1932

Abstract

Globally, the production of concrete is responsible for 5% to 8% of anthropogenic CO emissions. Cement, a primary ingredient in concrete, forms a glue that holds concrete together when combined with water. Cement embodies approximately 90% of the greenhouse gas emissions associated with concrete production, and decarbonization methods focus primarily on cement production. But mitigation strategies can accrue throughout the concrete life cycle. Decarbonization strategies in cement manufacture, use, and disposal can be rapidly implemented to address the global challenge of equitably meeting societal needs and climate goals. This review describes () the development of our reliance on cement and concrete and the consequent environmental impacts, () pathways to decarbonization throughout the concrete value chain, and () alternative resources that can be leveraged to further reduce emissions while meeting global demands. We close by highlighting a research agenda to mitigate the climate damages from our continued dependence on cement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112621-070104
2024-10-18
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-112621-070104.html?itemId=/content/journals/10.1146/annurev-environ-112621-070104&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Diffenbaugh NS, Barnes EA. 2023.. Data-driven predictions of the time remaining until critical global warming thresholds are reached. . PNAS 120:(6):e2207183120
    [Crossref] [Google Scholar]
  2. 2.
    Miller SA, Habert G, Myers RJ, Harvey JT. 2021.. Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. . One Earth 4:(10):1398411
    [Crossref] [Google Scholar]
  3. 3.
    Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, et al. 2018.. Net-zero emissions energy systems. . Science 360:(6396):eaas9793
    [Crossref] [Google Scholar]
  4. 4.
    Scrivener KL, John VM, Gartner EM. 2018.. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. . Cem. Concr. Res. 114::226
    [Crossref] [Google Scholar]
  5. 5.
    Kurtis KE. 2015.. Innovations in cement-based materials: addressing sustainability in structural and infrastructure applications. . MRS Bull. 40:(12):11029
    [Crossref] [Google Scholar]
  6. 6.
    Dairanieh I, David B, Mason F, Stokes G, de Brun S, et al. 2016.. Carbon dioxide utilization (CO2U)—ICEF Roadmap 1.0. Paper presented at 2016 Innovation for Cool Earth Forum (ICEF), Tokyo:, Oct. 5–6. https://www.icef.go.jp/pdf/summary/roadmap/icef2016_roadmap1.pdf
    [Google Scholar]
  7. 7.
    Habert G, Miller SA, John VM, Provis JL, Favier A, et al. 2020.. Environmental impacts and decarbonization strategies in the cement and concrete industries. . Nat. Rev. Earth Environ. 1::55973
    [Crossref] [Google Scholar]
  8. 8.
    Huntzinger DN, Eatmon TD. 2009.. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. . J. Clean. Prod. 17:(7):66875
    [Crossref] [Google Scholar]
  9. 9.
    Olsson JA, Miller SA, Alexander MG. 2023.. Near-term pathways for decarbonizing global concrete production. . Nat. Commun. 14::4574
    [Crossref] [Google Scholar]
  10. 10.
    Krausmann F, Lauk C, Haas W, Wiedenhofer D. 2018.. From resource extraction to outflows of wastes and emissions: the socioeconomic metabolism of the global economy, 1900–2015. . Glob. Environ. Change 52::13140
    [Crossref] [Google Scholar]
  11. 11.
    Krausmann F, Wiedenhofer D, Lauk C, Haas W, Tanikawa H, et al. 2017.. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. . PNAS 114:(8):188085
    [Crossref] [Google Scholar]
  12. 12.
    Ioannidou D, Meylan G, Sonnemann G, Habert G. 2017.. Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. . Resour. Conserv. Recycl. 126::2533
    [Crossref] [Google Scholar]
  13. 13.
    da Costa Reis D, Mack-Vergara Y, John VM. 2019.. Material flow analysis and material use efficiency of Brazil's mortar and concrete supply chain. . J. Ind. Ecol. 23:(6):1396409
    [Crossref] [Google Scholar]
  14. 14.
    Miller SA, Moore FC. 2020.. Climate and health damages from global concrete production. . Nat. Clim. Change 10::43943
    [Crossref] [Google Scholar]
  15. 15.
    Meldrum J, Nettles-Anderson S, Heath G, Macknick J. 2013.. Life cycle water use for electricity generation: a review and harmonization of literature estimates. . Environ. Res. Lett. 8::015031
    [Crossref] [Google Scholar]
  16. 16.
    Miller SA, Horvath A, Monteiro PJM. 2018.. Impacts of booming concrete production on water resources worldwide. . Nat. Sustain. 1::6976
    [Crossref] [Google Scholar]
  17. 17.
    Curry KC. 2020.. Mineral commodity summaries: cement. Data Sheet, US Geol. Surv., Reston, VA:. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-cement.pdf
    [Google Scholar]
  18. 18.
    Monteiro PJM, Miller SA, Horvath A. 2017.. Towards sustainable concrete. . Nat. Mater. 16:(7):69899
    [Crossref] [Google Scholar]
  19. 19.
    Cao Z, Myers RJ, Lupton RC, Duan H, Sacchi R, et al. 2020.. The sponge effect and carbon emission mitigation potentials of the global cement cycle. . Nat. Commun. 11::3777
    [Crossref] [Google Scholar]
  20. 20.
    [Google Scholar]
  21. 21.
    Zhang Y, Ayyub BM, Fung JF. 2022.. Projections of corrosion and deterioration of infrastructure in United States coasts under a changing climate. . Resil. Cities Struct. 1:(1):98109
    [Crossref] [Google Scholar]
  22. 22.
    Bastidas-Arteaga E, Rianna G, Gervasio H, Nogal M. 2022.. Multi-region lifetime assessment of reinforced concrete structures subjected to carbonation and climate change. . Structures 45::88699
    [Crossref] [Google Scholar]
  23. 23.
    Mishra V, Sadhu A. 2023.. Towards the effect of climate change in structural loads of urban infrastructure: a review. . Sustain. Cities Soc. 89::104352
    [Crossref] [Google Scholar]
  24. 24.
    Hertwich EG. 2021.. Increased carbon footprint of materials production driven by rise in investments. . Nat. Geosci. 14:(3):15155
    [Crossref] [Google Scholar]
  25. 25.
    Miller SA, Van Roijen E, Cunningham PR, Kim A. 2021.. Opportunities and challenges for engineering construction materials as carbon sinks. . RILEM Tech. Lett. 6::10518
    [Crossref] [Google Scholar]
  26. 26.
    Cullen JM, Allwood JM, Bambach MD. 2012.. Mapping the global flow of steel: from steelmaking to end-use goods. . Environ. Sci. Technol. 46:(24):1304855
    [Crossref] [Google Scholar]
  27. 27.
    PlasticsEurope. 2019.. Plastics—the facts 2019. Rep. , PlasticsEurope, Wemmel, Belg.: https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf
    [Google Scholar]
  28. 28.
    Miller SA, Horvath A, Monteiro PJM. 2016.. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. . Environ. Res. Lett. 11::074029
    [Crossref] [Google Scholar]
  29. 29.
    Ashby M. 2009.. Materials and the Environment: Eco-Informed Material Choice. Oxford, UK:: Elsevier
    [Google Scholar]
  30. 30.
    Ashby M. 2005.. Materials Selection in Mechanical Design. Oxford, UK:: Elsevier. , 3rd ed..
    [Google Scholar]
  31. 31.
    Kendall A. 2012.. Time-adjusted global warming potentials for LCA and carbon footprints. . Int. J. Life Cycle Assess. 17:(8):104249
    [Crossref] [Google Scholar]
  32. 32.
    Guest G, Cherubini F, Strømman AH. 2013.. Global warming potential of carbon dioxide emissions from biomass stored in the anthroposphere and used for bioenergy at end of life. . J. Ind. Ecol. 17:(1):2030
    [Crossref] [Google Scholar]
  33. 33.
    Pomponi F, Hart J, Arehart JH, D'Amico B. 2020.. Buildings as a global carbon sink? A reality check on feasibility limits. . One Earth 3:(2):15761
    [Crossref] [Google Scholar]
  34. 34.
    EPA (US Environ. Prot. Agency). 2023.. Criteria air pollutants. Fact Sheet, EPA, Washington, DC:. https://www.epa.gov/criteria-air-pollutants
    [Google Scholar]
  35. 35.
    Shindell D, Faluvegi G, Seltzer K, Shindell C. 2018.. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. . Nat. Clim. Change 8:(4):29195
    [Crossref] [Google Scholar]
  36. 36.
    EPA (US Environ. Prot. Agency). 1994.. Emission factor documentation for AP-42. Section 11.6: Portland cement manufacturing. Final Rep., Contract 68-D2-0159, MRI Proj. 4601-01 , EPA, Washington, DC:. https://www3.epa.gov/ttnchie1/ap42/ch11/bgdocs/b11s06.pdf
    [Google Scholar]
  37. 37.
    Marceau ML, Nisbet MA, VanGeem MG. 2007.. Life cycle inventory of Portland cement manufacture. R&D Ser. 3007 , Portland Cem. Assoc., Skokie, IL:
    [Google Scholar]
  38. 38.
    Abdul-Wahab SA. 2006.. Impact of fugitive dust emissions from cement plants on nearby communities. . Ecol. Model. 195:(3):33848
    [Crossref] [Google Scholar]
  39. 39.
    CARB (Calif. Air Resour. Board). 2023.. Mandatory greenhouse gas emissions reporting. Rep. , CARB, Riverside, CA:. https://ww2.arb.ca.gov/our-work/programs/mandatory-greenhouse-gas-emissions-reporting
    [Google Scholar]
  40. 40.
    GCCA (Glob. Cem. Concr. Assoc.). 2023.. Cement best practices and reporting. Rep. , GCCA, London:. https://gccassociation.org/sustainability-innovation/cement-best-practices-and-reporting
    [Google Scholar]
  41. 41.
    Humbert S, Marshall JD, Shaked S, Spadaro J V, Nishioka Y, et al. 2011.. Intake fraction for particulate matter: recommendations for life cycle impact assessment. . Environ. Sci. Technol. 45:(11):480816
    [Crossref] [Google Scholar]
  42. 42.
    Franks DM, Keenan J, Hailu D. 2023.. Mineral security essential to achieving the Sustainable Development Goals. . Nat. Sustain. 6:(1):2127
    [Crossref] [Google Scholar]
  43. 43.
    Mehta PK, Monteiro PJM. 2014.. Concrete Microstructure, Properties, and Materials. New York:: McGraw Hill. , 4th ed..
    [Google Scholar]
  44. 44.
    Mack-Vergara YL, John VM. 2017.. Life cycle water inventory in concrete production—a review. . Resour. Conserv. Recycl. 122::22750
    [Crossref] [Google Scholar]
  45. 45.
    Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, et al. 2015.. Planetary boundaries: guiding human development on a changing planet. . Science 347:(6223):1259855
    [Crossref] [Google Scholar]
  46. 46.
    Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, et al. 2014.. Multimodel assessment of water scarcity under climate change. . PNAS 111:(9):324550
    [Crossref] [Google Scholar]
  47. 47.
    Torres A, Brandt J, Lear K, Liu J. 2017.. A looming tragedy of the sand commons. . Science 357:(6355):97071
    [Crossref] [Google Scholar]
  48. 48.
    Ioannidou D, Sonnemann G, Suh S. 2020.. Do we have enough natural sand for low-carbon infrastructure?. J. Ind. Ecol. 24:(5):100415
    [Crossref] [Google Scholar]
  49. 49.
    Zhong X, Deetman S, Tukker A, Behrens P. 2022.. Increasing material efficiencies of buildings to address the global sand crisis. . Nat. Sustain. 5:(5):38992
    [Crossref] [Google Scholar]
  50. 50.
    Harrison DJ, Bloodworth AJ, Eyre JM, Scott PW, MacFarlane M. 2001.. Utilisation of mineral waste: a scoping study. Rep. , Dep. Int. Dev., Keyworth, UK:. https://www.gov.uk/research-for-development-outputs/utilisation-of-mineral-waste-a-scoping-study-wf-01-003
    [Google Scholar]
  51. 51.
    Wuppertal Inst. 2014.. Material intensity of materials, fuels, transport services, food. Data Tables, Wuppertal Inst., Wuppertal, Ger.: https://wupperinst.org/uploads/tx_wupperinst/MIT_2014.pdf
    [Google Scholar]
  52. 52.
    Rentier ES, Cammeraat LH. 2022.. The environmental impacts of river sand mining. . Sci. Total Environ. 838::155877
    [Crossref] [Google Scholar]
  53. 53.
    Chertow MR. 2000.. The IPAT equation and its variants. . J. Ind. Ecol. 4:(4):1329
    [Crossref] [Google Scholar]
  54. 54.
    Ehrlich PR, Holdren JP. 1971.. Impact of population growth. . Science 171:(3977):121217
    [Crossref] [Google Scholar]
  55. 55.
    Wiedmann T, Lenzen M, Keyßer LT, Steinberger JK. 2020.. Scientists’ warning on affluence. . Nat. Commun. 11::3107
    [Crossref] [Google Scholar]
  56. 56.
    Tessum CW, Paolella DA, Chambliss SE, Apte JS, Hill JD, Marshall JD. 2021.. PM2.5 polluters disproportionately and systemically affect people of color in the United States. . Sci. Adv. 7:(18):eabf4491
    [Crossref] [Google Scholar]
  57. 57.
    Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, et al. 2016.. Ambient air pollution exposure estimation for the Global Burden of Disease 2013. . Environ. Sci. Technol. 50:(1):7988
    [Crossref] [Google Scholar]
  58. 58.
    Islam SN, Winkel J. 2017.. Climate change and social inequality. Work. Pap. 152 , United Nations, New York:
    [Google Scholar]
  59. 59.
    Brinkman LA, Miller SA. 2021.. Environmental impacts and environmental justice implications of supplementary cementitious materials for use in concrete. . Environ. Res. Infrastruct. Sustain. 1::025003
    [Crossref] [Google Scholar]
  60. 60.
    Kapur A, Keoleian G, Kendall A, Kesler SE. 2008.. Dynamic modeling of in-use cement stocks in the United States. . J. Ind. Ecol. 12:(4):53956
    [Crossref] [Google Scholar]
  61. 61.
    Tuck CC. 2020.. 2017 Minerals yearbook: iron and steel. Rep. , US Geol. Surv., Reston, VA:. https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/myb1-2017-feste.pdf
    [Google Scholar]
  62. 62.
    Skog K, Nicholson GA. 2000.. Carbon sequestration in wood and paper products. . In The Impact of Climate Change on America's Forests: A Technical Document Supporting the 2000 USDA Forest Service RPA Assessment, ed. LA Joyce, R Birdsey , pp. 7988. Fort Collins, CO:: US Dep. Agric. Gen. tech. ed.
    [Google Scholar]
  63. 63.
    Scheuer C, Keoleian GA, Reppe P. 2003.. Life cycle energy and environmental performance of a new university building: modeling challenges and design implications. . Energy Build. 35:(10):104964
    [Crossref] [Google Scholar]
  64. 64.
    Miller SA. 2020.. The role of cement service-life on the efficient use of resources. . Environ. Res. Lett. 15::024004
    [Crossref] [Google Scholar]
  65. 65.
    Xi F, Davis SJ, Ciais P, Crawford-Brown D, Guan D, et al. 2016.. Substantial global carbon uptake by cement carbonation. . Nat. Geosci. 9::88083
    [Crossref] [Google Scholar]
  66. 66.
    Guo Y, He X, Peeta S, Weiss WJ. 2016.. Internal curing for concrete bridge decks: integration of a social cost analysis in evaluation of long-term benefit. . Transp. Res. Rec. 2577:(1):2534
    [Crossref] [Google Scholar]
  67. 67.
    Miller SA, John VM, Pacca SA, Horvath A. 2018.. Carbon dioxide reduction potential in the global cement industry by 2050. . Cem. Concr. Res. 114::11524
    [Crossref] [Google Scholar]
  68. 68.
    Bharadwaj K, Weiss WJ, Isgor OB. 2023.. Towards performance-based specifications for fly ash and natural pozzolans—insights from a Monte-Carlo based thermodynamic modeling framework. . Cem. Concr. Res. 172::107230
    [Crossref] [Google Scholar]
  69. 69.
    Yasin AK, Bayuaji R, Susanto TE. 2017.. A review in high early strength concrete and local materials potential. . IOP Conf. Ser. Mater. Sci. Eng. 267::012004
    [Crossref] [Google Scholar]
  70. 70.
    Antico FC, De la Varga I, Esmaeeli HS, Nantung TE, Zavattieri PD, Weiss WJ. 2015.. Using accelerated pavement testing to examine traffic opening criteria for concrete pavements. . Constr. Build. Mater. 96::8695
    [Crossref] [Google Scholar]
  71. 71.
    De la Varga I, Castro J, Bentz D, Weiss J. 2012.. Application of internal curing for mixtures containing high volumes of fly ash. . Cem. Concr. Compos. 34:(9):10018
    [Crossref] [Google Scholar]
  72. 72.
    Bentz DP, Sato T, De la Varga I, Weiss WJ. 2012.. Fine limestone additions to regulate setting in high volume fly ash mixtures. . Cem. Concr. Compos. 34:(1):1117
    [Crossref] [Google Scholar]
  73. 73.
    Obla KH, Hong R, Lobo CL, Kim H. 2017.. Should minimum cementitious contents for concrete be specified?. Transp. Res. Rec. 2629:(1):18
    [Crossref] [Google Scholar]
  74. 74.
    Kosmatka SH, Kerkhoff B, Panarese WC. 2008.. Design and Control of Concrete Mixtures. Skokie, IL:: Portland Cem. Assoc. , 14th ed..
    [Google Scholar]
  75. 75.
    Cheung J, Roberts L, Liu J. 2018.. Admixtures and sustainability. . Cem. Concr. Res. 114::7989
    [Crossref] [Google Scholar]
  76. 76.
    Ouellet-Plamondon C, Scherb S, Köberl M, Thienel K-C. 2020.. Acceleration of cement blended with calcined clays. . Constr. Build. Mater. 245::118439
    [Crossref] [Google Scholar]
  77. 77.
    Li X, Bizzozero J, Hesse C. 2022.. Impact of C-S-H seeding on hydration and strength of slag blended cement. . Cem. Concr. Res. 161::106935
    [Crossref] [Google Scholar]
  78. 78.
    Huang H, Li X, Avet F, Hanpongpun W, Scrivener K. 2021.. Strength-promoting mechanism of alkanolamines on limestone-calcined clay cement and the role of sulfate. . Cem. Concr. Res. 147::106527
    [Crossref] [Google Scholar]
  79. 79.
    IEA (Int. Energy Agency). 2018.. Low-carbon transition in the cement industry. Technol. Roadmap , IEA, Paris:
    [Google Scholar]
  80. 80.
    GCCA (Glob. Cem. Concr. Assoc.). 2021.. Concrete future: the GCCA 2050 cement and concrete industry roadmap for net zero concrete. Rep. , GCCA, London:
    [Google Scholar]
  81. 81.
    Portland Cem. Assoc. 2021.. Roadmap to Carbon Neutrality. Skokie, IL:: Portland Cem. Assoc.
    [Google Scholar]
  82. 82.
    GCCA (Glob. Cem. Concr. Assoc.). 2019.. Getting the numbers right project: emissions report 2019. Rep. , GCCA, London:
    [Google Scholar]
  83. 83.
    Shanks W, Dunant CF, Drewniok MP, Lupton RC, Serrenho A, Allwood JM. 2019.. How much cement can we do without? Lessons from cement material flows in the UK. . Resour. Conserv. Recycl. 141::44154
    [Crossref] [Google Scholar]
  84. 84.
    Rissman J, Bataille C, Masanet E, Aden N, Morrow WR, et al. 2020.. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. . Appl. Energy 266::114848
    [Crossref] [Google Scholar]
  85. 85.
    CemNet. 2023.. The electrified commercial cement kiln. . CemNet, Jan. 6. https://www.cemnet.com/News/story/174030/the-electrifi ed-commercial-cement-kiln.html
    [Google Scholar]
  86. 86.
    Poon CS, Yu ATW, Jaillon L. 2004.. Reducing building waste at construction sites in Hong Kong. . Constr. Manag. Econ. 22:(5):46170
    [Crossref] [Google Scholar]
  87. 87.
    Caltrans. 2014.. Recycled concrete specifications. Fact Sheet, Caltrans, Sacramento, CA:
    [Google Scholar]
  88. 88.
    Davis SJ, Caldeira K. 2010.. Consumption-based accounting of CO2 emissions. . PNAS 107:(12):568792
    [Crossref] [Google Scholar]
  89. 89.
    Hertwich EG, Ali S, Ciacci L, Fishman T, Heeren N, et al. 2019.. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. . Environ. Res. Lett. 14::043004
    [Crossref] [Google Scholar]
  90. 90.
    Kourehpaz P, Miller SA. 2019.. Eco-efficient design indices for reinforced concrete members. . Mater. Struct. Constr. 52:(5):96
    [Crossref] [Google Scholar]
  91. 91.
    Dunant CF, Drewniok MP, Orr JJ, Allwood JM. 2021.. Good early stage design decisions can halve embodied CO2 and lower structural frames’ cost. . Structures 33::34354
    [Crossref] [Google Scholar]
  92. 92.
    De Schutter G, Lesage K, Mechtcherine V, Nerella VN, Habert G, Agusti-Juan I. 2018.. Vision of 3D printing with concrete—technical, economic and environmental potentials. . Cem. Concr. Res. 112::2536
    [Crossref] [Google Scholar]
  93. 93.
    Souza MT, Ferreira IM, Guzi de Moraes E, Senff L, Novaes de Oliveira AP. 2020.. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. . J. Build. Eng. 32::101833
    [Crossref] [Google Scholar]
  94. 94.
    Watari T, Cao Z, Hata S, Nansai K. 2022.. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. . Nat. Commun. 13::4158
    [Crossref] [Google Scholar]
  95. 95.
    Barrett TJ, Miller AE, Weiss WJ. 2015.. Documentation of the INDOT experience and construction of the bridge decks containing internal curing in 2013. Tech. Rep. , Purdue Univ., West Lafayette, IN:
    [Google Scholar]
  96. 96.
    Cao Z, Shen L, Løvik AN, Müller DB, Liu G. 2017.. Elaborating the history of our cementing societies: an in-use stock perspective. . Environ. Sci. Technol. 51:(19):1146875
    [Crossref] [Google Scholar]
  97. 97.
    Santero NJ, Harvey J, Horvath A. 2011.. Environmental policy for long-life pavements. . Transp. Res. D 16:(2):12936
    [Crossref] [Google Scholar]
  98. 98.
    Lepech MD, Geiker M, Stang H. 2014.. Probabilistic design and management of environmentally sustainable repair and rehabilitation of reinforced concrete structures. . Cem. Concr. Compos. 47:(0):1931
    [Crossref] [Google Scholar]
  99. 99.
    Andersson R, Fridh K, Stripple H, Häglund M. 2013.. Calculating CO2 uptake for existing concrete structures during and after service life. . Environ. Sci. Technol. 47:(20):1162533
    [Crossref] [Google Scholar]
  100. 100.
    Ruschi Mendes Saade M, Yahia A, Amor B. 2022.. Is crushed concrete carbonation significant enough to be considered as a carbon mitigation strategy?. Environ. Res. Lett. 17::104049
    [Crossref] [Google Scholar]
  101. 101.
    von Greve-Dierfeld S, Lothenbach B, Vollpracht A, Wu B, Huet B, et al. 2020.. Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. . Mater. Struct. 53:(6):136
    [Crossref] [Google Scholar]
  102. 102.
    CalRecycle. 2023.. Recycled aggregate. Fact Sheet, CalRecycle, Sacramento, CA:. https://calrecycle.ca.gov/condemo/aggregate
    [Google Scholar]
  103. 103.
    Gursel AP, Shehabi A, Horvath A. 2023.. What are the energy and greenhouse gas benefits of repurposing non-residential buildings into apartments?. Resour. Conserv. Recycl. 198::107143
    [Crossref] [Google Scholar]
  104. 104.
    Hosoda EB. 2020.. Does ownership of an end-of-life product affect design for environment?. Metroeconomica 71:(1):5787
    [Crossref] [Google Scholar]
  105. 105.
    Silva RV, de Brito J, Dhir RK. 2017.. Availability and processing of recycled aggregates within the construction and demolition supply chain: a review. . J. Clean. Prod. 143::598614
    [Crossref] [Google Scholar]
  106. 106.
    Soleimani F, McKay M, Yang CSW, Kurtis KE, DesRoches R, Kahn LF. 2016.. Cyclic testing and assessment of columns containing recycled concrete debris. . ACI Struct. J. 113:(5):100920
    [Google Scholar]
  107. 107.
    Poon CS, Shen P, Jiang Y, Ma Z, Xuan D. 2023.. Total recycling of concrete waste using accelerated carbonation: a review. . Cem. Concr. Res. 173::107284
    [Crossref] [Google Scholar]
  108. 108.
    Gutowski TG, Allwood JM, Herrmann C, Sahni S. 2013.. A global assessment of manufacturing: economic development, energy use, carbon emissions, and the potential for energy efficiency and materials recycling. . Annu. Rev. Environ. Resour. 38::81106
    [Crossref] [Google Scholar]
  109. 109.
    Zajac M, Maruyama I, Iizuka A, Skibsted J. 2023.. Enforced carbonation of cementitious materials. . Cem. Concr. Res. 174::107285
    [Crossref] [Google Scholar]
  110. 110.
    Zajac M, Skocek J, Skibsted J, Ben Haha M. 2021.. CO2 mineralization of demolished concrete wastes into a supplementary cementitious material—a new CCU approach for the cement industry. . RILEM Tech. Lett. 6::5360
    [Crossref] [Google Scholar]
  111. 111.
    He Z, Zhu X, Wang J, Mu M, Wang Y. 2019.. Comparison of CO2 emissions from OPC and recycled cement production. . Constr. Build. Mater. 211::96573
    [Crossref] [Google Scholar]
  112. 112.
    Carriço A, Bogas JA, Hu S, Real S, Costa Pereira MF. 2021.. Novel separation process for obtaining recycled cement and high-quality recycled sand from waste hardened concrete. . J. Clean. Prod. 309::127375
    [Crossref] [Google Scholar]
  113. 113.
    UN DESA (U.N. Dep. Econ. Soc. Aff.) Popul. Div. 2019.. World Population Prospects 2019. New York:: United Nations. https://population.un.org/wpp/Download/Standard/Population
    [Google Scholar]
  114. 114.
    World Bank. 2020.. World development indicators database: gross domestic product 2019. Data Set, World Bank, Washington, DC:. https://databank.worldbank.org/data/download/GDP.pdf
    [Google Scholar]
  115. 115.
    Juenger MCG, Snellings R, Bernal SA. 2019.. Supplementary cementitious materials: new sources, characterization, and performance insights. . Cem. Concr. Res. 122::25773
    [Crossref] [Google Scholar]
  116. 116.
    Zunino F, Martirena F, Scrivener K. 2021.. Limestone calcined clay cements (LC3). . ACI Mater. J. 118:(3):4960
    [Google Scholar]
  117. 117.
    Snellings R, Suraneni P, Skibsted J. 2023.. Future and emerging supplementary cementitious materials. . Cem. Concr. Res. 171::107199
    [Crossref] [Google Scholar]
  118. 118.
    Winnefeld F, Läng F, Leemann A. 2023.. Pozzolanic reaction of carbonated wollastonite clinker. . J. Adv. Concr. Technol. 21:(8):63142
    [Crossref] [Google Scholar]
  119. 119.
    Shah IH, Miller SA, Jiang D, Myers RJ. 2022.. Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. . Nat. Commun. 13::5758
    [Crossref] [Google Scholar]
  120. 120.
    Burris LE, Juenger MCG. 2020.. Effect of calcination on the reactivity of natural clinoptilolite zeolites used as supplementary cementitious materials. . Constr. Build. Mater. 258::119988
    [Crossref] [Google Scholar]
  121. 121.
    Cordeiro GC, Kurtis KE. 2017.. Effect of mechanical processing on sugar cane bagasse ash pozzolanicity. . Cem. Concr. Res. 97::4149
    [Crossref] [Google Scholar]
  122. 122.
    Innocenti G, Benkeser DJ, Dase JE, Wirth X, Sievers C, Kurtis KE. 2021.. Beneficiation of ponded coal ash through chemi-mechanical grinding. . Fuel 299::120892
    [Crossref] [Google Scholar]
  123. 123.
    Sutter LL, Hooton RD. 2023.. Progress towards sustainability through performance-based standards and specifications. . Cem. Concr. Res. 174::107303
    [Crossref] [Google Scholar]
  124. 124.
    Choudhary A, Bharadwaj K, Ghantous RM, Isgor OB, Weiss WJ. 2022.. Pozzolanic reactivity test of supplementary cementitious materials. . ACI Mater. J. 119:(2):25568
    [Google Scholar]
  125. 125.
    Miller SA, Myers RJ. 2020.. Environmental impacts of alternative cement binders. . Environ. Sci. Technol. 54:(2):67786
    [Crossref] [Google Scholar]
  126. 126.
    Benck JD, Chiang Y-M, Dominguez K, Ellis LD, Jafari K, et al. 2023.. Decarbonized cement blends. US Patent 20230295046A1
    [Google Scholar]
  127. 127.
    Provis JL. 2018.. Alkali-activated binders. . Cem. Concr. Res. 114::4048
    [Crossref] [Google Scholar]
  128. 128.
    Sutter LL, Christiansen MU, Dongell JE, Hicks JK, Hooton RD, et al. 2018.. Report on alternative cements. Rep. , Am. Concr. Inst., Farmington Hills, MI:
    [Google Scholar]
  129. 129.
    Gartner E, Sui T. 2018.. Alternative cement clinkers. . Cem. Concr. Res. 114::2739
    [Crossref] [Google Scholar]
  130. 130.
    Badjatya P, Akca AH, Alvarez DVF, Chang B, Ma S, et al. 2022.. Carbon-negative cement manufacturing from seawater-derived magnesium feedstocks. . PNAS 119:(34):e2114680119
    [Crossref] [Google Scholar]
  131. 131.
    Alapati P, Moradllo MK, Berke N, Ley MT, Kurtis KE. 2022.. Designing corrosion resistant systems with alternative cementitious materials. . Cement. 8::100029
    [Crossref] [Google Scholar]
  132. 132.
    Martínez A, Miller SA. 2023.. A review of drivers for implementing geopolymers in construction: codes and constructability. . Resour. Conserv. Recycl. 199::107238
    [Crossref] [Google Scholar]
  133. 133.
    Tay J-H, Yip W-K. 1987.. Use of reclaimed wastewater for concrete mixing. . J. Envion. Eng. 113:(5):115661
    [Crossref] [Google Scholar]
  134. 134.
    Ebead U, Lau D, Lollini F, Nanni A, Suraneni P, Yu T. 2022.. A review of recent advances in the science and technology of seawater-mixed concrete. . Cem. Concr. Res. 152::106666
    [Crossref] [Google Scholar]
  135. 135.
    Xiao J, Qiang C, Nanni A, Zhang K. 2017.. Use of sea-sand and seawater in concrete construction: current status and future opportunities. . Constr. Build. Mater. 155::110111
    [Crossref] [Google Scholar]
  136. 136.
    ACI (Am. Concr. Inst.) Comm. 440. 2023.. ACI CODE-440.11-22. Building code requirements for structural concrete reinforced with glass fiber–reinforced polymer (GFRP) bars—code and commentary. Build. Code, ACI, Farmington Hills, MI:
    [Google Scholar]
  137. 137.
    Altuki R, Ley MT, Cook D, Jagan Gudimettla M, Praul M. 2022.. Increasing sustainable aggregate usage in concrete by quantifying the shape and gradation of manufactured sand. . Constr. Build. Mater. 321::125593
    [Crossref] [Google Scholar]
  138. 138.
    Adiguzel D, Tuylu S, Eker H. 2022.. Utilization of tailings in concrete products: a review. . Constr. Build. Mater. 360::129574
    [Crossref] [Google Scholar]
  139. 139.
    Tang Q, Ma Z, Wu H, Wang W. 2020.. The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: a critical review. . Cem. Concr. Compos. 114::103807
    [Crossref] [Google Scholar]
  140. 140.
    Myhr A, Røyne F, Brandtsegg AS, Bjerkseter C, Throne-Holst H, et al. 2019.. Towards a low CO2 emission building material employing bacterial metabolism (2/2): prospects for global warming potential reduction in the concrete industry. . PLOS ONE 14:(4):e0208643
    [Crossref] [Google Scholar]
  141. 141.
    Jansson C, Northen T. 2010.. Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. . Curr. Opin. Biotechnol. 21:(3):36571
    [Crossref] [Google Scholar]
  142. 142.
    Wirth X, Benkeser D, Nortey Yeboah NN, Shearer CR, Kurtis KE, Burns SE. 2019.. Evaluation of alternative fly ashes as supplementary cementitious materials. . ACI Mater. J. 116:(4):6977
    [Google Scholar]
  143. 143.
    Souradeep G, Wei KH. 2017.. Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. . J. Mater. Civ. Eng. 29:(9):4017086
    [Crossref] [Google Scholar]
  144. 144.
    Maljaee H, Madadi R, Paiva H, Tarelho L, Ferreira VM. 2021.. Incorporation of biochar in cementitious materials: a roadmap of biochar selection. . Constr. Build. Mater. 283::122757
    [Crossref] [Google Scholar]
  145. 145.
    Zhao MY, Enders A, Lehmann J. 2014.. Short- and long-term flammability of biochars. . Biomass Bioenergy 69::18391
    [Crossref] [Google Scholar]
  146. 146.
    Cao Y, Tian N, Bahr D, Zavattieri PD, Youngblood J, et al. 2016.. The influence of cellulose nanocrystals on the microstructure of cement paste. . Cem. Concr. Compos. 74::16473
    [Crossref] [Google Scholar]
  147. 147.
    Amziane S, Sonebi M. 2016.. Overview on biobased building material made with plant aggregate. . Sustain. Constr. Mater. Technol. 1:(1):3138
    [Google Scholar]
  148. 148.
    Schneider J. 2020.. Decarbonizing construction through carbonation. . PNAS 117:(23):1251517
    [Crossref] [Google Scholar]
  149. 149.
    Villani C, Spragg R, Tokpatayeva R, Olek J, Weiss WJ. 2014.. Characterizing the pore structure of carbonated natural wollastonite. Paper presented at 4th International Conference on the Durability of Concrete Structures, West Lafayette, IN:, July 24–26. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1038&context=icdcs
    [Google Scholar]
  150. 150.
    Dung NT, Unluer C. 2017.. Sequestration of CO2 in reactive MgO cement-based mixes with enhanced hydration mechanisms. . Constr. Build. Mater. 143::7182
    [Crossref] [Google Scholar]
  151. 151.
    Atakan V, Sahu S, Quinn S, Hu X, DeCristofaro N. 2014.. Why CO2 matters—advances in a new class of cement. . ZKG Int. 3::14
    [Google Scholar]
  152. 152.
    Liu Z, Lv C, Wang F, Hu S. 2023.. Recent advances in carbonatable binders. . Cem. Concr. Res. 173::107286
    [Crossref] [Google Scholar]
  153. 153.
    Batuecas E, Liendo F, Tommasi T, Bensaid S, Deorsola FA, Fino D. 2021.. Recycling CO2 from flue gas for CaCO3 nanoparticles production as cement filler: a life cycle assessment. . J. CO2 Util. 45::101446
    [Crossref] [Google Scholar]
  154. 154.
    Ostovari H, Müller L, Skocek J, Bardow A. 2021.. From unavoidable CO2 source to CO2 sink? A cement industry based on CO2 mineralization. . Environ. Sci. Technol. 55:(8):521223
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-112621-070104
Loading
/content/journals/10.1146/annurev-environ-112621-070104
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error