1932

Abstract

This article reviews shared mobility, a prominent urban transportation concept with considerable potential to contribute to more sustainable urban mobility. Shared passenger mobility spans diverse services, often leveraging technological advances and disruptions such as smartphones and data analytics to optimize transport resources. Given the broad range of services, a shared mobility taxonomy is proposed, accommodating evolving services. Key challenges for delivering efficient and effective shared mobility services with lower environmental impacts are also identified. Finally, the International Transport Forum transport demand models are used to analyze policy implications and potential effects quantitatively. This article presents a possible scenario for the global evolution of these services to 2050. Results emphasize shared mobility's role in transport decarbonization in the present and future and show that shared mobility may reduce resource use and mobility externalities (e.g., CO, local pollutants, congestion, urban space use) but that the uptake will differ between Global South and Global North cities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-121522-041916
2024-10-18
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-121522-041916.html?itemId=/content/journals/10.1146/annurev-environ-121522-041916&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    ITF (Int. Transp. Forum). 2023.. Measuring new mobility: definitions, indicators, data collection. Rep. , Mobil. Innov. Hub, ITF, Paris, France:
    [Google Scholar]
  2. 2.
    SAE (Soc. Automot. Eng.). 2021.. Taxonomy of on-demand and shared mobility: ground, aviation, and marine. Recomm. Pract. JA3163_202106 , SAE, Warrendale, PA:
    [Google Scholar]
  3. 3.
    Conti M, Dehghantanha A, Franke K, Watson S. 2018.. Internet of Things security and forensics: challenges and opportunities. . Future Gener. Comput. Syst. 108::5067
    [Google Scholar]
  4. 4.
    Storey VC, Song IY. 2017.. Big data technologies and management: what conceptual modeling can do. . Data Knowl. Eng. 108::5067
    [Crossref] [Google Scholar]
  5. 5.
    Khan IR, Alam M. 2017.. Cloud computing: issues and future direction. . Glob. Sci-Tech 9:(1):3744
    [Crossref] [Google Scholar]
  6. 6.
    Richter H, Slowinski PR. 2019.. The data sharing economy: on the emergence of new intermediaries. . Int. Rev. Intellect. Prop. Compet. Law 50::429
    [Google Scholar]
  7. 7.
    Namazu M, MacKenzie D, Zerriffi H, Dowlatabadi H. 2018.. Is carsharing for everyone? Understanding the diffusion of carsharing services. . Transp. Policy 63::18999
    [Crossref] [Google Scholar]
  8. 8.
    ITF (Int. Transp. Forum). 2015.. Urban mobility system upgrade: how shared self-driving cars could change city traffic. Rep. , Corp. Partnersh. Board, ITF, Paris:
    [Google Scholar]
  9. 9.
    ITF (Int. Transp. Forum). 2023.. Shifting the focus: smaller electric vehicles for sustainable cities. Rep. , Corp. Partnersh. Board, ITF, Paris:
    [Google Scholar]
  10. 10.
    ITF (Int. Transp. Forum). 2017.. Transition to shared mobility: how large cities can deliver inclusive transport services. Rep. , Corp. Partnersh. Board, ITF, Paris:
    [Google Scholar]
  11. 11.
    ITF (Int. Transp. Forum). 2020.. Shared mobility simulations for Lyon. Policy Pap. 74 , ITF, Paris:
    [Google Scholar]
  12. 12.
    Jittrapirom P, Caiati V, Feneri AM, Ebrahimigharehbaghi S, Alonso-González MJ, Narayan J. 2017.. Mobility as a service: a critical review of definitions, assessments of schemes, and key challenges. . Urban Plan. 2:(2):1325
    [Crossref] [Google Scholar]
  13. 13.
    ITF (Int. Transp. Forum). 2023.. The ITF modelling framework (PASTA 2023). Fact Sheet , ITF, Paris:. https://www.itf-oecd.org/itf-modelling-framework-pasta-2023
    [Google Scholar]
  14. 14.
    Castellanos S, Grant-Muller S, Wright K. 2022.. Technology, transport, and the sharing economy: towards a working taxonomy for shared mobility. . Transp. Rev. 42:(3):31836
    [Crossref] [Google Scholar]
  15. 15.
    Soares Machado CA, De Salles Hue NPM, Berssaneti FT, Quintanilha JA. 2018.. An overview of shared mobility. . Sustainability 10:(12):4342
    [Crossref] [Google Scholar]
  16. 16.
    Stocker A, Shaheen S. 2018.. Shared automated mobility: early exploration and potential impacts. . In Road Vehicle Automation 4, ed. G Meyer, S Beiker , pp. 12539. Cham, Switz:.: Springer
    [Google Scholar]
  17. 17.
    Guyader H, Friman M, Olsson LE. 2021.. Shared mobility: evolving practices for sustainability. . Sustainability 13:(21):12148
    [Crossref] [Google Scholar]
  18. 18.
    Regue R, Masoud N, Recker W. 2016.. Car2work: shared mobility concept to connect commuters with workplaces. . Transp. Res. Rec. 2542:(1):10210
    [Crossref] [Google Scholar]
  19. 19.
    Masoud N, Nam D, Yu J, Jayakrishnan R. 2017.. Promoting peer-to-peer ridesharing services as transit system feeders. . Transp. Res. Rec. 2650:(1):7483
    [Crossref] [Google Scholar]
  20. 20.
    Nam D, Yang D, An S, Yu JG, Jayakrishnan R, Masoud N. 2018.. Designing a transit-feeder system using multiple sustainable modes: peer-to-peer (P2P) ridesharing, bike sharing, and walking. . Transp. Res. Rec. 2672:(8):75463
    [Crossref] [Google Scholar]
  21. 21.
    Stiglic M, Agatz N, Savelsbergh M, Gradisar M. 2018.. Enhancing urban mobility: integrating ride-sharing and public transit. . Comput. Oper. Res. 90::1221
    [Crossref] [Google Scholar]
  22. 22.
    Enzi M, Parragh SN, Pisinger D, Prandtstetter M. 2021.. Modeling and solving the multimodal car- and ride-sharing problem. . Eur. J. Oper. Res. 293:(1):290303
    [Crossref] [Google Scholar]
  23. 23.
    Goletz M, Bahamonde-Birke FJ. 2021.. The ride-sourcing industry: status-quo and outlook. . Transp. Plan. Technol. 44:(6):56176
    [Crossref] [Google Scholar]
  24. 24.
    Dewey OF. 2019.. App-based collective transport service in Mexico City. Discuss. Pap. , Int. Transp. Forum, Paris:
    [Google Scholar]
  25. 25.
    ITF (Int. Transp. Forum). 2020.. Good to go? Assessing the environmental performance of new mobility. Rep. , Corp. Partnersh. Board, ITF, Paris:
    [Google Scholar]
  26. 26.
    Amatuni L, Ottelin J, Steubing B, Mogollón JM. 2020.. Does car sharing reduce greenhouse gas emissions? Assessing the modal shift and lifetime shift rebound effects from a life cycle perspective. . J. Clean. Prod. 266::21869
    [Crossref] [Google Scholar]
  27. 27.
    Bi H, Ye Z, Zhu H. 2022.. Examining the nonlinear impacts of built environment on ridesourcing usage: focus on the critical urban sub-regions. . J. Clean. Prod. 350::131314
    [Crossref] [Google Scholar]
  28. 28.
    Ward JW, Michalek JJ, Samaras C. 2021.. Air pollution, greenhouse gas, and traffic externality benefits and costs of shifting private vehicle travel to ridesourcing services. . Environ. Sci. Technol. 55:(19):1317485
    [Google Scholar]
  29. 29.
    Cohen A, Shaheen S. 2016.. Planning for shared mobility. Rep. 583, Plan. Advis. Serv. , Am. Plan. Assoc., Chicago:
    [Google Scholar]
  30. 30.
    Wenzel T, Rames C, Kontou E, Henao A. 2019.. Travel and energy implications of ridesourcing service in Austin, Texas. . Transp. Res. D 70::1834
    [Crossref] [Google Scholar]
  31. 31.
    Hulkkonen M, Mielonen T, Prisle NL. 2020.. The atmospheric impacts of initiatives advancing shifts towards low-emission mobility: a scoping review. . Sci. Total Environ. 713::136133
    [Crossref] [Google Scholar]
  32. 32.
    Moreau H, de Jamblinne de Meux L, Zeller V, D'Ans P, Ruwet C, Achten WMJ. 2020.. Dockless e-scooter: a green solution for mobility? Comparative case study between dockless e-scooters, displaced transport, and personal e-scooters. . Sustainability 12:(5):1803
    [Crossref] [Google Scholar]
  33. 33.
    Severengiz S, Finke S, Schelte N, Forrister H. 2020.. Assessing the environmental impact of novel mobility services using shared electric scooters as an example. . Proc. Manuf. 43::8087
    [Google Scholar]
  34. 34.
    McQueen M, MacArthur J, Cherry C. 2020.. The e-bike potential: estimating regional e-bike impacts on greenhouse gas emissions. . Transp. Res. D 87::102482
    [Crossref] [Google Scholar]
  35. 35.
    Hu S, Chen P, Lin H, Xie C, Chen X. 2018.. Promoting carsharing attractiveness and efficiency: an exploratory analysis. . Transp. Res. D 65::22943
    [Crossref] [Google Scholar]
  36. 36.
    Meng L, Somenahalli S, Berry S. 2020.. Policy implementation of multi-modal (shared) mobility: review of a supply–demand value proposition canvas. . Transp. Rev. 40:(5):67084
    [Crossref] [Google Scholar]
  37. 37.
    Kapuku C, Kho SY, Kim DK, Cho SH. 2021.. Assessing and predicting mobility improvement of integrating bike-sharing into multimodal public transport systems. . Transp. Res. Rec. 2675:(11):20413
    [Crossref] [Google Scholar]
  38. 38.
    Fitch D, Mohiuddin H, Handy S. 2020.. Investigating the influence of dockless electric bike-share on travel behavior, attitudes, health, and equity. Rep. UC-ITS-2019-03 , Univ. Calif. Inst. Transp. Stud., Davis, CA:
    [Google Scholar]
  39. 39.
    Qiu LY, He LY. 2018.. Bike sharing and the economy, the environment, and health-related externalities. . Sustainability 10:(4):1145
    [Crossref] [Google Scholar]
  40. 40.
    Clockston RLM, Rojas-Rueda D. 2021.. Health impacts of bike-sharing systems in the U.S. . Environ. Res. 202::111709
    [Crossref] [Google Scholar]
  41. 41.
    Nijland H, van Meerkerk J. 2017.. Mobility and environmental impacts of car sharing in the Netherlands. . Environ. Innov. Soc. Transit. 23::8491
    [Crossref] [Google Scholar]
  42. 42.
    Noland RB, Smart MJ, Guo Z. 2016.. Bikeshare trip generation in New York City. . Transp. Res. A 94::16481
    [Google Scholar]
  43. 43.
    Gehrke SR, Sadeghinasr B, Wang Q, Reardon TG. 2021.. Patterns and predictors of dockless bikeshare trip generation and duration in Boston's suburbs. . Case Stud. Transp. Policy 9:(1):75666
    [Crossref] [Google Scholar]
  44. 44.
    Martinez LM, Viegas JM. 2017.. Assessing the impacts of deploying a shared self-driving urban mobility system: an agent-based model applied to the city of Lisbon, Portugal. . Int. J. Transp. Sci. Technol. 6:(1):1327
    [Crossref] [Google Scholar]
  45. 45.
    Bekka A, Louvet N, Adoue F. 2020.. Impact of a ridesourcing service on car ownership and resulting effects on vehicle kilometers travelled in the Paris Region. . Case Stud. Transp. Policy 8:(3):101018
    [Crossref] [Google Scholar]
  46. 46.
    Tirachini A, Chaniotakis E, Abouelela M, Antoniou C. 2020.. The sustainability of shared mobility: can a platform for shared rides reduce motorized traffic in cities?. Transp. Res. C 117::102707
    [Crossref] [Google Scholar]
  47. 47.
    Yu B, Ma Y, Xue M, Tang B, Wang B, et al. 2017.. Environmental benefits from ridesharing: a case of Beijing. . Appl. Energy 191::14152
    [Crossref] [Google Scholar]
  48. 48.
    Tirachini A, Gomez-Lobo A. 2019.. Does ride-hailing increase or decrease vehicle kilometers traveled (VKT)? A simulation approach for Santiago de Chile. . Int. J. Sustain. Transp. 14:(3):187204
    [Crossref] [Google Scholar]
  49. 49.
    Di X, Ban XJ. 2019.. A unified equilibrium framework of new shared mobility systems. . Transp. Res. B 129::5078
    [Crossref] [Google Scholar]
  50. 50.
    Lee JB, Byun W, Lee SH, Do M. 2014.. Correlation between optimal carsharing locations and carbon dioxide emissions in urban areas. . Int. J. Environ. Sci. Technol. 11:(8):231928
    [Crossref] [Google Scholar]
  51. 51.
    Ding N, Pan J, Zhang Z, Yang J. 2019.. Life cycle assessment of car sharing models and the effect on GWP of urban transportation: a case study of Beijing. . Sci. Total Environ. 688::113744
    [Crossref] [Google Scholar]
  52. 52.
    Kou Z, Wang X, Chiu SF, Cai H. 2020.. Quantifying greenhouse gas emissions reduction from bike share systems: a model considering real-world trips and transportation mode choice patterns. . Resour. Conserv. Recycl. 153::104534
    [Crossref] [Google Scholar]
  53. 53.
    Hollingsworth J, Copeland B, Johnson JX. 2019.. Are e-scooters polluters? The environmental impacts of shared dockless electric scooters. . Environ. Res. Lett. 14::084031
    [Crossref] [Google Scholar]
  54. 54.
    Greenblatt JB, Shaheen S. 2015.. Automated vehicles, on-demand mobility, and environmental impacts. . Curr. Sustain. Renew. Energy Rep. 2::7481
    [Google Scholar]
  55. 55.
    Gawron JH, Keoleian GA, De Kleine RD, Wallington TJ, Kim HC. 2019.. Deep decarbonization from electrified autonomous taxi fleets: life cycle assessment and case study in Austin, TX. . Transp. Res. D 73::13041
    [Crossref] [Google Scholar]
  56. 56.
    Okeke OB. 2020.. The impacts of shared autonomous vehicles on car parking space. . Case Stud. Transp. Policy 8:(4):130718
    [Crossref] [Google Scholar]
  57. 57.
    Silva D, Földes D, Csiszár C. 2021.. Autonomous vehicle use and urban space transformation: a scenario building and analysing method. . Sustainability 13:(6):3008
    [Crossref] [Google Scholar]
  58. 58.
    Diana M, Chicco A. 2022.. The spatial reconfiguration of parking demand due to car sharing diffusion: a simulated scenario for the cities of Milan and Turin (Italy). . J. Transp. Geogr. 98::103276
    [Crossref] [Google Scholar]
  59. 59.
    Krauss K, Krail M, Axhausen KW. 2022.. What drives the utility of shared transport services for urban travellers? A stated preference survey in German cities. . Travel Behav. Soc. 26::20620
    [Crossref] [Google Scholar]
  60. 60.
    Winter K, Cats O, Martens K, van Arem B. 2021.. Relocating shared automated vehicles under parking constraints: assessing the impact of different strategies for on-street parking. . Transportation 48:(4):193165
    [Crossref] [Google Scholar]
  61. 61.
    Ayaragarnchanakul E, Creutzig F, Javaid A, Puttanapong N. 2022.. Choosing a mode in Bangkok: room for shared mobility?. Sustainability 14:(15):9127
    [Crossref] [Google Scholar]
  62. 62.
    Liu Z, Li R, Dai J. 2022.. Effects and feasibility of shared mobility with shared autonomous vehicles: an investigation based on data-driven modeling approach. . Transp. Res. A 156::20626
    [Google Scholar]
  63. 63.
    Fayyaz M, González-González E, Nogués S. 2022.. Autonomous mobility: a potential opportunity to reclaim public spaces for people. . Sustainability 14:(3):1568
    [Crossref] [Google Scholar]
  64. 64.
    Tsavachidis M, Le Petit Y. 2022.. Re-shaping urban mobility—key to Europe's green transition. . J. Urban Mobil. 2::100014
    [Crossref] [Google Scholar]
  65. 65.
    González-González E, Cordera R, Stead D, Nogués S. 2023.. Envisioning the driverless city using backcasting and Q-methodology. . Cities 133::104159
    [Crossref] [Google Scholar]
  66. 66.
    Zhao Y, Ke J. 2021.. The impact of shared mobility services on housing values near subway stations. . Transp. Res. D 101::103097
    [Crossref] [Google Scholar]
  67. 67.
    Song J, Zhang L, Qin Z, Ramli MA. 2022.. Spatiotemporal evolving patterns of bike-share mobility networks and their associations with land-use conditions before and after the COVID-19 outbreak. . Phys. A 592::126819
    [Crossref] [Google Scholar]
  68. 68.
    Brown A, Howell A, Creger H. 2022.. Mobility for the people: evaluating equity requirements in shared mobility programs. Rep. NITC-RR-1401 , Natl. Inst. Transp. Communities, Washington, DC:
    [Google Scholar]
  69. 69.
    Jiao J, Wang F. 2021.. Shared mobility and transit-dependent population: a new equity opportunity or issue?. Int. J. Sustain. Transp. 15:(4):294305
    [Crossref] [Google Scholar]
  70. 70.
    Shaheen SA, Bell C, Cohen A, Yelchuru B. 2017.. Travel behavior: shared mobility and transportation equity. Rep. PL-18-007 , Fed. Highw. Adm., Dep. Transp., Washington, DC:
    [Google Scholar]
  71. 71.
    Wang X, Yan X, Zhao X, Cao Z. 2022.. Identifying latent shared mobility preference segments in low-income communities: ride-hailing, fixed-route bus, and mobility-on-demand transit. . Travel Behav. Soc. 26::13442
    [Crossref] [Google Scholar]
  72. 72.
    Mourad A, Puchinger J, Chu C. 2019.. A survey of models and algorithms for optimizing shared mobility. . Transp. Res. B 123::32346
    [Crossref] [Google Scholar]
  73. 73.
    Huang H, Bucher D, Kissling J, Weibel R, Raubal M. 2019.. Multimodal route planning with public transport and carpooling. . IEEE Trans. Intell. Transp. Syst. 20:(9):351225
    [Crossref] [Google Scholar]
  74. 74.
    Yu X, Miao H, Bayram A, Yu M, Chen X. 2021.. Optimal routing of multimodal mobility systems with ride-sharing. . Int. Trans. Oper. Res. 28:(3):116489
    [Crossref] [Google Scholar]
  75. 75.
    Ma TY. 2017.. On-demand dynamic bi-/multi-modal ride-sharing using optimal passenger-vehicle assignments. . In IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). Piscataway, NJ:: IEEE. https://doi.org/10.1109/EEEIC.2017.7977646
    [Google Scholar]
  76. 76.
    Auad-Perez R, Van Hentenryck P. 2022.. Ridesharing and fleet sizing for on-demand multimodal transit systems. . Transp. Res. C 138::103594
    [Crossref] [Google Scholar]
  77. 77.
    Lotfi S, Abdelghany K, Hashemi H. 2019.. Modeling framework and decomposition scheme for on-demand mobility services with ridesharing and transfer. . Comput.-Aided Civ. Infrastruct. Eng. 34:(1):2137
    [Crossref] [Google Scholar]
  78. 78.
    Simonetto A, Monteil J, Gambella C. 2019.. Real-time city-scale ridesharing via linear assignment problems. . Transp. Res. C 101::23138
    [Crossref] [Google Scholar]
  79. 79.
    Li Y, Chung SH. 2020.. Ride-sharing under travel time uncertainty: robust optimization and clustering approaches. . Comput. Ind. Eng. 149::106601
    [Crossref] [Google Scholar]
  80. 80.
    Lloret-Batlle R, Masoud N, Nam D. 2017.. Peer-to-peer ridesharing with ride-back on high-occupancy-vehicle lanes: toward a practical alternative mode for daily commuting. . Transp. Res. Rec. 2668:(1):2128
    [Crossref] [Google Scholar]
  81. 81.
    Tafreshian A, Masoud N. 2020.. Trip-based graph partitioning in dynamic ridesharing. . Transp. Res. C 114::53253
    [Crossref] [Google Scholar]
  82. 82.
    Stiglic M, Agatz N, Savelsbergh M, Gradisar M. 2015.. The benefits of meeting points in ride-sharing systems. . Transp. Res. B 82::3653
    [Crossref] [Google Scholar]
  83. 83.
    Wang X, Dessouky M, Ordonez F. 2016.. A pickup and delivery problem for ridesharing considering congestion. . Transp. Lett. 8:(5):25969
    [Google Scholar]
  84. 84.
    Bian Z, Liu X. 2019.. Mechanism design for first-mile ridesharing based on personalized requirements. Part II: Solution algorithm for large-scale problems. . Transp. Res. B 120::17292
    [Crossref] [Google Scholar]
  85. 85.
    Tafreshian A, Masoud N. 2020.. Using subsidies to stabilize peer-to-peer ridesharing markets with role assignment. . Transp. Res. C 120::102770
    [Crossref] [Google Scholar]
  86. 86.
    Wang X, Agatz N, Erera A. 2018.. Stable matching for dynamic ride-sharing systems. . Transp. Sci. 52:(4):85067
    [Crossref] [Google Scholar]
  87. 87.
    Armant V, Brown KN. 2020.. Fast optimised ridesharing: objectives, reformulations and driver flexibility. . Expert Syst. Appl. 141::112914
    [Crossref] [Google Scholar]
  88. 88.
    Yu Y, Wu Y, Wang J. 2019.. Bi-objective green ride-sharing problem: model and exact method. . Int. J. Prod. Econ. 208::47282
    [Crossref] [Google Scholar]
  89. 89.
    Li Y, Zheng Y, Zhang H, Chen L. 2015.. Traffic prediction in a bike-sharing system. . In 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ed. M Ali, Y Huang, M Gertz, M Renz, J Sankaranarayanan . New York:: Assoc. Comput. Mach. https://doi.org/10.1145/2820783.2820837
    [Google Scholar]
  90. 90.
    Macioszek E, Świerk P, Kurek A. 2020.. The bike-sharing system as an element of enhancing sustainable mobility—a case study based on a city in Poland. . Sustainability 12:(8):3285
    [Crossref] [Google Scholar]
  91. 91.
    Lin Z, Fan W. 2020.. Bicycle ridership using crowdsourced data: ordered probit model approach. . J. Transp. Eng. A 146:(8):04020076
    [Crossref] [Google Scholar]
  92. 92.
    Negahban A. 2019.. Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring. . Eur. J. Oper. Res. 277:(1):31732
    [Crossref] [Google Scholar]
  93. 93.
    Gammelli D, Peled I, Rodrigues F, Pacino D, Kurtaran HA, Pereira FC. 2020.. Estimating latent demand of shared mobility through censored Gaussian processes. . Transp. Res. C 120::102775
    [Crossref] [Google Scholar]
  94. 94.
    Lin YC. 2022.. A demand-centric repositioning strategy for bike-sharing systems. . Sensors 22:(15):5580
    [Crossref] [Google Scholar]
  95. 95.
    Rixey R. 2013.. Station-level forecasting of bikesharing ridership: station network effects in three U.S. systems. . Transp. Res. Rec. 2387:(1):4655
    [Crossref] [Google Scholar]
  96. 96.
    Li A, Gao K, Zhao P, Qu X, Axhausen KW. 2021.. High-resolution assessment of environmental benefits of dockless bike-sharing systems based on transaction data. . J. Clean. Prod. 296::126423
    [Crossref] [Google Scholar]
  97. 97.
    Kalliga V. 2021.. Who does new trips and why? An analysis towards the modelling of induced demand. Master's Thesis , Tech. Univ. Munich, Munich, Ger:.
    [Google Scholar]
  98. 98.
    Stam B, van Oort N, van Strijp-Harms HJ, van der Spek SC, Hoogendoorn SP. 2021.. Travellers’ preferences towards existing and emerging means of first/last mile transport: a case study for the Almere centrum railway station in the Netherlands. . Eur. Transp. Res. Rev. 13:(1):56
    [Crossref] [Google Scholar]
  99. 99.
    Bala H, Anowar S, Chng S, Cheah L. 2023.. Review of studies on public acceptability and acceptance of shared autonomous mobility services: past, present and future. . Transp. Rev. 43:(5):97096
    [Crossref] [Google Scholar]
  100. 100.
    Chaudhry AG, Masoumi H, Dienel HL. 2023.. A systematic literature review of mobility attitudes and mode choices: MENA and South Asian cities. . Front. Sustain. Cities 4::1085784
    [Crossref] [Google Scholar]
  101. 101.
    Li W. 2019.. A mode choice study on shared mobility services: policy opportunities for a developing country. PhD Thesis , Univ. Coll. London, London:
    [Google Scholar]
  102. 102.
    Roukouni A, de Almeida Correia GH. 2020.. Evaluation methods for the impacts of shared mobility: classification and critical review. . Sustainability 12:(24):10504
    [Crossref] [Google Scholar]
  103. 103.
    Tzouras PG, Mitropoulos L, Stavropoulou E, Antoniou E, Koliou K, et al. 2023.. Agent-based models for simulating e-scooter sharing services: a review and a qualitative assessment. . Int. J. Transp. Sci. Technol. 12:(1):7185
    [Crossref] [Google Scholar]
  104. 104.
    Liu J, Kockelman KM, Boesch PM, Ciari F. 2017.. Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation. . Transportation 44:(6):126178
    [Crossref] [Google Scholar]
  105. 105.
    Clewlow RR, Mishra GS. 2017.. Disruptive transportation: the adoption, utilization, and impacts of ride-hailing in the United States. Rep. UCD-ITS-RR-17-07 , Inst. Transp. Studies, Univ. Calif., Davis, CA:
    [Google Scholar]
  106. 106.
    Saltykova K, Ma X, Yao L, Kong H. 2022.. Environmental impact assessment of bike-sharing considering the modal shift from public transit. . Transp. Res. D 105::103238
    [Crossref] [Google Scholar]
  107. 107.
    Hu JW, Creutzig F. 2022.. A systematic review on shared mobility in China. . Int. J. Sustain. Transp. 16:(4):37489
    [Crossref] [Google Scholar]
  108. 108.
    Ciari F, Becker H. 2017.. How disruptive can shared mobility be? A scenario-based evaluation of shared mobility systems implemented at large scale. . In Disrupting Mobility, ed. G Meyer, S Shaheen , pp. 5163. Cham, Switz:.: Springer
    [Google Scholar]
  109. 109.
    Martinez LM, de Almeida Correia GH, Moura F, Lopes MM. 2017.. Insights into carsharing demand dynamics: outputs of an agent-based model application to Lisbon, Portugal. . Int. J. Sustain. Transp. 11:(2):14859
    [Crossref] [Google Scholar]
  110. 110.
    Martínez LM, Viegas JM, Eiró T. 2014.. Formulating a new express minibus service design problem as a clustering problem. . Transp. Sci. 49:(1):8598
    [Crossref] [Google Scholar]
  111. 111.
    Cich G, Knapen L, Maciejewski M, Yasar AUH, Bellemans T, Janssens D. 2017.. Modeling demand responsive transport using SARL and MATSim. . Proc. Comput. Sci. 109::107479
    [Crossref] [Google Scholar]
  112. 112.
    Gadepalli R, Tiwari G, Bolia N. 2020.. Role of user's socio-economic and travel characteristics in mode choice between city bus and informal transit services: lessons from household surveys in Visakhapatnam, India. . J. Transp. Geogr. 88::102307
    [Crossref] [Google Scholar]
  113. 113.
    Ko E, Kim H, Lee J. 2021.. Survey data analysis on intention to use shared mobility services. . J. Adv. Transp. 2021::5585542
    [Crossref] [Google Scholar]
  114. 114.
    Doody BJ, Schwanen T, Loorbach DA, Oxenaar S, Arnfalk P, et al. 2022.. Entering, enduring and exiting: the durability of shared mobility arrangements and habits. . Mobilities 17:(4):484500
    [Crossref] [Google Scholar]
  115. 115.
    Bösehans G, Bell M, Thorpe N, Liao F, de Almeida Correia GH, Dissanayake D. 2023.. eHUBs—identifying the potential early and late adopters of shared electric mobility hubs. . Int. J. Sustain. Transp. 17:(3):199218
    [Crossref] [Google Scholar]
  116. 116.
    Aboutorabi Kashani M, Abbasi M, Mamdoohi AR, Sierpiński G. 2023.. The role of attitude, travel-related, and socioeconomic characteristics in modal shift to shared autonomous vehicles with ride sharing. . World Electr. Veh. J. 14:(23):23
    [Crossref] [Google Scholar]
  117. 117.
    Jie F, Standing C, Biermann S, Standing S, Le T. 2021.. Factors affecting the adoption of shared mobility systems: evidence from Australia. . Res. Transp. Bus. Manag. 41::100651
    [Google Scholar]
  118. 118.
    Ma X, Yuan Y, Van Oort N, Hoogendoorn S. 2020.. Bike-sharing systems’ impact on modal shift: a case study in Delft, the Netherlands. . J. Clean. Prod. 259::120846
    [Crossref] [Google Scholar]
  119. 119.
    Campbell KB, Brakewood C. 2017.. Sharing riders: how bikesharing impacts bus ridership in New York City. . Transp. Res. A 100::26482
    [Google Scholar]
  120. 120.
    Liao F, Correia G. 2022.. Electric carsharing and micromobility: a literature review on their usage pattern, demand, and potential impacts. . Int. J. Sustain. Transp. 16:(3):26986
    [Crossref] [Google Scholar]
  121. 121.
    Li W, Kamargianni M. 2020.. Steering short-term demand for car-sharing: a mode choice and policy impact analysis by trip distance. . Transportation 47:(5):223365
    [Crossref] [Google Scholar]
  122. 122.
    Winter K, Cats O, Martens K, van Arem B. 2017.. Stated choice experiment on mode choice in an era of free-floating carsharing and shared autonomous vehicles: raw data. Paper presented at the 96th Annual Meeting of the Transportation Research Board, Washington, DC:, Jan. 8–12
    [Google Scholar]
  123. 123.
    Vélez AMA, Plepys A. 2021.. Car sharing as a strategy to address GHG emissions in the transport system: evaluation of effects of car sharing in Amsterdam. . Sustainability 13:(4):2418
    [Crossref] [Google Scholar]
  124. 124.
    Doulabi S, Hassan HM, Li B. 2023.. Senior Americans’ perceptions, attitudes, and safety concerns toward autonomous vehicles (AVs). . J. Saf. Res. 84::21831
    [Crossref] [Google Scholar]
  125. 125.
    Patel RK, Etminani-Ghasrodashti R, Kermanshachi S, Rosenberger JM, Pamidimukkala A, Foss A. 2023.. Identifying individuals’ perceptions, attitudes, preferences, and concerns of shared autonomous vehicles: during- and post-implementation evidence. . Transp. Res. Interdiscip. Perspect. 18::100785
    [Google Scholar]
  126. 126.
    Etminani-Ghasrodashti R, Kermanshachi S, Rosenberger JM, Foss A. 2023.. Exploring motivating factors and constraints of using and adoption of shared autonomous vehicles (SAVs). . Transp. Res. Interdiscip. Perspect. 18::100794
    [Google Scholar]
  127. 127.
    Butler L, Yigitcanlar T, Paz A, Areed W. 2022.. How can smart mobility bridge the first/last mile gap? Empirical evidence on public attitudes from Australia. . J. Transp. Geogr. 104::103452
    [Crossref] [Google Scholar]
  128. 128.
    Zhao R, Yang L, Liang X, Guo Y, Lu Y, et al. 2019.. Last-mile travel mode choice: data-mining hybrid with multiple attribute decision making. . Sustainability 11:(23):6733
    [Crossref] [Google Scholar]
  129. 129.
    Mohammadzadeh M. 2021.. Sharing or owning autonomous vehicles? Comprehending the role of ideology in the adoption of autonomous vehicles in the society of automobility. . Transp. Res. Interdiscip. Perspect. 9::100294
    [Google Scholar]
  130. 130.
    Christensen TH, Friis F, Nielsen MV. 2022.. Shifting from ownership to access and the future for MaaS: insights from car sharing practices in Copenhagen. . Case Stud. Transp. Policy 10:(2):84150
    [Crossref] [Google Scholar]
  131. 131.
    Jain T, Rose G, Johnson M. 2022.. Changes in private car ownership associated with car sharing: gauging differences by residential location and car share typology. . Transportation 49:(2):50327
    [Crossref] [Google Scholar]
  132. 132.
    van Kuijk RJ, de Almeida Correia GH, van Oort N, van Arem B. 2022.. Preferences for first and last mile shared mobility between stops and activity locations: a case study of local public transport users in Utrecht, the Netherlands. . Transp. Res. A 166::285306
    [Google Scholar]
  133. 133.
    Rongen T, Tillema T, Arts J, Alonso-González MJ, Witte JJ. 2022.. An analysis of the mobility hub concept in the Netherlands: historical lessons for its implementation. . J. Transp. Geogr. 104::103419
    [Crossref] [Google Scholar]
  134. 134.
    Blad K, de Almeida Correia GH, van Nes R, Annema JA. 2022.. A methodology to determine suitable locations for regional shared mobility hubs. . Case Stud. Transp. Policy 10:(3):190416
    [Crossref] [Google Scholar]
  135. 135.
    Tuffour JP. 2022.. Contested mobility interactions: characterizing the influence of ride-sharing services on the adoption and use of public transit system. . Case Stud. Transp. Policy 10:(4):222943
    [Crossref] [Google Scholar]
  136. 136.
    Horjus JS, Gkiotsalitis K, Nijënstein S, Geurs KT. 2022.. Integration of shared transport at a public transport stop: mode choice intentions of different user segments at a mobility hub. . J. Urban Mobil. 2::100026
    [Crossref] [Google Scholar]
  137. 137.
    Bhatnagar S, Rambha T, Ramadurai G. 2022.. An agent-based fleet management model for first- and last-mile services. . Transportation 51::8971013
    [Google Scholar]
  138. 138.
    Arias-Molinares D, García-Palomares JC. 2020.. Shared mobility development as key for prompting mobility as a service (MaaS) in urban areas: the case of Madrid. . Case Stud. Transp. Policy 8:(3):84659
    [Crossref] [Google Scholar]
  139. 139.
    Wong YZ. 2020.. Mobility as a service (MaaS): charting a future context. . Transp. Res. A 131::519
    [Google Scholar]
  140. 140.
    Zhao X, Andruetto C, Vaddadi B, Pernestål A. 2021.. Potential values of MaaS impacts in future scenarios. . J. Urban Mobil. 1::100005
    [Crossref] [Google Scholar]
  141. 141.
    Smith G, Sochor J, Karlsson ICM. 2020.. Intermediary MaaS integrators: a case study on hopes and fears. . Transp. Res. A 131::16377
    [Google Scholar]
  142. 142.
    Coutinho FM, van Oort N, Christoforou Z, Alonso-González MJ, Cats O, Hoogendoorn S. 2020.. Impacts of replacing a fixed public transport line by a demand responsive transport system: case study of a rural area in Amsterdam. . Res. Transp. Econ. 83::100910
    [Crossref] [Google Scholar]
  143. 143.
    Wu H, Avner P, Boisjoly G, Braga CKV, El-Geneidy A, et al. 2021.. Urban access across the globe: an international comparison of different transport modes. . npj Urban Sustain. 1:(1):16
    [Crossref] [Google Scholar]
  144. 144.
    Fleming KL. 2018.. Social equity considerations in the new age of transportation: electric, automated, and shared mobility. . J. Sci. Policy Gov. 13:(1). https://www.sciencepolicyjournal.org/uploads/5/4/3/4/5434385/fleming.pdf
    [Google Scholar]
  145. 145.
    ITF (Int. Transp. Forum). 2023.. ITF Transport Outlook 2023. Paris:: Org. Econ. Coop. Dev.
    [Google Scholar]
  146. 146.
    Jaller M, Otero-Palencia C, Pahwa A. 2020.. Automation, electrification, and shared mobility in urban freight: opportunities and challenges. . Transp. Res. Proc. 46::1320
    [Google Scholar]
  147. 147.
    Hasselwander M, Nieland S, Dematera-Contreras K, Goletz M. 2023.. MaaS for the masses: potential transit accessibility gains and required policies under Mobility-as-a-Service. . Multimodal Transp. 2:(3):100086
    [Crossref] [Google Scholar]
  148. 148.
    U.N. High-Level Champions. 2021.. Upgrading our systems together: a global challenge to accelerate sector breakthroughs for COP26—and beyond. 2030 Breakthr. Rep. , U.N. Framew. Conv. Clim. Change, Bonn, Ger.:
    [Google Scholar]
  149. 149.
    Petrik O, Martínez LM, Furtado F, Kauppila J. 2018.. Are transport users willing to share? Focus groups and stated preferences study on shared mobility in Auckland, NZ, Dublin, IR, and Helsinki, FI. Paper presented at the 97th Annual Meeting of the Transportation Research Board, Washington, DC:, Jan. 7–11
    [Google Scholar]
/content/journals/10.1146/annurev-environ-121522-041916
Loading
/content/journals/10.1146/annurev-environ-121522-041916
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error