1932

Abstract

Recent rapid and unexpected cost reductions in decarbonization technologies have accelerated the cost-effective decarbonization of the US economy, with greenhouse gas (GHG) emissions falling by 20% from 2005 to 2020. The literature on US economy-wide decarbonization focuses on maximizing long-term GHG emissions reduction strategies that rely mostly on renewable energy expansion, electrification, and efficiency improvements to achieve net-zero GHG emissions by 2050. While these studies provide a valuable foundation, further research is needed to properly support decarbonization policy development and implementation. In this review, we identify key decarbonization analysis gaps and opportunities, including issues related to cross-sectoral linkages, spatial and temporal granularity, consumer behavior, emerging technologies, equity and environmental justice, and political economy. We conclude by discussing the implications of these analysis gaps for US decarbonization pathways and how they relate to challenges facing major global emitters.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112321-091927
2024-10-18
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-112321-091927.html?itemId=/content/journals/10.1146/annurev-environ-112321-091927&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Barbose GL. 2021.. U.S. renewables portfolio standards 2021 status update: early release. Rep. , Lawrence Berkeley Natl. Lab., Berkeley, CA:. https://live-etabiblio.pantheonsite.io/sites/default/files/rps_status_update-2021_early_release.pdf
    [Google Scholar]
  2. 2.
    Kobus J, Nasrallah A, Guidera J. 2021.. The role of corporate renewable power purchase agreements in supporting US wind and solar deployment. Res. Rep. , Cent. Glob. Energy Policy, Columbia Univ., New York:
    [Google Scholar]
  3. 3.
    IRENA (Int. Renew. Energy Agency). 2022.. Renewable power remains cost-competitive amid fossil fuel crisis. Press Release, July 13 , IRENA, Abu Dhabi, United Arab Emir:. https://www.irena.org/news/pressreleases/2022/Jul/Renewable-Power-Remains-Cost-Competitive-amid-Fossil-Fuel-Crisis
    [Google Scholar]
  4. 4.
    Natl. Acad. Sci. Eng. Med. 2023.. Accelerating Decarbonization in the United States: Technology, Policy, and Societal Dimensions. Washington, DC:: Natl. Acad.
    [Google Scholar]
  5. 5.
    Satchwell A, Cowiestoll B, Hale E, Gerke B, Jadun P, et al. 2022.. Assessing the interactive impacts of energy efficiency and demand response on power system costs and emissions. Rep. , Lawrence Berkeley Natl. Lab., Berkeley, CA:
    [Google Scholar]
  6. 6.
    Forrester S, Cappers P. 2021.. Opportunities and challenges to capturing distributed battery value via retail utility rates and programs. Rep. , Lawrence Berkeley Natl. Lab., Berkeley, CA:
    [Google Scholar]
  7. 7.
    Luderer G, Pehl M, Arvesen A, Gibon T, Bodirsky BL, et al. 2019.. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. . Nat. Commun. 10::5229
    [Crossref] [Google Scholar]
  8. 8.
    Spurlock CA, Elmallah S, Reames TG. 2022.. Equitable deep decarbonization: a framework to facilitate energy justice–based multidisciplinary modeling. . Energy Res. Soc. Sci. 92::102808
    [Crossref] [Google Scholar]
  9. 9.
    Jenkins JD, Mayfield EN, Farbes J, Jones R, Patankar N, et al. 2022.. Preliminary report: the climate and energy impacts of the Inflation Reduction Act of 2022. Rep. , Zero Lab, Princeton, NJ:
    [Google Scholar]
  10. 10.
    White House. 2021.. Bipartisan Infrastructure Investment and Jobs Act. Fact Sheet, White House, Washington, DC:. https://www.whitehouse.gov/briefing-room/statements-releases/2021/11/06/fact-sheet-the-bipartisan-infrastructure-deal
    [Google Scholar]
  11. 11.
    Core Writ. Team, Lee H, Romero J, eds. 2023.. Summary for policymakers. . In Climate Change 2023 Synthesis Report: Contribution of Working Groups I, II and III to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, pp. 134. Geneva:: IPCC
    [Google Scholar]
  12. 12.
    Allam Z, Bibri SE, Sharpe SA. 2022.. The rising impacts of the COVID-19 pandemic and the Russia–Ukraine war: energy transition, climate justice, global inequality, and supply chain disruption. . Resources 11::99
    [Crossref] [Google Scholar]
  13. 13.
    Ryter J, Fu X, Bhuwalka K, Roth R, Olivetti EA. 2021.. Emission impacts of China's solid waste import ban and COVID-19 in the copper supply chain. . Nat. Commun. 12::3753
    [Crossref] [Google Scholar]
  14. 14.
    Nik VM, Perera ATD, Chen D. 2021.. Towards climate resilient urban energy systems: a review. . Natl. Sci. Rev. 8:(3):nwaa134
    [Crossref] [Google Scholar]
  15. 15.
    Shi L, Moser S. 2021.. Transformative climate adaptation in the United States: trends and prospects. . Science 372:(6549):abc8054
    [Crossref] [Google Scholar]
  16. 16.
    Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, et al. 2018.. Global Warming of 1.5°C: An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge, UK/New York:: Cambridge Univ. Press
    [Google Scholar]
  17. 17.
    Natl. Acad. Sci. Eng. Med. 2021.. Accelerating Decarbonization of the U.S. Energy System. Washington, DC:: Natl. Acad.
    [Google Scholar]
  18. 18.
    Larson E, Greig C, Jenkins J, Mayfield E, Pascale A, et al. 2021.. Net-zero America: potential pathways, infrastructure, and impacts. Final Rep., Net-Zero Am. Proj., Princeton Univ., Princeton, NJ:
    [Google Scholar]
  19. 19.
    US Dep. State, US Exec. Off. Pres. 2021.. The long-term strategy of the United States: pathways to net-zero greenhouse gas emissions by 2050. Rep. , US Dep. State, US Exec. Off. Pres., Washington, DC:
    [Google Scholar]
  20. 20.
    Orvis R. 2021.. A 1.5 Celsius pathway to climate leadership for the United States. Fact Sheet, Energy Innov., San Francisco, CA:
    [Google Scholar]
  21. 21.
    Nadel S, Ungar L. 2019.. Halfway there: Energy efficiency can cut energy use and greenhouse gas emissions in half by 2050. Res. Rep. , Am. Counc. Energy-Effic. Econ., Washington, DC:
    [Google Scholar]
  22. 22.
    Williams JH, Jones RA, Haley B, Kwok G, Hargreaves J, et al. 2021.. Carbon-neutral pathways for the United States. . AGU Adv. 2:(1):e2020AV000284
    [Crossref] [Google Scholar]
  23. 23.
    Bistline J, Abhyankar N, Blanford G, Clarke L, Fakhry R, et al. 2022.. Actions for reducing US emissions at least 50% by 2030. . Science 376:(6596):92224
    [Crossref] [Google Scholar]
  24. 24.
    EPRI (Electr. Power Res. Inst.). 2022.. LCRI net-zero 2050: U.S. economy-wide deep decarbonization scenario analysis. Rep. , EPRI, Palo Alto, CA:
    [Google Scholar]
  25. 25.
    EPA (US Environ. Prot. Agency). 2024.. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2022. Fact Sheet, EPA, Washington, DC:. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
    [Google Scholar]
  26. 26.
    EPRI (Electr. Power Res. Inst.). 2021.. Powering decarbonization: strategies for net-zero CO2 emissions. Rep. , EPRI, Palo Alto, CA:
    [Google Scholar]
  27. 27.
    Denholm P, Brown P, Cole W, Mai T, Sergi B. 2022.. Examining supply-side options to achieve 100% clean electricity by 2035. Tech. Rep. NREL/TP-6A40-81644 , Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  28. 28.
    Pett-Ridge J, Kuebbing S, Mayer AC, Hovorka S, Pilorgé H, et al. 2023.. Roads to removal: options for carbon dioxide removal in the United States. Tech. Rep. LLNL-TR-852901 , Lawrence Berkeley Natl. Lab., Berkeley, CA:
    [Google Scholar]
  29. 29.
    Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, et al. 2019.. The technological and economic prospects for CO2 utilization and removal. . Nature 575:(7781):8797
    [Crossref] [Google Scholar]
  30. 30.
    Barbose G, Darghouth N, O'Shaughnessy E, Forrester S. 2022.. Tracking the sun: pricing and design trends for distributed photovoltaic systems in the United States, 2022 edition. Rep. , Lawrence Berkeley Natl. Lab., Berkeley, CA:
    [Google Scholar]
  31. 31.
    Bolinger M, Seel J, Warner C, Robson D. 2022.. Utility-scale solar, 2022 edition. Rep. , Lawrence Berkeley Natl. Lab., Berkeley, CA:
    [Google Scholar]
  32. 32.
    Phadke A, Pailwal U, Abhyankar N, McNair T, Paulos B, et al. 2020.. 2035: the report. Rep. , Univ. Calif., Berkeley:
    [Google Scholar]
  33. 33.
    Natl. Renew. Energy Lab. 2022.. 2022 Electricity ATB technologies and data overview. Fact Sheet, Natl. Renew. Energy Lab., Golden, CO:. https://atb.nrel.gov/electricity/2022/technologies#:∼:text=The%202022%20Electricity%20ATB%20provides,both%20at%20present%20and%20with
    [Google Scholar]
  34. 34.
    Bolinger M, Wiser R. 2022.. Land-based wind market report. Rep. , Lawrence Berkeley Natl. Lab., Berkeley, CA:
    [Google Scholar]
  35. 35.
    Wiser R, Rand J, Seel J, Beiter P, Baker E, et al. 2021.. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. . Nat. Energy 6:(5):55565
    [Crossref] [Google Scholar]
  36. 36.
    Musial W, Spitsen P, Duffy P, Beiter P, Marquis M, et al. 2022.. Offshore wind market report: 2022 edition. Rep. , US Dep. Energy, Washington, DC:
    [Google Scholar]
  37. 37.
    Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, et al. 2022.. Summary for policymakers. . In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the 6th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York:: Cambridge Univ. Press
    [Google Scholar]
  38. 38.
    Natl. Acad. Sci. Eng. Med. 2021.. Partnerships and Cross-Sector Collaboration Priorities to Support Climate Research and Policy: Proceedings of a Workshop—in Brief. Washington, DC:: Natl. Acad.
    [Google Scholar]
  39. 39.
    Barker T, Bashmakov I, Alharthi A, Amann M, Cifuentes L, et al. 2007.. Mitigation from a cross-sectoral perspective. . In Climate Change 2007: Mitigation. Contribution of Working Group III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, ed. B Metz, OR Davidson, PR Bosch, R Dave, LA Meyer , pp. 61990. Cambridge, UK/New York:: Cambridge Univ. Press
    [Google Scholar]
  40. 40.
    Aslam A, Ahmed N, Qureshi SA, Assadi M, Ahmed N. 2022.. Advances in solar PV systems: a comprehensive review of PV performance, influencing factors, and mitigation techniques. . Energies. 15:(20):7595
    [Crossref] [Google Scholar]
  41. 41.
    IEA (Int. Energy Agency). 2023.. ETP clean energy technology guide. Rep. , IEA, Paris:. https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide
    [Google Scholar]
  42. 42.
    Mulligan J, Rudee A, Lebling K, Levin K, Anderson J, Christensen B. 2020.. CarbonShot: federal policy options for carbon removal in the United States. Work. Pap. , World Resour. Inst., Washington, DC:
    [Google Scholar]
  43. 43.
    Lee A, Zinaman O, Logan J. 2012.. Opportunities for synergy between natural gas and renewable energy in the electric power and transportation sectors. Tech. Rep. NREL/TP-6A50-56324 , Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  44. 44.
    Chang M, Thellufsen JZ, Zakeri B, Pickering B, Pfenninger S, et al. 2021.. Trends in tools and approaches for modelling the energy transition. . Appl. Energy 290::116731
    [Crossref] [Google Scholar]
  45. 45.
    Langevin J, Satre-Meloy A, Satchwell AJ, Hledik R, Olszewski J, et al. 2022.. The role of buildings in U.S. energy system decarbonization by mid-century. Work. Pap. , Lawrence Berkeley Natl. Lab., Berkeley, CA:
    [Google Scholar]
  46. 46.
    Jenkins JD, Luke M, Thernstrom S. 2018.. Getting to zero carbon emissions in the electric power sector. . Joule 2:(12):2498510
    [Crossref] [Google Scholar]
  47. 47.
    Arent DJ, Green P, Abdullah Z, Barnes T, Bauer S, et al. 2022.. Challenges and opportunities in decarbonizing the U.S. energy system. . Renew. Sustain. Energy Rev. 169::112939
    [Crossref] [Google Scholar]
  48. 48.
    Graff Zivin JS, Kotchen MJ, Mansur ET. 2014.. Spatial and temporal heterogeneity of marginal emissions: implications for electric cars and other electricity-shifting policies. . J. Econ. Behav. Organ. 107::24868
    [Crossref] [Google Scholar]
  49. 49.
    Thind MPS, Wilson EJ, Azevedo IL, Marshall JD. 2017.. Marginal emissions factors for electricity generation in the midcontinent ISO. . Environ. Sci. Technol. 51:(24):1444552
    [Crossref] [Google Scholar]
  50. 50.
    Yuksel T, Tamayao M-AM, Hendrickson C, Azevedo IML, Michalek JJ. 2016.. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States. . Environ. Res. Lett. 11::044007
    [Crossref] [Google Scholar]
  51. 51.
    Tamayao M-AM, Michalek JJ, Hendrickson C, Azevedo IML. 2015.. Regional variability and uncertainty of electric vehicle life cycle CO2 emissions across the United States. . Environ. Sci. Technol. 49:(14):884455
    [Crossref] [Google Scholar]
  52. 52.
    Powell S, Cezar GV, Min L, Azevedo IML, Rajagopal R. 2022.. Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption. . Nat. Energy 7::93245
    [Crossref] [Google Scholar]
  53. 53.
    Sohn J, Kalbar P, Goldstein B, Birkved M. 2020.. Defining temporally dynamic life cycle assessment: a review. . Integr. Environ. Assess. Manag. 16:(3):31423
    [Crossref] [Google Scholar]
  54. 54.
    Tessum CW, Paolella DA, Chambliss SE, Apte JS, Hill JD, Marshall JD. 2021.. PM2.5 polluters disproportionately and systemically affect people of color in the United States. . Sci. Adv. 7:(18):eab4491
    [Crossref] [Google Scholar]
  55. 55.
    Thind MPS, Tessum CW, Azevedo IL, Marshall JD. 2019.. Fine particulate air pollution from electricity generation in the US: health impacts by race, income, and geography. . Environ. Sci. Technol. 53:(23):1401019
    [Crossref] [Google Scholar]
  56. 56.
    Mai T, Jadun P, Logan J, McMillan C, Muratori M, et al. 2018.. Electrification futures study: scenarios of electric technology adoption and power consumption for the United States. Tech. Rep. NREL/TP-6A20-71500 , Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  57. 57.
    Wilson C, Dowlatabadi H. 2007.. Models of decision making and residential energy use. . Annu. Rev. Environ. Resour. 32::169203
    [Crossref] [Google Scholar]
  58. 58.
    Kastner I, Stern PC. 2015.. Examining the decision-making processes behind household energy investments: a review. . Energy Res. Soc. Sci. 10::7289
    [Crossref] [Google Scholar]
  59. 59.
    Muratori M, Jadun P, Bush B, Bielen D, Vimmerstedt L, et al. 2020.. Future integrated mobility-energy systems: a modeling perspective. . Renew. Sustain. Energy Rev. 119::109541
    [Crossref] [Google Scholar]
  60. 60.
    Pfenninger S, Hawkes A, Keirstead J. 2014.. Energy systems modeling for twenty-first century energy challenges. . Renew. Sustain. Energy Rev. 33::7486
    [Crossref] [Google Scholar]
  61. 61.
    Fodstad M, Crespo del Granado P, Hellemo L, Knudsen BR, Pisciella P, et al. 2022.. Next frontiers in energy system modelling: a review on challenges and the state of the art. . Renew. Sustain. Energy Rev. 160::112246
    [Crossref] [Google Scholar]
  62. 62.
    McCollum DL, Wilson C, Pettifor H, Ramea K, Krey V, et al. 2017.. Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices. . Transp. Res. D 55:(1):32242
    [Crossref] [Google Scholar]
  63. 63.
    Alipour M, Salim H, Stewart RA, Sahin O. 2020.. Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: a review. . Renew. Sustain. Energy Rev. 123::109749
    [Crossref] [Google Scholar]
  64. 64.
    Rai V, Robinson SA. 2015.. Agent-based modeling of energy technology adoption: empirical integration of social, behavioral, economic, and environmental factors. . Environ. Model. Softw. 70::16377
    [Crossref] [Google Scholar]
  65. 65.
    Lopez A, Green R, Williams T, Lantz E, Buster G, Roberts B. 2022.. Offshore wind energy technical potential for the contiguous United States. Slides, Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  66. 66.
    Musial W. 2022.. Offshore wind energy: technology above the water. Tech. Rep. NREL/PR-5000-81227 , Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  67. 67.
    Paliwal U, Abhyankar N, Wooley D, Phadke A. 2022.. The offshore report: California. Plummeting offshore wind costs can accelerate a diverse net-zero grid. Work. Pap. 1 , Cent. Environ. Pubic Policy, Goldman Sch. Public Policy, Univ. Calif., Berkeley:
    [Google Scholar]
  68. 68.
    Costoya X, deCastro M, Carvalho D, Gómez-Gesteira M. 2020.. On the suitability of offshore wind energy resource in the United States of America for the 21st century. . Appl. Energy. 262::114537
    [Crossref] [Google Scholar]
  69. 69.
    Blair N, Cory K, Hand M, Parkhill L, Speer B, et al. 2015.. Annual technology baseline. Fact Sheet, Natl. Renew. Energy Lab., Golden, CO:. https://www.nrel.gov/docs/fy15osti/64077.pdf
    [Google Scholar]
  70. 70.
    Natl. Renew. Energy Lab. 2023.. Annual technology baseline—offshore wind. Fact Sheet, Natl. Renew. Energy Lab., Golden, CO:. https://atb.nrel.gov/electricity/2023/offshore_wind
    [Google Scholar]
  71. 71.
    Paliwal U, Abhyankar N, McNair T, Bennett JD, Wooley D, et al. 2023.. 2035 and beyond: abundant, affordable offshore wind can accelerate our clean electricity future. Rep. , Goldman Sch. Public Policy, Univ. Calif., Berkeley:. https://gspp.berkeley.edu/research-and-impact/publications/the-2035-report-abundant-affordable-offshore-wind-can-accelerate-our-clean-electricity-future
    [Google Scholar]
  72. 72.
    Shields M, Stefek J, Oteri F, Kreider M, Gill E, et al. 2023.. A supply chain road map for offshore wind energy in the United States. Tech. Rep. NREL/TP-5000-84710 , Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  73. 73.
    Shields M, Marsh R, Stefek J, Oteri F, Gould R, et al. 2022.. The demand for a domestic offshore wind energy supply chain. Tech. Rep. NREL/TP-5000-81602 , Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  74. 74.
    Cresko J, Rightor E, Carpenter A, Peretti K, Elliott N, et al. 2022.. DOE industrial decarbonization roadmap. Fact Sheet, Off. Sci., US Dep. Energy
    [Google Scholar]
  75. 75.
    IEA (Int. Energy Agency). 2018.. Technology roadmap: low-carbon transition in the cement industryanalysis. Rep. , IEA, Paris:. https://www.iea.org/reports/technology-roadmap-low-carbon-transition-in-the-cement-industry
    [Google Scholar]
  76. 76.
    Buttress A, Jones A, Kingman S. 2015.. Microwave processing of cement and concrete materials—towards an industrial reality?. Cem. Concr. Res. 68::11223
    [Crossref] [Google Scholar]
  77. 77.
    EPRI. 2023.. Decarbonization of industrial clusters initiative gains global momentum. Press Release, Jan. 19 , EPRI, Palo Alto, CA:. https://www.epri.com/about/media-resources/press-release/3YGlJTSNw3AUM1U6VlGHjY
    [Google Scholar]
  78. 78.
    Kersey J, Popovich ND, Phadke AA. 2022.. Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping. . Nat. Energy 7:(7):66474
    [Crossref] [Google Scholar]
  79. 79.
    Hume D. 2021.. Ammonia as maritime fuel. Rep. , Pac. Northw. Natl. Lab., Richland, WA:
    [Google Scholar]
  80. 80.
    Comer B, Georgeff E, Stolz D, Mao X, Osipova L. 2022.. Decarbonizing bulk carriers with hydrogen fuel cells and wind-assisted propulsion. White Pap. , Int. Counc. Clean Transp., Washington, DC:
    [Google Scholar]
  81. 81.
    Popovich ND, Rajagopal D, Tasar E, Phadke A. 2021.. Economic, environmental and grid-resilience benefits of converting diesel trains to battery-electric. . Nat. Energy 6::101725
    [Crossref] [Google Scholar]
  82. 82.
    Moraski JW, Popovich ND, Phadke AA. 2023.. Leveraging rail-based mobile energy storage to increase grid reliability in the face of climate uncertainty. . Nat. Energy 8::73646
    [Crossref] [Google Scholar]
  83. 83.
    Cole WJ, Greer D, Denholm P, Frazier AW, Machen S, et al. 2021.. Quantifying the challenge of reaching a 100% renewable energy power system for the United States. . Joule 5:(7):173248
    [Crossref] [Google Scholar]
  84. 84.
    Phadke A, Aggarwal S, O'Boyle M, Gimon E, Abhyankar N. 2020.. Illustrative pathways to 100 percent zero carbon power by 2035 without increasing customer costs. Fact Sheet, Energy Innov., San Francisco, CA:
    [Google Scholar]
  85. 85.
    Energy Technol. Area. 2021.. Queued up: characteristics of power plants seeking transmission interconnection. Rep./Data Set , Lawrence Berkeley Natl. Lab., Berkeley, CA:. https://emp.lbl.gov/queues
    [Google Scholar]
  86. 86.
    Grid Deploy. Off., US Dep. Energy. 2023.. National Transmission Needs Study. Rep. , US Dep. Energy, Washington, DC:. https://www.energy.gov/sites/default/files/2023-12/National%20Transmission%20Needs%20Study%20-%20Final_2023.12.1.pdf
    [Google Scholar]
  87. 87.
    Reed L, Dworkin M, Vaishnav P, Morgan MG. 2020.. Expanding transmission capacity: examples of regulatory paths for five alternative strategies. . Electr. J. 33:(6):106770
    [Crossref] [Google Scholar]
  88. 88.
    Reed L, Morgan MG, Vaishnav P, Erian Armanios D. 2019.. Converting existing transmission corridors to HVDC is an overlooked option for increasing transmission capacity. . PNAS 116:(28):1387984
    [Crossref] [Google Scholar]
  89. 89.
    Chojkiewicz E, Paliwal U, Abhyankar N, Baker C, O'Connell R, et al. 2023.. Accelerating transmission expansion by using advanced conductors in existing right-of-way. Work. Pap. 343 , Energy Inst. Haas, Univ. Calif., Berkeley:
    [Google Scholar]
  90. 90.
    Shen Z, Chen C, Zhou H, Fefferman N, Shrestha S. 2023.. Community vulnerability is the key determinant of diverse energy burdens in the United States. . Energy Res. Soc. Sci. 97::102949
    [Crossref] [Google Scholar]
  91. 91.
    Brown MA, Soni A, Lapsa MV, Southworth K, Cox M. 2020.. High energy burden and low-income energy affordability: conclusions from a literature review. . Prog. Energy 2::042003
    [Crossref] [Google Scholar]
  92. 92.
    Carley S, Evans TP, Konisky DM. 2018.. Adaptation, culture, and the energy transition in American coal country. . Energy Res. Soc. Sci. 37::13339
    [Crossref] [Google Scholar]
  93. 93.
    Roemer KF, Haggerty JH. 2021.. Coal communities and the U.S. energy transition: a policy corridors assessment. . Energy Policy 151::112112
    [Crossref] [Google Scholar]
  94. 94.
    Vanatta M, Craig MT, Rathod B, Florez J, Bromley-Dulfano I, Smith D. 2022.. The costs of replacing coal plant jobs with local instead of distant wind and solar jobs across the United States. . iScience 25:(8):104817
    [Crossref] [Google Scholar]
  95. 95.
    Young T, Baka J, He Z, Bhattacharyya S, Lei Z. 2023.. Mining, loss, and despair: exploring energy transitions and opioid use in an Appalachian coal community. . Energy Res. Soc. Sci. 99::103046
    [Crossref] [Google Scholar]
  96. 96.
    Cha JM, Pastor M, Moreno C, Phillips M. 2021.. Just transition/transition to justice: power, policy and possibilities. Rep. , Equity Res. Inst., Univ. South. Calif., Los Angeles:
    [Google Scholar]
  97. 97.
    Newell P, Mulvaney D. 2013.. The political economy of the ‘just transition.’. Geogr. J. 179:(2):13240
    [Crossref] [Google Scholar]
  98. 98.
    Caldecott B, Sartor O, Spencer T. 2017.. Lessons from previous ‘coal transitions’ high-level summary for decision-makers. Rep. , Inst. Sustain. Dev. Int. Relat., Paris:
    [Google Scholar]
  99. 99.
    Sheldon P, Junankar R, Pontello de Rosa A. 2018.. The Ruhr or Appalachia? Deciding the future of Australia's coal power workers and communities. Rep. , Ind. Relat. Res. Cent., Univ. N. S. W. Bus. Sch., Sydney:
    [Google Scholar]
  100. 100.
    Strambo C, Burton J, Atteridge A. 2019.. The end of coal? Planning a “just transition” in South Africa. Rep. , Stockholm Environ. Inst., Stockholm:
    [Google Scholar]
  101. 101.
    Hirsch T, Matthess M, Füngfgelt F, eds. 2017.. Guiding principles & lessons learnt for a just energy transition in the Global South. Study, Friedrich Ebert Found., Bonn, Ger.:
    [Google Scholar]
  102. 102.
    Bullard RD. 2000.. Dumping in Dixie: Race, Class, and Environmental Quality. London:: Routledge
    [Google Scholar]
  103. 103.
    Faber DR, McCarthy D. 2012.. Neo-liberalism, globalization and the struggle for ecological democracy: linking sustainability and environmental justice. . In Just Sustainabilities, ed. RD Bullard, J Agyeman, B Evans , pp. 3853. London:: Routledge
    [Google Scholar]
  104. 104.
    Goforth T, Nock D. 2022.. Air pollution disparities and equality assessments of US national decarbonization strategies. . Nat. Commun. 13::7488
    [Crossref] [Google Scholar]
  105. 105.
    Pan S, Roy A, Choi Y, Sun S, Gao HO. 2019.. The air quality and health impacts of projected long-haul truck and rail freight transportation in the United States in 2050. . Environ. Int. 130::104922
    [Crossref] [Google Scholar]
  106. 106.
    Boehmer TK, Foster SL, Henry JR, Woghiren-Akinnifesi EL, Yip FY, 2013.. Residential proximity to major highways—United States. , 2010.. Morb. Mortal. Wkly. Rep. Suppl. 62:(3):4650
    [Google Scholar]
  107. 107.
    Rogge KS, Reichardt K. 2016.. Policy mixes for sustainability transitions: an extended concept and framework for analysis. . Res. Policy 45:(8):162035
    [Crossref] [Google Scholar]
  108. 108.
    Meckling J. 2021.. Making industrial policy work for decarbonization. . Glob. Environ. Politics 21:(4):13447
    [Crossref] [Google Scholar]
  109. 109.
    Hockett RC, Gunn-Wright R. 2019.. The Green New Deal: mobilizing for a just, prosperous, and sustainable economy. Res. Pap. 19-09 , Cornell Leg. Stud., Ithaca, NY:
    [Google Scholar]
  110. 110.
    Krogstrup S, Oman W. 2019.. Macroeconomic and financial policies for climate change mitigation. Work. Pap. 19-185 , Int. Monet. Fund, Washington, DC:
    [Google Scholar]
  111. 111.
    Goulder LH, Schein AR. 2013.. Carbon taxes versus cap and trade: a critical review. . Clim. Change Econ. 4:(3):1350010
    [Crossref] [Google Scholar]
  112. 112.
    Stavins RN. 2008.. Addressing climate change with a comprehensive US cap-and-trade system on JSTOR. . Oxford Rev. Econ. Policy 24:(2):298321
    [Crossref] [Google Scholar]
  113. 113.
    He Y, Wang L, Wang J. 2012.. Cap-and-trade versus carbon taxes: a quantitative comparison from a generation expansion planning perspective. . Comput. Ind. Eng. 63:(3):70816
    [Crossref] [Google Scholar]
  114. 114.
    Biber E, Kelsey N, Meckling J. 2016.. The political economy of decarbonization: a research agenda. . Brooklyn Law Rev. 82:(2):8
    [Google Scholar]
  115. 115.
    Bossie A, Mason JW. 2020.. The public role in economic transformation: lessons from World War II. Work. Pap. , Roosevelt Inst., New York:
    [Google Scholar]
  116. 116.
    Foord D. 2020.. Mobilization models for electric power grid decarbonization. . Acad. Manag. Annu. Meet. Proc. 2020:(1):21034
    [Google Scholar]
  117. 117.
    Chomsky N, Pollin R. 2020.. Climate Crisis and the Global Green New Deal: The Political Economy of Saving the Planet. London:: Verso
    [Google Scholar]
  118. 118.
    Victor PA. 2012.. Growth, degrowth and climate change: a scenario analysis. . Ecol. Econ. 84::20612
    [Crossref] [Google Scholar]
  119. 119.
    Alier JM. 2009.. Socially sustainable economic de-growth. . Dev. Change 40:(6):1099119
    [Crossref] [Google Scholar]
  120. 120.
    Kallis G. 2011.. In defence of degrowth. . Ecol. Econ. 70:(5):87380
    [Crossref] [Google Scholar]
  121. 121.
    Kallis G, Kerschner C, Martinez-Alier J. 2012.. The economics of degrowth. . Ecol. Econ. 84::17280
    [Crossref] [Google Scholar]
  122. 122.
    Hickel J. 2020.. Less Is More: How Degrowth Will Save the World. New York:: Random House
    [Google Scholar]
  123. 123.
    Roy J, Tschakert P, Waisman H. 2018.. Sustainable development, poverty eradication and reducing inequalities. . See Ref. 16 , pp. 445538
  124. 124.
    Popovich N, Plumer B. 2021.. Who has the most historical responsibility for climate change?. New York Times, Novemb. 12
    [Google Scholar]
  125. 125.
    Reed B. 2023.. $700M pledged to loss and damage fund at COP28 covers less than 0.2% needed. . The Guardian, Dec. 6
    [Google Scholar]
  126. 126.
    Lin J, Abhyankar N, He G, Liu X, Yin S. 2022.. Large balancing areas and dispersed renewable investment enhance grid flexibility in a renewable-dominant power system in China. . iScience 25:(2):103749
    [Crossref] [Google Scholar]
  127. 127.
    Liu Z, Deng Z, He G, Wang H, Zhang X, et al. 2021.. Challenges and opportunities for carbon neutrality in China. . Nat. Rev. Earth Environ. 3:(2):14155
    [Crossref] [Google Scholar]
  128. 128.
    EEA (Eur. Environ. Agency). 2023.. EEA greenhouse gasesdata viewer. Data Vis., EEA, Copenhagen:. https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
    [Google Scholar]
  129. 129.
    IEA (Int. Energy Agency). 2020.. Europe. . International Energy Agency. https://www.iea.org/regions/europe
    [Google Scholar]
  130. 130.
    Abhyankar N, Mohanty P, Deorah S, Karali N, Paliwal U, et al. 2023.. India's path towards energy independence and a clean future: harnessing India's renewable edge for cost-effective energy independence by 2047. . Electr. J. 36:(5):107273
    [Crossref] [Google Scholar]
  131. 131.
    IEA (Int. Energy Agency). 2022.. Russia. . International Energy Agency. https://www.iea.org/countries/russia
    [Google Scholar]
  132. 132.
    IEA (Int. Energy Agency). 2022.. Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021. Rep. , IEA, Paris:. https://iea.blob.core.windows.net/assets/d0031107-401d-4a2f-a48b-9eed19457335/GlobalEnergyReview2021.pdf
    [Google Scholar]
  133. 133.
    Shiraishi K, Park WY, Abhyankar N, Paliwal U, Khanna N, et al. 2023.. The 2035 Japan report: Plummeting costs of solar, wind, and batteries can accelerate Japan's clean and independent electricity future. Rep. , Lawrence Berkeley Natl. Lab., Berkeley, CA:
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112321-091927
Loading
/content/journals/10.1146/annurev-environ-112321-091927
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error