophys. Union. 2023.. Ethical framework principles for climate intervention research. Rep. , Am. Geophys. Union, Washington, DC:
    [Google Scholar]
  54. 54.
    Environ. Clim. Change Can. 2024.. Environment and Climate Change Canada science strategy 2024 to 2029. Rep., Gov. Can., Ottawa, Can.:
    [Google Scholar]
  55. 55.
    Bodansky D. 2013.. The who, what, and wherefore of geoengineering governance. . Clim. Change 121:(3):53951
    [Crossref] [Google Scholar]
  56. 56.
    Dupuy P-M, Le Moli G, Viñuales JE. 2021.. Customary international law and the environment. . In The Oxford Handbook of International Environmental Law, ed. L Rajamani, J Peel . Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  57. 57.
    UN Environ. Progr. 2010.. Conference of the Parties, Convention on Biological Diversity, decision X/33: biodiversity and climate change. Rep. UNEP/CBD/COP/DEC/X/33 , Convention on Biological Diversity, Nagoya, Japan:
    [Google Scholar]
  58. 58.
    Int. Marit. Organ. 2010.. Resolution LC-LP.2(2010) on the Assessment Framework for Scientific Research Involving Ocean Fertilization. Resolut., Int. Marit. Organ., London:
    [Google Scholar]
  59. 59.
    Int. Marit. Organ. 2013.. Resolution LP.4(8) on the Amendment to the London Protocol to Regulate the Placement of Matter for Ocean Fertilization and Other Marine Geoengineering Activities. Resolut., Int. Marit. Organ., London:
    [Google Scholar]
  60. 60.
    Int. Marit. Organ. 2018.. Statement on marine geoengineering. Statement, Int. Marit. Organ., London:
    [Google Scholar]
  61. 61.
    UN Off. Disarm. Aff. 1976.. Convention on the Prohibition of Military or Any Other Hostile Use of Environmental Modification Techniques. UN Doc. 26.1, Dec. 10, 1976
    [Google Scholar]
  62. 62.
    Carnegie Clim. Geoeng. Gov. Initiat. 2018.. Carnegie Climate Geoengineering Governance Initiative (C2G2): our approach. Rep. Carnegie Counc., New York, NY:
    [Google Scholar]
  63. 63.
    UN Environ. Progr. Secr. 2024.. Technical note by the secretariat: draft resolution entitled “Solar Radiation Modification.” Tech. Note, UN Environ. Progr. Secr., Nairobi, Kenya:
    [Google Scholar]
  64. 64.
    McClellan J, Keith DW, Apt J. 2012.. Cost analysis of stratospheric albedo modification delivery systems. . Environ. Res. Lett. 7:(3):034019
    [Crossref] [Google Scholar]
  65. 65.
    Smith W, Bhattarai U, Bingaman DC, Mace JL, Rice CV. 2022.. Review of possible very high-altitude platforms for stratospheric aerosol injection. . Environ. Res. Commun. 4:(3):031002
    [Crossref] [Google Scholar]
  66. 66.
    Wood R. 2021.. Assessing the potential efficacy of marine cloud brightening for cooling Earth using a simple heuristic model. . Atmos. Chem. Phys. 21:(19):1450733
    [Crossref] [Google Scholar]
  67. 67.
    Feingold G, Ghate VP, Russell LM, Blossey P, Cantrell W, et al. 2024.. Physical science research needed to evaluate the viability and risks of marine cloud brightening. . Sci. Adv. 10:(12):eadi8594
    [Crossref] [Google Scholar]
  68. 68.
    Manshausen P, Watson-Parris D, Christensen MW, Jalkanen J-P, Stier P. 2022.. Invisible ship tracks show large cloud sensitivity to aerosol. . Nature 610:(7930):1016
    [Crossref] [Google Scholar]
  69. 69.
    Stevens B. 2015.. Rethinking the lower bound on aerosol radiative forcing. . J. Clim. 28:(12):4794819
    [Crossref] [Google Scholar]
  70. 70.
    Ahlm L, Jones A, Stjern CW, Muri H, Kravitz B, Kristjánsson JE. 2017.. Marine cloud brightening – as effective without clouds. . Atmos. Chem. Phys. 17:(21):1307187
    [Crossref] [Google Scholar]
  71. 71.
    Foster J, Cooper G, Galbrath L, Jain S, Ormond R, Neukermans A. 2020.. Continuing results for effervescent aerosol salt water spray nozzles intended for marine cloud brightening. . Int. J. Geosci. 11:(9):563
    [Crossref] [Google Scholar]
  72. 72.
    Neukermans A, Cooper G, Foster J, Gadian A, Galbrath L, et al. 2014.. Sub-micrometer salt aerosol production intended for marine cloud brightening. . Atmos. Res. 142::15870
    [Crossref] [Google Scholar]
  73. 73.
    Medrado J, Shin D, Garner S, Wood R, Doherty SJ, et al. 2022.. Aerosolization of seawater using two-phase-flow spray systems to brighten marine stratocumulus clouds. Poster presented at the American Geophysical Union Fall Meeting, Chicago:, Dec. 12–16
    [Google Scholar]
  74. 74.
    Tully C, Neubauer D, Omanovic N, Lohmann U. 2022.. Cirrus cloud thinning using a more physically based ice microphysics scheme in the ECHAM-HAM general circulation model. . Atmos. Chem. Phys. 22:(17):1145584
    [Crossref] [Google Scholar]
  75. 75.
    Burkhardt U, Bock L, Bier A. 2018.. Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions. npj Clim. . Atmos. Sci. 1:(1):37
    [Google Scholar]
  76. 76.
    McInnes CR. 2010.. Space-based geoengineering: challenges and requirements. . Proc. Inst. Mech. Eng. Part C 224:(3):57180
    [Crossref] [Google Scholar]
  77. 77.
    Baum CM, Low S, Sovacool BK. 2022.. Between the sun and us: expert perceptions on the innovation, policy, and deep uncertainties of space-based solar geoengineering. . Renew. Sustain. Energy Rev. 158::112179
    [Crossref] [Google Scholar]
  78. 78.
    Belaia M, Moreno-Cruz JB, Keith DW. 2021.. Optimal climate policy in 3D: mitigation, carbon removal, and solar geoengineering. . Clim. Change Econ. 12:(03):2150008
    [Crossref] [Google Scholar]
  79. 79.
    Webster MA, Warren SG. 2022.. Regional geoengineering using tiny glass bubbles would accelerate the loss of Arctic sea ice. . Earth's Future 10:(10):e2022EF002815
    [Crossref] [Google Scholar]
  80. 80.
    Seeley JT, Lutsko NJ, Keith DW. 2020.. Designing a radiative antidote to CO2. . Geophys. Res. Lett. 48:(1):e2020GL090876
    [Crossref] [Google Scholar]
  81. 81.
    Ricke K, Wan JS, Saenger M, Lutsko NJ. 2023.. Hydrological consequences of solar geoengineering. . Annu. Rev. Earth Planet. Sci. 51::44770
    [Crossref] [Google Scholar]
  82. 82.
    Irvine PJ, Kravitz B, Lawrence MG, Muri H. 2016.. An overview of the Earth system science of solar geoengineering. . WIREs Clim. Change 7:(6):81533
    [Crossref] [Google Scholar]
  83. 83.
    Visioni D, Robock A, Haywood J, Henry M, Tilmes S, et al. 2023.. G6–1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies. . Geosci. Model Dev. 17::258396
    [Crossref] [Google Scholar]
  84. 84.
    Ji D, Fang S, Curry CL, Kashimura H, Watanabe S, et al. 2018.. Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering. . Atmos. Chem. Phys. 18:(14):1013356
    [Crossref] [Google Scholar]
  85. 85.
    Irvine PJ, Keith DW, Moore J. 2018.. Brief communication: understanding solar geoengineering's potential to limit sea level rise requires attention from cryosphere experts. . Cryosphere 12:(7):250113
    [Crossref] [Google Scholar]
  86. 86.
    Liu Z, Lang X, Jiang D. 2024.. Stratospheric aerosol injection geoengineering would mitigate greenhouse gas-induced drying and affect global drought patterns. . J. Geophys. Res. Atmos. 129:(3):e2023JD039988
    [Crossref] [Google Scholar]
  87. 87.
    Kravitz B, MacMartin D, Robock A, Rasch P, Ricke K, et al. 2014.. A multi-model assessment of regional climate disparities caused by solar geoengineering. . Environ. Res. Lett. 9:(7):074013
    [Crossref] [Google Scholar]
  88. 88.
    Irvine PJ, Keith DW. 2020.. Halving warming with stratospheric aerosol geoengineering moderates policy-relevant climate hazards. . Environ. Res. Lett. 15:(4):044011
    [Crossref] [Google Scholar]
  89. 89.
    Kravitz B, MacMartin DG, Caldeira K. 2012.. Geoengineering: whiter skies?. Geophys. Res. Lett. 39:(11):L11801
    [Crossref] [Google Scholar]
  90. 90.
    Xia L, Nowack PJ, Tilmes S, Robock A. 2017.. Impacts of stratospheric sulfate geoengineering on tropospheric ozone. . Atmos. Chem. Phys. 17:(19):1191328
    [Crossref] [Google Scholar]
  91. 91.
    Eastham SD, Weisenstein DK, Keith DW, Barrett SRH. 2018.. Quantifying the impact of sulfate geoengineering on mortality from air quality and UV-B exposure. . Atmos. Environ. 187::42434
    [Crossref] [Google Scholar]
  92. 92.
    Harding A, Keith D, Yang W, Vecchi G. 2023.. Impact of solar geoengineering on temperature-attributable mortality. Work. Pap. , Resources for the Future, Washington, DC:
    [Google Scholar]
  93. 93.
    NASA Panel Data Eval. 2020.. Chemical kinetics and photochemical data for use in atmospheric studies: evaluation number 19. JPL Publ. 19–5 , Jet Propuls. Lab., Pasadena, CA:
    [Google Scholar]
  94. 94.
    Russell LM, Sorooshian A, Seinfeld JH, Albrecht B, Nenes A, et al. 2013.. Eastern Pacific Emitted Aerosol Cloud Experiment. . Bull. Am. Meteorol. Soc. 94:(5):70929
    [Crossref] [Google Scholar]
  95. 95.
    Tollefson J. 2021.. Can artificially altered clouds save the Great Barrier Reef?. Nature 596:(7873):47678
    [Crossref] [Google Scholar]
  96. [Google Scholar]
  97. 97.
    MacMartin DG, Kravitz B, Tilmes S, Richter JH, Mills MJ, et al. 2017.. The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations. . J. Geophys. Res. Atmos. 122:(23):1257490
    [Crossref] [Google Scholar]
  98. 98.
    MacMynowski DG, Keith DW, Caldeira K, Shin H-J. 2011.. Can we test geoengineering?. Energy Environ. Sci. 4:(12):5044
    [Crossref] [Google Scholar]
  99. 99.
    Baum CM, Fritz L, Low S, Sovacool BK. 2024.. Public perceptions and support of climate intervention technologies across the Global North and Global South. . Nat. Commun. 15::2060
    [Crossref] [Google Scholar]
  100. 100.
    Harding AR, Ricke K, Heyen D, MacMartin DG, Moreno-Cruz J. 2020.. Climate econometric models indicate solar geoengineering would reduce inter-country income inequality. . Nat. Commun. 11::227
    [Crossref] [Google Scholar]
  101. 101.
    Ricke KL, Moreno-Cruz JB, Caldeira K. 2013.. Strategic incentives for climate geoengineering coalitions to exclude broad participation. . Environ. Res. Lett. 8::014021
    [Crossref] [Google Scholar]
  102. 102.
    Tilmes S, Richter JH, Kravitz B, MacMartin DG, Mills MJ, et al. 2018.. CESM1(WACCM) stratospheric aerosol geoengineering large ensemble project. . Bull. Am. Meteorol. Soc. 99:(11):236171
    [Crossref] [Google Scholar]
  103. 103.
    Corry O. 2017.. The international politics of geoengineering: the feasibility of plan B for tackling climate change. . Sec. Dialogue 48:(4):297315
    [Crossref] [Google Scholar]
  104. 104.
    Young DN. 2023.. Considering stratospheric aerosol injections beyond an environmental frame: the intelligible ‘emergency’ techno-fix and preemptive security. . Eur. J. Int. Secur. 8:(2):26280
    [Crossref] [Google Scholar]
  105. 105.
    Chalecki EL, Ferrari LL. 2018.. A new security framework for geoengineering. . Strateg. Stud. Q. 12:(2):82106
    [Google Scholar]
  106. 106.
    Horton J, Keith D. 2021.. Can solar geoengineering be used as a weapon?. Council on Foreign Relations Blog, April 29. https://www.cfr.org/blog/can-solar-geoengineering-be-used-weapon
    [Google Scholar]
  107. 107.
    Temple J. 2022.. A startup says it's begun releasing particles into the atmosphere, in an effort to tweak the climate. . MIT Technology Review, Dec. 24. https://www.technologyreview.com/2022/12/24/1066041/a-startup-says-its-begun-releasing-particles-into-the-atmosphere-in-an-effort-to-tweak-the-climate/
    [Google Scholar]
  108. 108.
    Buckley C. 2024.. Could a giant parasol in outer space help solve the climate crisis?. New York Times, Feb. 2. https://www.nytimes.com/2024/02/02/climate/sun-shade-climate-geoengineering.html
    [Google Scholar]
  109. 109.
    Niiler E. 2024.. Scientists resort to once-unthinkable solutions to cool the planet. . Wall Street Journal, Feb. 14. https://www.wsj.com/science/environment/geoengineering-projects-cool-planet-weather-f0619bf7
    [Google Scholar]
  110. 110.
    Long JCS, Shepherd JG. 2014.. The strategic value of geoengineering research. . In Global Environmental Change, ed. B Freedman , pp. 75770. Dordrecht, Neth:.: Springer
    [Google Scholar]
  111. 111.
    Buck HJ, Martin LJ, Geden O, Kareiva P, Koslov L, et al. 2020.. Evaluating the efficacy and equity of environmental stopgap measures. . Nat. Sustain. 3::499504
    [Crossref] [Google Scholar]
  112. 112.
    Keith DW, MacMartin DG. 2015.. A temporary, moderate and responsive scenario for solar geoengineering. . Nat. Clim. Change 5:(3):2016
    [Crossref] [Google Scholar]
  113. 113.
    Morton O. 2015.. The Planet Remade: How Geoengineering Could Change the World. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  114. 114.
    Parson EA, Morton O. 2017.. Climate engineering governance world café. . In Climate Engineering Conference 2017: Critical Global Discussions Conference Report, pp. 1213. Potsdam, Ger.:: Inst. Adv. Sustain. Stud. Potsdam
    [Google Scholar]
  115. 115.
    Robinson KS. 2020.. The Ministry for the Future. New York:: Orbit
    [Google Scholar]
  116. 116.
    Dipu S, Quaas J, Quaas M, Rickels W, Mülmenstädt J, Boucher O. 2021.. Substantial climate response outside the target area in an idealized experiment of regional radiation management. . Climate 9:(4):66
    [Crossref] [Google Scholar]
  117. 117.
    MacMartin DG, Kravitz B, Goddard PB. 2023.. Transboundary effects from idealized regional geoengineering. . Environ. Res. Commun. 5:(9):091004
    [Crossref] [Google Scholar]
  118. 118.
    Wan JS, Chen C-C, Tilmes S, Luongo MT, Richter JH, Ricke K. 2024.. Diminished efficacy of regional marine cloud brightening in a warmer world. . Nat. Clim. Change. 14::80814
    [Crossref] [Google Scholar]
  119. 119.
    Parker A, Horton JB, Keith DW. 2018.. Stopping solar geoengineering through technical means: a preliminary assessment of counter-geoengineering. . Earth's Future 6:(8):105865
    [Crossref] [Google Scholar]
  120. 120.
    Parson EA, Reynolds JL. 2021.. Governance responses to a geoengineering deployment challenge: insights from a scenario exercise. . Futures 132::102805
    [Crossref] [Google Scholar]
  121. 121.
    Von Neumann J. 1955.. Can we survive technology?. Fortune, June
    [Google Scholar]
  122. 122.
    Dyson G. 2012.. Turing's Cathedral: The Origins of the Digital Universe. London:: Allen Lane
    [Google Scholar]
  123. 123.
    Cheng W, MacMartin DG, Kravitz B, Visioni D, Bednarz EM, et al. 2022.. Changes in Hadley circulation and intertropical convergence zone under strategic stratospheric aerosol geoengineering. npj Clim. . Atmos. Sci. 5:(1):32
    [Google Scholar]
  124. 124.
    Lin AC. 2013.. Does geoengineering present a moral hazard?. Ecol. Lett. Q. 40::673
    [Google Scholar]
  125. 125.
    Keith DW. 2021.. Toward constructive disagreement about geoengineering. . Science 374:(6569):81215
    [Crossref] [Google Scholar]
  126. 126.
    Merk C, Pönitzsch G, Rehdanz K. 2016.. Knowledge about aerosol injection does not reduce individual mitigation efforts. . Environ. Res. Lett. 11:(5):054009
    [Crossref] [Google Scholar]
  127. 127.
    Cherry TL, Kroll S, McEvoy DM, Campoverde D, Moreno-Cruz J. 2023.. Climate cooperation in the shadow of solar geoengineering: an experimental investigation of the moral hazard conjecture. . Environ. Politics 32:(2):36270
    [Crossref] [Google Scholar]
  128. 128.
    Andrews TM, Delton AW, Kline R. 2022.. Anticipating moral hazard undermines climate mitigation in an experimental geoengineering game. . Ecol. Econ. 196::107421
    [Crossref] [Google Scholar]
  129. 129.
    Moreno-Cruz JB. 2015.. Mitigation and the geoengineering threat. . Resour. Energy Econ. 41::24863
    [Crossref] [Google Scholar]
  130. 130.
    Fabre A, Wagner G. 2020.. Availability of risky geoengineering can make an ambitious climate mitigation agreement more likely. . Nat. Humanit. Soc. Sci. Commun. 7::1
    [Crossref] [Google Scholar]
  131. 131.
    Broecker WS. 1984.. SO2: A backstop against a bad CO2 trip? Work. Pap., Lamont-Doherty Geol. Obs. , Columbia Univ., Palisades, New York:
    [Google Scholar]
  132. 132.
    Parson EA. 2014.. Climate engineering in global climate governance: implications for participation and linkage. . Transnatl. Environ. Law 3:(1):89110
    [Crossref] [Google Scholar]
  133. 133.
    Reynolds JL. 2022.. Linking solar geoengineering and emissions reductions: strategically resolving an international climate change policy dilemma. . Clim. Policy 22:(3):285300
    [Crossref] [Google Scholar]
  134. 134.
    Parson EA, Herzog MM. 2016.. Moratoria for global governance and contested technology: the case of climate engineering. Res. Pap. 16–17 , UCLA Public Law & Legal Theory Ser., UCLA Sch. Law, Univ. Calif., Los Angeles:
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112321-081911
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error