1932

Abstract

It has been argued that we have now entered the Anthropocene, a proposed epoch in which humans are having a dominant impact on the Earth system. While some geologists have sought to formalize the Anthropocene as beginning in the mid-twentieth century, its social, geophysical, and environmental roots undoubtedly lie deeper in the past. In this review, we highlight the ways in which human activities across the major biomes of our planet significantly altered parts of the Earth system prior to the Industrial Age. We demonstrate ways in which novel, multidisciplinary approaches can provide detailed insights into long-term human–environment–Earth system interactions. We argue that there is clear evidence for lasting Earth system legacies of pre-Industrial human societies and that archaeology, paleoecology, and historical ecology can provide important, practical insights to help navigate current and future relationships with the planet in more equitable and sustainable ways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112321-101257
2024-10-18
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-112321-101257.html?itemId=/content/journals/10.1146/annurev-environ-112321-101257&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    McNeill JR, Engelke P. 2016.. The Great Acceleration: An Environmental History of the Anthropocene Since 1945. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  2. 2.
    Zalasiewicz J, Waters CN, Williams M, Barnosky AD, Cearreta A, et al. 2015.. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. . Quat. Int. 383::196203
    [Crossref] [Google Scholar]
  3. 3.
    Head MJ, Zalasiewicz JA, Waters CN, Turner SD, Williams M, et al. 2022.. The proposed Anthropocene Epoch/Series is underpinned by an extensive array of mid-20th century stratigraphic event signals. . J. Quat. Sci. 37:(7):118187
    [Crossref] [Google Scholar]
  4. 4.
    Witze A. 2024.. It's final: The Anthropocene is not an epoch, despite protest over vote. . Nature News, March 20
    [Google Scholar]
  5. 5.
    Malhi Y. 2017.. The concept of the Anthropocene. . Annu. Rev. Environ. Resour. 42::77104
    [Crossref] [Google Scholar]
  6. 6.
    Watson JEM, Evans T, Venter O, Williams B, Tulloch A, et al. 2018.. The exceptional value of intact forest ecosystems. . Nat. Ecol. Evol. 2:(4):599610
    [Crossref] [Google Scholar]
  7. 7.
    Renn J. 2020.. The Evolution of Knowledge: Rethinking Science for the Anthropocene. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  8. 8.
    Ellis EC, Gauthier N, Klein Goldewijk K, Bliege Bird R, Boivin N, et al. 2021.. People have shaped most of terrestrial nature for at least 12,000 years. . PNAS 118:(17):e2023483118
    [Crossref] [Google Scholar]
  9. 9.
    Balée W. 2013.. Cultural Forests of the Amazon: A Historical Ecology of People and Their Landscapes. Tuscaloosa:: Univ. Ala. Press
    [Google Scholar]
  10. 10.
    Isendahl C, Stump D, eds. 2019.. The Oxford Handbook of Historical Ecology and Applied Archaeology. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  11. 11.
    Fletcher M-S, Hamilton R, Dressler W, Palmer L. 2021.. Indigenous knowledge and the shackles of wilderness. . PNAS 118:(40):e2022218118
    [Crossref] [Google Scholar]
  12. 12.
    Green AS, Wilkinson D, Wilkinson TC, Highcock N, Leppard T. 2024.. Cities and Citadels: An Archaeology of Inequality and Economic Growth. London:: Routledge
    [Google Scholar]
  13. 13.
    Bevan A, Colledge S, Fuller D, Fyfe R, Shennan S, Stevens C. 2018.. Holocene fluctuations in human population demonstrate repeated links to food production and climate. . PNAS 114:(49):E1052431
    [Google Scholar]
  14. 14.
    Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, et al. 2016.. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. . PNAS 113:(23):638896
    [Crossref] [Google Scholar]
  15. 15.
    Degroot D, Anchukaitis KJ, Tierney JE, Riede F, Manica A, et al. 2022.. The history of climate and society: a review of the influence of climate change on the human past. . Environ. Res. Lett. 17::103001
    [Crossref] [Google Scholar]
  16. 16.
    Allen RC. 1992.. Enclosure and the Yeoman: The Agricultural Development of the South Midlands, 14501850. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  17. 17.
    Meggers BJ. 1979.. Climatic oscillation as a factor in the prehistory of Amazonia. . Am. Antiq. 44:(2):24456
    [Crossref] [Google Scholar]
  18. 18.
    Scarborough VL, Isendahl C. 2020.. Distributed urban network systems in the tropical archaeological record: toward a model for urban sustainability in the era of climate change. . Anthr. Rev. 7:(3):20830
    [Google Scholar]
  19. 19.
    Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, et al. 2001.. Terrestrial ecoregions of the world: a new map of life on Earth. . Bioscience 51:(11):93338
    [Crossref] [Google Scholar]
  20. 20.
    Morrison KD, Hammer E, Boles O, Madella M, Whitehouse N, et al. 2021.. Mapping past human land use using archaeological data: a new classification for global land use synthesis and data harmonization. . PLOS ONE 16:(4):e0246662
    [Crossref] [Google Scholar]
  21. 21.
    Roos CI, Zedeño MN, Hollenback KL, Erlick MMH. 2018.. Indigenous impacts on North American Great Plains fire regimes of the past millennium. . PNAS 115:(32):814348
    [Crossref] [Google Scholar]
  22. 22.
    Romano A, Fletcher M-S. 2018.. Evidence for reduced environmental variability in response to increasing human population growth during the Late Holocene in northwest Tasmania, Australia. . Quat. Sci. Rev. 197::193208
    [Crossref] [Google Scholar]
  23. 23.
    Amano N, Bankoff G, Findley DM. 2021.. Archaeological and historical insights into the ecological impacts of pre-colonial and colonial introductions into the Philippine Archipelago. . Holocene 31:(2):31330
    [Crossref] [Google Scholar]
  24. 24.
    Swift JA, Roberts P, Boivin N, Kirch PV. 2018.. Restructuring of nutrient flows in island ecosystems following human colonization evidenced by isotopic analysis of commensal rats. . PNAS 115:(25):639297
    [Crossref] [Google Scholar]
  25. 25.
    Janzen A, Balasse M, Ambrose SH. 2020.. Early pastoral mobility and seasonality in Kenya assessed through stable isotope analysis. . J. Archaeol. Sci. 117::105099
    [Crossref] [Google Scholar]
  26. 26.
    Garcin Y, Schildgen TF, Torres Acosta V, Melnick D, Guillemoteau J, et al. 2017.. Short-lived increase in erosion during the African Humid Period: evidence from the northern Kenya Rift. . Earth Planet. Sci. Lett. 459::5869
    [Crossref] [Google Scholar]
  27. 27.
    Streeter R, Dugmore A. 2014.. Late-Holocene land surface change in a coupled social-ecological system, southern Iceland: a cross-scale tephrochronology approach. . Quat. Sci. Rev. 86::99114
    [Crossref] [Google Scholar]
  28. 28.
    Kiage LM, Liu K-B. 2006.. Late Quaternary paleoenvironmental changes in East Africa: a review of multiproxy evidence from palynology, lake sediments, and associated records. . Prog. Phys. Geogr. Earth Environ. 30:(5):63358
    [Crossref] [Google Scholar]
  29. 29.
    Junqueira AB, Shepard GH, Clement CR. 2010.. Secondary forests on anthropogenic soils in Brazilian Amazonia conserve agrobiodiversity. . Biodivers. Conserv. 19::193361
    [Crossref] [Google Scholar]
  30. 30.
    Maezumi SY, Gosling WD, Kirschner J, Chevalier M, Cornelissen HL, et al. 2021.. A modern analogue matching approach to characterize fire temperatures and plant species from charcoal. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 578::110580
    [Crossref] [Google Scholar]
  31. 31.
    Sippel S, Reichstein M, Ma X, Mahecha MD, Lange H, et al. 2018.. Drought, heat, and the carbon cycle: a review. . Curr. Clim. Change Rep. 4:(3):26686
    [Crossref] [Google Scholar]
  32. 32.
    Fletcher M-S, Hall T, Alexandra AN. 2021.. The loss of an indigenous constructed landscape following British invasion of Australia: an insight into the deep human imprint on the Australian landscape. . Ambio 50:(1):13849
    [Crossref] [Google Scholar]
  33. 33.
    Maezumi SY, Alves D, Robinson M, de Souza JG, Levis C, et al. 2018.. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. . Nat. Plants 4::54047
    [Crossref] [Google Scholar]
  34. 34.
    Roberts P, Buhrich A, Caetano-Andrade V, Cosgrove R, Fairbairn A, et al. 2021.. Reimagining the relationship between Gondwanan forests and Aboriginal land management in Australia's “Wet Tropics. .” iScience 24:(3):102190
    [Crossref] [Google Scholar]
  35. 35.
    Cook B, Zeng N, Yoon J-H. 2012.. Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections. . Earth Interact. 16:(3):127
    [Crossref] [Google Scholar]
  36. 36.
    Ruddiman WF. 2003.. The Anthropogenic Era began thousands of years ago. . Clim. Change 61::26193
    [Crossref] [Google Scholar]
  37. 37.
    Koch A, Brierley C, Maslin MM, Lewis SL. 2019.. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. . Quat. Sci. Rev. 207::1336
    [Crossref] [Google Scholar]
  38. 38.
    Richards JF. 2003.. The Unending Frontier: An Environmental History of the Early Modern World. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  39. 39.
    White S. 2011.. The Climate of Rebellion in the Early Modern Ottoman Empire. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  40. 40.
    Cronon W. 1996.. The trouble with wilderness: or, getting back to the wrong nature. . Environ. Hist. 1:(1):728
    [Crossref] [Google Scholar]
  41. 41.
    Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P. 2014.. Tropical forests in the Anthropocene. . Annu. Rev. Environ. Resour. 39::12559
    [Crossref] [Google Scholar]
  42. 42.
    Bush MB, Rozas-Davila A, Raczka M, Nascimento M, Valencia B, et al. 2022.. A palaeoecological perspective on the transformation of the tropical Andes by early human activity. . Philos. Trans. R. Soc. B 377:(1849):20200497
    [Crossref] [Google Scholar]
  43. 43.
    Doughty CE, Wolf A, Morueta-Holme N, Jørgensen PM, Sandel B, et al. 2016.. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. . Ecography 39:(2):194203
    [Crossref] [Google Scholar]
  44. 44.
    Nunn N, Qian N. 2010.. The Columbian Exchange: a history of disease, food, and ideas. . J. Econ. Perspect. 24:(2):16388
    [Crossref] [Google Scholar]
  45. 45.
    Godfrey LR, Scroxton N, Crowley BE, Burns SJ, Sutherland MR, et al. 2019.. A new interpretation of Madagascar's megafaunal decline: the “Subsistence Shift Hypothesis. .” J. Hum. Evol. 130::12640
    [Crossref] [Google Scholar]
  46. 46.
    Little PD. 1996.. Pastoralism, biodiversity, and the shaping of savanna landscapes in East Africa. . Africa 66:(1):3751
    [Crossref] [Google Scholar]
  47. 47.
    Fedick SL, ed. 1996.. The Managed Mosaic: Ancient Maya Agriculture and Resource Use. Salt Lake City:: Univ. Utah Press
    [Google Scholar]
  48. 48.
    Sugiyama N, Martínez-Polanco MF, France CAM, Cooke RG. 2020.. Domesticated landscapes of the neotropics: isotope signatures of human-animal relationships in pre-Columbian Panama. . J. Anthropol. Archaeol. 59::101195
    [Crossref] [Google Scholar]
  49. 49.
    Crosby AW. 1972.. The Columbian Exchange. Westport, CO:: Greenwood
    [Google Scholar]
  50. 50.
    Dean W. 1997.. With Broadax and Firebrand: The Destruction of the Brazilian Atlantic Forest. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  51. 51.
    Clement CR. 1999.. 1492 and the loss of Amazonian crop genetic resources. II. Crop biogeography at contact. . Econ. Bot. 53:(2):20316
    [Crossref] [Google Scholar]
  52. 52.
    Liu D, Semenchuk P, Essl F, Lenzner B, Moser D, et al. 2023.. The impact of land use on non-native species incidence and number in local assemblages worldwide. . Nat. Commun. 14::2090
    [Crossref] [Google Scholar]
  53. 53.
    Arroyo-Kalin M. 2014.. Amazonian dark earths: geoarchaeology. . In Encyclopedia of Global Archaeology, ed. C Smith , pp. 16878. New York:: Springer
    [Google Scholar]
  54. 54.
    Schmidt MJ, Goldberg SL, Heckenberger M, Fausto C, Franchetto B, et al. 2023.. Intentional creation of carbon-rich dark earth soils in the Amazon. . Sci Adv. 9:(38):eadh8499
    [Crossref] [Google Scholar]
  55. 55.
    Marshall F, Reid REB, Goldstein S, Storozum M, Wreschnig A, et al. 2018.. Ancient herders enriched and restructured African grasslands. . Nature 561:(7723):38790
    [Crossref] [Google Scholar]
  56. 56.
    Heckmann M, Muiruri V, Boom A, Marchant R. 2014.. Human-environment interactions in an agricultural landscape: a 1400-yr sediment and pollen record from North Pare, NE Tanzania. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 406::4961
    [Crossref] [Google Scholar]
  57. 57.
    Bayon G, Dennielou B, Etoubleau J, Ponzevera E, Toucanne S, Bermell S. 2012.. Intensifying weathering and land use in Iron Age Central Africa. . Science 335:(6073):121922
    [Crossref] [Google Scholar]
  58. 58.
    Moore JW. 2010.. Madeira, sugar, and the conquest of nature in the “first” sixteenth century. Part II: From regional crisis to commodity frontier, 1506–1530. . Rev. Fernand Braudel Cent. 33:(1):124
    [Google Scholar]
  59. 59.
    Boles OJC, Shoemaker A, Courtney Mustaphi CJ, Petek N, Ekblom A, Lane PJ. 2019.. Historical ecologies of pastoralist overgrazing in Kenya: long-term perspectives on cause and effect. . Hum. Ecol. 47:(3):41934
    [Crossref] [Google Scholar]
  60. 60.
    Golson J, Denham T, Hughes P, Swadling P, Muke J. 2017.. Ten Thousand Years of Cultivation at Kuk Swamp in the Highlands of Papua New Guinea. Canberra:: Aust. Natl. Univ. Press
    [Google Scholar]
  61. 61.
    Armillas P. 1971.. Gardens on swamps. . Science 174:(4010):65361
    [Crossref] [Google Scholar]
  62. 62.
    Lucero LJ. 2023.. Ancient Maya reservoirs, constructed wetlands, and future water needs. . PNAS 120:(42):e2306870120
    [Crossref] [Google Scholar]
  63. 63.
    Evans D, Pottier C, Fletcher R, Hensley S, Tapley I, et al. 2007.. A comprehensive archaeological map of the world's largest preindustrial settlement complex at Angkor, Cambodia. . PNAS 104:(36):1427782
    [Crossref] [Google Scholar]
  64. 64.
    Bebermeier W, Abeywardana N, Susarina M, Schütt B. 2023.. Domestication of water: management of water resources in the dry zone of Sri Lanka as living cultural heritage. . Wiley Interdiscip. Rev. Water 10:(4):e1642
    [Crossref] [Google Scholar]
  65. 65.
    Cook BI, Anchukaitis KJ, Kaplan JO, Puma MJ, Kelley M, Gueyffier D. 2012.. Pre-Columbian deforestation as an amplifier of drought in Mesoamerica. . Geophys. Res. Lett. 39::L16706
    [Crossref] [Google Scholar]
  66. 66.
    Wunderling N, Donges JF, Kurths J, Winkelmann R. 2021.. Interacting tipping elements increase risk of climate domino effects under global warming. . Earth Syst. Dyn. 12:(2):60119
    [Crossref] [Google Scholar]
  67. 67.
    Barker G, Gilbertson D, eds. 2003.. The Archaeology of Drylands: Living at the Margin. London:: Routledge
    [Google Scholar]
  68. 68.
    Roberts P, Delson E, Miracle P, Ditchfield P, Roberts RG, et al. 2014.. Continuity of mammalian fauna over the last 200,000 y in the Indian subcontinent. . PNAS 111:(16):584853
    [Crossref] [Google Scholar]
  69. 69.
    Louys J, Braje TJ, Chang C-H, Cosgrove R, Fitzpatrick SM, et al. 2021.. No evidence for widespread island extinctions after Pleistocene hominin arrival. . PNAS 118:(20):e2023005118
    [Crossref] [Google Scholar]
  70. 70.
    Zeder MA. 2011.. The origins of agriculture in the Near East. . Curr. Anthropol. 52:(Suppl. 4):S22135
    [Crossref] [Google Scholar]
  71. 71.
    Hritz C, Pournelle JR. 2016.. Feeding history: deltaic resilience, inherited practice, and millennial-scale sustainability in an urbanized landscape. . In Viewing the Future in the Past: Historical Ecology Applications to Environmental Issues, ed. HT Foster, LM Paciulli, DJ Goldstein , pp. 5985. Columbia:: Univ. S. C. Press
    [Google Scholar]
  72. 72.
    Arranz-Otaegui A, López-Sáez JA, Araus JL, Portillo M, Balbo A, et al. 2017.. Landscape transformations at the dawn of agriculture in southern Syria (10.7–9.9 ka cal. BP): plant-specific responses to the impact of human activities and climate change. . Quat. Sci. Rev. 158::14563
    [Crossref] [Google Scholar]
  73. 73.
    Langgut D, Cheddadi R, Carrión JS, Cavanagh M, Colombaroli D, et al. 2019.. The origin and spread of olive cultivation in the Mediterranean Basin: the fossil pollen evidence. . Holocene 29:(5):90222
    [Crossref] [Google Scholar]
  74. 74.
    Weissbrod L, Malkinson D, Cucchi T, Gadot Y, Finkelstein I, Bar-Oz G. 2014.. Ancient urban ecology reconstructed from archaeozoological remains of small mammals in the Near East. . PLOS ONE 9:(3):e91795
    [Crossref] [Google Scholar]
  75. 75.
    Pournelle JR. 2003.. Marshland of cities: deltaic landscapes and the evolution of early Mesopotamian civilization. PhD Thesis , Univ. S. C., Columbia:
    [Google Scholar]
  76. 76.
    Connor SE, Schneider L, Trezise J, Rule S, Barrett RL, et al. 2018.. Forgotten impacts of European land-use on riparian and savanna vegetation in northwest Australia. . J. Veg. Sci. 29:(3):42737
    [Crossref] [Google Scholar]
  77. 77.
    Kar A, Moharana PC, Raina P, Kumar M, Soni ML, et al. 2009.. Desertification and its control measures. . In Trends in Arid Zone Research in India, ed. A Kar, BK Garg, MP Singh, S Kathju , pp. 147. Jodhpur, India:: Cent. Arid Zone Res. Inst.
    [Google Scholar]
  78. 78.
    Yasuda Y, Kitagawa H, Nakagawa T. 2000.. The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study. . Quat. Int. 73/74::12736
    [Crossref] [Google Scholar]
  79. 79.
    Wertime TA. 1983.. The furnace versus the goat: the pyrotechnologic industries and Mediterranean deforestation in antiquity. . J. Field Archaeol. 10:(4):44552
    [Crossref] [Google Scholar]
  80. 80.
    Proctor L, Smith A, Stein GJ. 2022.. Archaeobotanical and dung spherulite evidence for Ubaid and Late Chalcolithic fuel, farming, and feasting at Surezha, Iraqi Kurdistan. . J. Archaeol. Sci. Rep. 43::103449
    [Google Scholar]
  81. 81.
    van Andel TH, Zangger E, Demitrack A. 1990.. Land use and soil erosion in prehistoric and historical Greece. . J. Field Archaeol. 17:(4):37996
    [Crossref] [Google Scholar]
  82. 82.
    McAuliffe JR, Sundt PC, Valiente-Banuet A, Casas A, Luis Viveros J. 2001.. Pre-columbian soil erosion, persistent ecological changes, and collapse of a subsistence agricultural economy in the semi-arid Tehuacán Valley, Mexico's “Cradle of Maize. .” J. Arid Environ. 47:(1):4775
    [Crossref] [Google Scholar]
  83. 83.
    Fan L, Liang Y, Li X, Mao J, Wang G, et al. 2023.. Grazing decreases soil aggregation and has different effects on soil organic carbon storage across different grassland types in northern Xinjiang, China. . Land 12:(8):1575
    [Crossref] [Google Scholar]
  84. 84.
    Lentz DL, Slotten V, Dunning NP, Jones JG, Scarborough VL, et al. 2021.. Ecosystem impacts by the Ancestral Puebloans of Chaco Canyon, New Mexico, USA. . PLOS ONE 16:(10):e0258369
    [Crossref] [Google Scholar]
  85. 85.
    Barker G. 2002.. A tale of two deserts: contrasting desertification histories on Rome's desert frontiers. . World Archaeol. 33:(3):488507
    [Crossref] [Google Scholar]
  86. 86.
    Wright DK. 2017.. Humans as agents in the termination of the African Humid Period. . Front. Earth Sci. 5::4
    [Crossref] [Google Scholar]
  87. 87.
    Brierley C, Manning K, Maslin M. 2018.. Pastoralism may have delayed the end of the green Sahara. . Nat. Commun. 9::4018
    [Crossref] [Google Scholar]
  88. 88.
    Henry DO, Cordova CE, Portillo M, Albert R-M, DeWitt R, Emery-Barbier A. 2017.. Blame it on the goats? Desertification in the Near East during the Holocene. . Holocene 27:(5):62537
    [Crossref] [Google Scholar]
  89. 89.
    Viollet P-L. 2017.. Water Engineering in Ancient Civilizations: 5,000 Years of History. Boca Raton, FL:: CRC
    [Google Scholar]
  90. 90.
    Wright RP, Garrett Z. 2018.. Engineering feats and consequences: workers in the night and the Indus civilization. . In Archaeology of the Night: Life After Dark in the Ancient World, ed. N Gonlin , pp. 287306. Boulder:: Univ. Press Colo.
    [Google Scholar]
  91. 91.
    Petrie CA, Singh RN, Bates J, Dixit Y, French CAI, et al. 2017.. Adaptation to variable environments, resilience to climate change: investigating land, water and settlement in Indus Northwest India. . Curr. Anthropol. 58:(1):130
    [Crossref] [Google Scholar]
  92. 92.
    Bhattacharya N. 2019.. The Great Agrarian Conquest: The Colonial Reshaping of a Rural World. Albany:: SUNY Press
    [Google Scholar]
  93. 93.
    O'Keefe FR, Dunn RE, Weitzel EM, Waters MR, Martinez LN, et al. 2023.. Pre–Younger Dryas megafaunal extirpation at Rancho La Brea linked to fire-driven state shift. . Science 381:(6659):eabo3594
    [Crossref] [Google Scholar]
  94. 94.
    Sherratt AG. 1986.. Two new finds of wooden wheels from later Neolithic and early Bronze Age Europe. . Oxf. J. Archaeol. 5:(2):24348
    [Crossref] [Google Scholar]
  95. 95.
    Jones M, Hunt H, Lightfoot E, Lister D, Liu X, Motuzaite-Matuzeviciute G. 2011.. Food globalization in prehistory. . World Archaeol. 43:(4):66575
    [Crossref] [Google Scholar]
  96. 96.
    Habicht ME, Pate FD, Varotto E, Galassi FM. 2020.. Epidemics and pandemics in the history of humankind and how governments dealt with them: a review from the Bronze Age to the Early Modern Age. . Riv. Trimest. Sci. Ammin. Studi Teor. Ric. Soc. 2020:(2). https://doi.org/10.32049/RTSA.2020.2.03
    [Google Scholar]
  97. 97.
    Roberts N, Fyfe RM, Woodbridge J, Gaillard MJ, Davis BAS, et al. 2018.. Europe's lost forests: a pollen-based synthesis for the last 11,000 years. . Sci. Rep. 8::716
    [Crossref] [Google Scholar]
  98. 98.
    Armstrong CG, Miller JED, McAlvay AC, Ritchie PM, Lepofsky D. 2021.. Historical Indigenous land-use explains plant functional trait diversity. . Ecol. Soc. 26:(2):6
    [Crossref] [Google Scholar]
  99. 99.
    Elvin M. 2004.. The Retreat of the Elephants: An Environmental History of China. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  100. 100.
    Holdaway RN, Allentoft ME, Jacomb C, Oskam CL, Beavan NR, Bunce M. 2014.. An extremely low-density human population exterminated New Zealand moa. . Nat. Commun. 5::5436
    [Crossref] [Google Scholar]
  101. 101.
    Ficek RE. 2019.. Cattle, capital, colonization: tracking creatures of the Anthropocene in and out of human projects. . Curr. Anthropol. 60:(Suppl. 20):S26071
    [Crossref] [Google Scholar]
  102. 102.
    Hamilton R, Gillespie J, Penny D, Ingrey S, Mooney S. 2023.. Re-imagining Sydney's freshwater wetlands through historical ecology. . Landsc. Res. 49:(2):26886
    [Crossref] [Google Scholar]
  103. 103.
    Fletcher M-S, Romano A, Connor S, Mariani M, Maezumi SY. 2021.. Catastrophic bushfires, Indigenous fire knowledge and reframing science in southeast Australia. . Fire 4:(3):61
    [Crossref] [Google Scholar]
  104. 104.
    Ballasus H, Schneider B, von Suchodoletz H, Miera J, Werban U, et al. 2022.. Overbank silt-clay deposition and intensive Neolithic land use in a Central European catchment—coupled or decoupled?. Sci. Total Environ. 806:(4):150858
    [Crossref] [Google Scholar]
  105. 105.
    Ventresca Miller AR, Wilkin S, Hendy J, Turbat T, Batsukh D, et al. 2022.. The spread of herds and horses into the Altai: how livestock and dairying drove social complexity in Mongolia. . PLOS ONE 17:(5):e0265775
    [Crossref] [Google Scholar]
  106. 106.
    Holst MK, Rasmussen M, Kristiansen K, Bech J-H. 2013.. Bronze Age “herostrats”: ritual, political, and domestic economies in Early Bronze Age Denmark. . Proc. Prehist. Soc. 79::26596
    [Crossref] [Google Scholar]
  107. 107.
    Dotterweich M. 2008.. The history of soil erosion and fluvial deposits in small catchments of central Europe: deciphering the long-term interaction between humans and the environment—a review. . Geomorphology 101:(1/2):192208
    [Crossref] [Google Scholar]
  108. 108.
    Kaiser K, Tolksdorf JF, de Boer AM, Herbig C, Hieke F, et al. 2021.. Colluvial sediments originating from past land-use activities in the Erzgebirge Mountains, Central Europe: occurrence, properties, and historic environmental implications. . Archaeol. Anthropol. Sci. 13:(12):220
    [Crossref] [Google Scholar]
  109. 109.
    Ye Y, Fang X, Ren Y, Zhang X, Chen L. 2009.. Cropland cover change in Northeast China during the past 300 years. . Sci. China D 52:(8):117282
    [Crossref] [Google Scholar]
  110. 110.
    TeBrake WH. 2002.. Taming the waterwolf: hydraulic engineering and water management in the Netherlands during the Middle Ages. . Technol. Cult. 43:(3):47599
    [Crossref] [Google Scholar]
  111. 111.
    Simeoni U, Corbau C. 2009.. A review of the Delta Po evolution (Italy) related to climatic changes and human impacts. . Geomorphology 107:(1):6471
    [Crossref] [Google Scholar]
  112. 112.
    Lander B. 2022.. Small scale water control works in Early Imperial China. . Water Hist. 14:(2):23346
    [Crossref] [Google Scholar]
  113. 113.
    Cooley HS, Riley WJ, Torn MS, He Y. 2005.. Impact of agricultural practice on regional climate in a coupled land surface mesoscale model. . J. Geophys. Res. 110::D03113
    [Crossref] [Google Scholar]
  114. 114.
    Fu C. 2003.. Potential impacts of human-induced land cover change on East Asia monsoon. . Glob. Planet. Change 37:(3):21929
    [Google Scholar]
  115. 115.
    Meier R, Schwaab J, Seneviratne SI, Sprenger M, Lewis E, Davin EL. 2021.. Empirical estimate of forestation-induced precipitation changes in Europe. . Nat. Geosci. 14:(7):47378
    [Crossref] [Google Scholar]
  116. 116.
    Olofsson J, Hulme PE, Oksanen L, Suominen O. 2004.. Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone. . Oikos 106:(2):32434
    [Crossref] [Google Scholar]
  117. 117.
    Pryor AJE, Beresford-Jones DG, Dudin AE, Ikonnikova EM, Hoffecker JF, Gamble C. 2020.. The chronology and function of a new circular mammoth-bone structure at Kostenki 11. . Antiquity 94:(374):32341
    [Crossref] [Google Scholar]
  118. 118.
    Streeter R, Dugmore AJ, Lawson IT, Erlendsson E, Edwards KJ. 2015.. The onset of the Palaeoanthropocene in Iceland: changes in complex natural systems. . Holocene 25:(10):166275
    [Crossref] [Google Scholar]
  119. 119.
    Brewington S, Hicks M, Edwald Á, Einarsson Á, Anamthawat-Jónsson K, et al. 2015.. Islands of change versus islands of disaster: managing pigs and birds in the Anthropocene of the North Atlantic. . Holocene 25:(10):167684
    [Crossref] [Google Scholar]
  120. 120.
    Avango D, Hacquebord L, Wråkberg U. 2014.. Industrial extraction of Arctic natural resources since the sixteenth century: technoscience and geo-economics in the history of northern whaling and mining. . J. Hist. Geogr. 44::1530
    [Crossref] [Google Scholar]
  121. 121.
    Degroot D. 2022.. Blood and bone, tears and oil: climate change, whaling, and conflict in the seventeenth-century Arctic. . Am. Hist. Rev. 127:(1):6299
    [Crossref] [Google Scholar]
  122. 122.
    Jackson JA, Carroll EL, Smith TD, Zerbini AN, Patenaude NJ, Baker CS. 2016.. An integrated approach to historical population assessment of the great whales: case of the New Zealand southern right whale. . R. Soc. Open Sci. 3:(3):150669
    [Crossref] [Google Scholar]
  123. 123.
    Huang X-Z, Liu S-S, Dong G-H, Qiang M-R, Bai Z-J, et al. 2017.. Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene. . Progr. Phys. Geogr. Earth Environ. 41:(3):286301
    [Crossref] [Google Scholar]
  124. 124.
    Branch NP, Kemp RA, Silva B, Meddens FM, Williams A, et al. 2007.. Testing the sustainability and sensitivity to climatic change of terrace agricultural systems in the Peruvian Andes: a pilot study. . J. Archaeol. Sci. 34:(1):19
    [Crossref] [Google Scholar]
  125. 125.
    Denevan WM. 2003.. The native population of Amazonia in 1492 reconsidered. . Rev. Indias 63:(227):17588
    [Google Scholar]
  126. 126.
    Yacobaccio H. 2009.. The historical relationship between people and the vicuña. . In The Vicuña: The Theory and Practice of Community Based Wildlife Management, ed. IJ Gordon , pp. 720. Boston:: Springer
    [Google Scholar]
  127. 127.
    Arnalds O. 2015.. The Soils of Iceland. Dordrecht, Neth:.: Springer
    [Google Scholar]
  128. 128.
    Arnalds O, Kimble J. 2001.. Andisols of deserts in Iceland. . Soil Sci. Soc. Am. J. 65:(6):177886
    [Crossref] [Google Scholar]
  129. 129.
    Dugmore A, Jackson R, Cooper D, Newton A, Júlísson ÁD, et al. 2020.. Going Forward by Looking Back: Archaeological Perspectives on Socio-Ecological Crisis, Response, and Collapse. Oxford, UK:: Berghahn
    [Google Scholar]
  130. 130.
    Sigurðardóttir R, Newton AJ, Hicks MT, Dugmore AJ, Hreinsson V, et al. 2019.. Trolls, water, time, and community: resource management in the Mývatn District of northeast Iceland. . In Global Perspectives on Long Term Community Resource Management, ed. LR Lozny, TH McGovern , pp. 77101. Cham, Switz:.: Springer Int.
    [Google Scholar]
  131. 131.
    Nott J. 2006.. Extreme Events: A Physical Reconstruction and Risk Assessment. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  132. 132.
    Erickson CL. 1992.. Prehistoric landscape management in the Andean highlands: raised field agriculture and its environmental impact. . Popul. Environ. 13:(4):285300
    [Crossref] [Google Scholar]
  133. 133.
    Chepstow-Lusty A, Jonsson P. 2000.. Inca agroforestry: lessons from the past. . Ambio 29:(6):32228
    [Crossref] [Google Scholar]
  134. 134.
    Harvey WJ, Nogué S, Stansell N, Adolf C, Long PR, Willis K. 2021.. A palynological perspective on the impacts of European contact: historic deforestation, ranching and agriculture surrounding the Cuchumatanes Highlands, Guatemala. . Veg. Hist. Archaeobot. 30:(3):395408
    [Crossref] [Google Scholar]
  135. 135.
    Ochoa-Tocachi BF, Bardales JD, Antiporta J. 2019.. Potential contributions of pre-Inca infiltration infrastructure to Andean water security. . Nat. Sustain. 2::58493
    [Crossref] [Google Scholar]
  136. 136.
    Wohl E. 2006.. Human impacts to mountain streams. . Geomorphology 79:(3):21748
    [Crossref] [Google Scholar]
  137. 137.
    Basistha A, Arya DS, Goel NK. 2008.. Spatial distribution of rainfall in Indian Himalayas—a case study of Uttarakhand Region. . Water Resour. Manag. 22:(10):132546
    [Crossref] [Google Scholar]
  138. 138.
    Reinhardt-Imjela C, Imjela R, Bölscher J, Schulte A. 2018.. The impact of late medieval deforestation and 20th century forest decline on extreme flood magnitudes in the Ore Mountains (southeastern Germany). . Quat. Int. 475::4253
    [Crossref] [Google Scholar]
  139. 139.
    Canadell JG., Monteiro PMS, Costa MH, Cotrim da Cunha L, Cox PM, et al. 2021.. Global carbon and other biogeochemical cycles and feedbacks. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan , et al., pp. 673816. Cambridge, UK/New York:: Cambridge Univ. Press
    [Google Scholar]
  140. 140.
    Ganopolski A, Winkelmann R, Schellnhuber HJ. 2016.. Critical insolation–CO2 relation for diagnosing past and future glacial inception. . Nature 529:(7585):2003
    [Crossref] [Google Scholar]
  141. 141.
    Roberts P, Kaplan JO, Findley DM, Hamilton R, Caetano-Andrade VL, et al. 2023.. Mapping our reliance on the tropics can reveal the roots of the Anthropocene. . Nat. Ecol. Evol. 7:(5):63236
    [Crossref] [Google Scholar]
  142. 142.
    McNeill JR, ed. 2022.. Environmental History in the Pacific World. London:: Routledge
    [Google Scholar]
  143. 143.
    Degroot D. 2018.. Climate change and society in the 15th to 18th centuries. . Wiley Interdiscip. Rev. Clim. Change 9:(3):e518
    [Crossref] [Google Scholar]
  144. 144.
    Hamilton R, Wolfhagen J, Amano N, Boivin N, Findley DM, et al. 2021.. Non-uniform tropical forest responses to the “Columbian Exchange” in the Neotropics and Asia-Pacific. . Nat. Ecol. Evol. 5:(8):117484
    [Crossref] [Google Scholar]
  145. 145.
    Bush MB, Conrad S, Restrepo A, Thompson DM, Lofverstrom M, Conroy JL. 2022.. Human-induced ecological cascades: extinction, restoration, and rewilding in the Galápagos highlands. . PNAS 119:(24):e2203752119
    [Crossref] [Google Scholar]
  146. 146.
    Thompson JC, Wright DK, Ivory SJ, Choi J-H, Nightingale S, et al. 2021.. Early human impacts and ecosystem reorganization in southern-central Africa. . Sci Adv. 7:(19):eabf9776
    [Crossref] [Google Scholar]
  147. 147.
    Long JW, Lake FK, Goode RW. 2021.. The importance of Indigenous cultural burning in forested regions of the Pacific West, USA. . For. Ecol. Manag. 500::119597
    [Crossref] [Google Scholar]
  148. 148.
    Mariani M, Connor SE, Theuerkauf M, Herbert A, Kuneš P, et al. 2022.. Disruption of cultural burning promotes shrub encroachment and unprecedented wildfires. . Front. Ecol. Environ. 20:(5):292300
    [Crossref] [Google Scholar]
  149. 149.
    Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK. 2011.. Holocene carbon emissions as a result of anthropogenic land cover change. . Holocene 21:(5):77591
    [Crossref] [Google Scholar]
  150. 150.
    Pyne SJ. 2001.. Perils of prescribed fire: a reconsideration. . Nat. Resour. J. 41:(1):18
    [Google Scholar]
  151. 151.
    McConnell JR, Wilson AI, Stohl A, Arienzo MM, Chellman NJ, et al. 2018.. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. . PNAS 115:(22):572631
    [Crossref] [Google Scholar]
  152. 152.
    Uglietti C, Gabrielli P, Cooke CA, Thompson LG. 2015.. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y. . PNAS 112:(8):234954
    [Crossref] [Google Scholar]
  153. 153.
    Lee H, Calvin K, Dasgupta D, Krinner G, Mukherji A, et al., eds. 2023.. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the 6th Assessment Report of the Intergovernmental Panel on Climate Change. New York:: Cambridge Univ. Press
    [Google Scholar]
  154. 154.
    Davis GA, Tilton JE. 2005.. The resource curse. . Nat. Resour. Forum 29:(3):23342
    [Crossref] [Google Scholar]
  155. 155.
    Lange M, Mahoney J, vom Hau M. 2006.. Colonialism and development: a comparative analysis of Spanish and British colonies. . Am. J. Sociol. 111:(5):141262
    [Crossref] [Google Scholar]
  156. 156.
    Bourgeon G, Nair KM, Ramesh BR, Seen DL. 2012.. Consequences of underestimating ancient deforestation in South India for global assessments of climatic change. . Curr. Sci. 102:(12):1699703
    [Google Scholar]
  157. 157.
    Tomich D. 2003.. The wealth of empire: Francisco Arango y Parreño, political economy, and the second slavery in Cuba. . Comp. Stud. Soc. Hist. 45:(1):428
    [Crossref] [Google Scholar]
  158. 158.
    Marquese R, Parron T, Berbel M. 2016.. Slavery and Politics: Brazil and Cuba, 17901850. Albuquerque: Univ. N. M. Press:
    [Google Scholar]
  159. 159.
    Wolfe P. 2016.. Traces of History: Elementary Structures of Race. London:: Verso
    [Google Scholar]
  160. 160.
    Laming A, Fletcher M-S, Romano A, Mullett R, Connor S, et al. 2022.. The curse of conservation: empirical evidence demonstrating that changes in land-use legislation drove catastrophic bushfires in Southeast Australia. . Fire 5:(6):175
    [Crossref] [Google Scholar]
  161. 161.
    Duffy R. 2014.. Waging a war to save biodiversity: the rise of militarized conservation. . Int. Aff. 90:(4):81934
    [Crossref] [Google Scholar]
  162. 162.
    Marques L, Marquese RB. 2020.. Ouro, café e escravos: o Brasil e “a assim chamada acumulação primitiva. .” In Os tempos plurais da escravidão no Brasil: ensaios de história e historiografia, ed. RB Marquese , pp. 10532. Santos, Braz:.: Intermeios ( in Portuguese )
    [Google Scholar]
  163. 163.
    Jones MW, Peters GP, Gasser T, Andrew RM, Schwingshackl C, et al. 2023.. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. . Sci. Data 10:(1):155
    [Crossref] [Google Scholar]
  164. 164.
    Gonzalez CG. 2023.. Racial capitalism and the ecological crises of the Anthropocene. . Perspect. Glob. Dev. Technol. 21:(5/6):32337
    [Crossref] [Google Scholar]
  165. 165.
    Arrighi G. 1994.. The Long Twentieth Century: Money, Power, and the Origins of Our Times. London:: Verso
    [Google Scholar]
  166. 166.
    Alonso-Fernández P, Regueiro-Ferreira RM. 2022.. Extractivism, ecologically unequal exchange and environmental impact in South America: a study using material flow analysis (1990–2017). . Ecol. Econ. 194::107351
    [Crossref] [Google Scholar]
  167. 167.
    Laubichler MD, Renn J. 2015.. Extended evolution: a conceptual framework for integrating regulatory networks and niche construction. . J. Exp. Zool. B 324:(7):56577
    [Crossref] [Google Scholar]
  168. 168.
    Taddei R. 2022.. Kopenawa and the environmental sciences in the Amazon. . In Philosophy on Fieldwork: Case Studies in Anthropological Analysis, ed. N Bubandt, TS Wentzer , pp. 35272. London:: Routledge
    [Google Scholar]
  169. 169.
    Roos CI, Swetnam TW, Ferguson TJ, Liebmann MJ, Loehman RA, et al. 2021.. Native American fire management at an ancient wildland–urban interface in the Southwest United States. . PNAS 118:(4):e2018733118
    [Crossref] [Google Scholar]
  170. 170.
    Bird RB, Bird DW, Codding BF, Parker CH, Jones JH. 2008.. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. . PNAS 105:(39):14796801
    [Crossref] [Google Scholar]
  171. 171.
    McCarroll J, Chambers FM, Webb JC, Thom T. 2017.. Application of palaeoecology for peatland conservation at Mossdale Moor, UK. . Quat. Int. 432::3947
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-112321-101257
Loading
/content/journals/10.1146/annurev-environ-112321-101257
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error