1932

Abstract

We review the functioning and sustainability of coastal marshes and mangroves. Urbanized humans have a 7,000-year-old enduring relationship to coastal wetlands. Wetlands include marshes, salt flats, and saline and freshwater forests. Coastal wetlands occur in all climate zones but are most abundant in deltas. Mangroves are tropical, whereas marshes occur from tropical to boreal areas. Quantification of coastal wetland areas has advanced in recent years but is still insufficiently accurate. Climate change and sea-level rise are predicted to lead to significant wetland losses and other impacts on coastal wetlands and the humans associated with them. Landward migration and coastal retreat are not expected to significantly reduce coastal wetland losses. Nitrogen watershed inputs are unlikely to alter coastal marsh stability because watershed loadings are mostly significantly lower than those in fertilization studies that show decreased belowground biomass and increased decomposition of soil organic matter. Blue carbon is not expected to significantly reduce climate impacts. The high values of ecosystem goods and services of wetlands are expected to be reduced by area losses. Humans have had strong impacts on coastal wetlands in the Holocene, and these impacts are expected to increase in the Anthropocene.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-121922-041109
2024-10-18
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-121922-041109.html?itemId=/content/journals/10.1146/annurev-environ-121922-041109&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wolanski E, Day JW, Elliott M, Ramesh R, eds. 2019.. Coasts and Estuaries: The Future. Amsterdam:: Elsevier
    [Google Scholar]
  2. 2.
    Crump B, Testa J, Dunton K, eds. 2022.. Estuarine Ecology. New York:: Wiley. , 3rd ed..
    [Google Scholar]
  3. 3.
    Ibáñez C, Caiola N, Barquín J, Belmar O, Benito-Granell X, et al. 2023.. Ecosystem-level effects of re-oligotrophication and N:P imbalances in rivers and estuaries on a global scale. . Glob. Change Biol. 29::124866
    [Crossref] [Google Scholar]
  4. 4.
    Twilley R, Rovai A, Krauss K. 2023.. Mangrove wetlands. . In Estuarine Ecology, ed. B Crump, J Testa, K Dunton , pp. 15380. New York:: Wiley. , 3rd ed..
    [Google Scholar]
  5. 5.
    Mitsch WJ, Gosselink JG. 2015.. Wetlands. Hoboken, NJ:: Wiley
    [Google Scholar]
  6. 6.
    Day JW, Yáñez-Arancibia A, eds. 2013.. Gulf of Mexico Origin, Waters, and Biota, Vol. 4: Ecosystem-Based Management. College Station, TX:: Texas A&M Univ. Press
    [Google Scholar]
  7. 7.
    Wolanski E, McLusky DS, eds. 2011.. Treatise on Estuarine and Coastal Science. Amsterdam:: Academic
    [Google Scholar]
  8. 8.
    Gunn JD, Day JW, Folan WJ, Moerschbaecher M. 2019.. Geo-cultural time: advancing human societal complexity within worldwide constraint bottlenecks—a chronological/helical approach to understanding human–planetary interactions. . Biophys. Econ. Resour. Q. 4::10
    [Crossref] [Google Scholar]
  9. 9.
    Day JW, Boesch D, Clairain E, Kemp P, Laska S, Mitsch W, et al. 2007.. Restoration of the Mississippi Delta: lessons from Hurricanes Katrina and Rita. . Science 315::167984
    [Crossref] [Google Scholar]
  10. 10.
    Day JW, Yáñez-Arancibia A, Rybczyk JM. 2012.. Climate change effects, causes, consequences: physical, hydromorphological, ecophysiological, and biogeographical changes. . Estuar. Treatise 8::30315
    [Google Scholar]
  11. 11.
    Stanley DJ, Warne AG. 1993.. Sea level and initiation of predynastic culture in the Nile Delta. . Nature 363::43538
    [Crossref] [Google Scholar]
  12. 12.
    Stanley DJ, Warne AG. 1994.. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. . Science 265::22831
    [Crossref] [Google Scholar]
  13. 13.
    Stanley DJ, Warne AG. 1997.. Holocene sea-level change and early human utilization of deltas. . GSA Today 7::17
    [Google Scholar]
  14. 14.
    Chen Z, Zong Y, Wang Z, Chen J, Wang H. 2008.. Migration patterns of Neolithic settlements on the abandoned Yellow and Yangtze River deltas of China. . Quat. Res. 70::30114
    [Crossref] [Google Scholar]
  15. 15.
    Colten CE, Day JW. 2018.. Resilience of natural systems and human communities in the Mississippi Delta: moving beyond adaptability due to shifting baselines. . In Sustainable Coastal Design and Planning, ed. E Mossop , pp. 20922. Boca Raton, FL:: CRC
    [Google Scholar]
  16. 16.
    Arnaud-Fassetta G, Landuré C. 2015.. Le risque fluvial en milieu rural de l’époque grecque au haut Moyen Âge: le cas du delta du Rhône (France). . In La géoarchéologie française au XXie siècle, ed. N Carcaud, G Arnaud-Fassetta , pp. 21536. Paris:: CNRS
    [Google Scholar]
  17. 17.
    Day JW, Domínguez ALL, Herrera-Silveria J, Kemp GP. 2019.. Climate change in areas of the Gulf of Mexico with high freshwater input—a review of impacts and potential mitigation. . JAINA 1::87108
    [Crossref] [Google Scholar]
  18. 18.
    Syvitski J, Waters CN, Day JW, Milliman JD, Summerhayes C, et al. 2020.. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. . Commun. Earth Environ. 1::32
    [Crossref] [Google Scholar]
  19. 19.
    Day JW, Gunn JD, Burger JR. 2021.. Diminishing opportunities for sustainability of coastal cities in the Anthropocene: a review. . Front. Environ. Sci. 9::663275
    [Crossref] [Google Scholar]
  20. 20.
    Steffen W, Richardson K, Rockström J, Schellnhuber HJ, Dube OP, et al. 2020.. The emergence and evolution of Earth system science. . Nat. Rev. Earth Environ. 1::5463
    [Crossref] [Google Scholar]
  21. 21.
    Day JW, Hall CA, Klitgaard K, Gunn JD, Ko J, Burger JR. 2023.. The coming perfect storm: diminishing sustainability of coastal human-natural systems in the Anthropocene. . Camb. Prisms Coast. Futures 1::e35
    [Crossref] [Google Scholar]
  22. 22.
    Lugo AE, Snedaker SC. 1974.. The ecology of mangroves. . Annu. Rev. Ecol. Syst. 5::3964
    [Crossref] [Google Scholar]
  23. 23.
    Duke NC, Benzie JA, Goodall JA, Ballment ER. 1998.. Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. . Evolution 52::161226
    [Crossref] [Google Scholar]
  24. 24.
    Twilley R, Day JW. 2013.. Mangrove wetlands. . In Estuarine Ecology, ed. J Day, B Crump, M Kemp, A Yáñez , pp. 165202. New York:: Wiley. , 2nd ed..
    [Google Scholar]
  25. 25.
    Chapman VJ. 1960.. Salt Marshes and Salt Deserts of the World. New York:: Interscience
    [Google Scholar]
  26. 26.
    Baldwin AH, Barendregt A, Whigham DF. 2009.. Tidal freshwater wetlands, an introduction to the ecosystem. . In Tidal Freshwater Wetlands, ed. A Barendregt, DF Whigham, AH Baldwin , pp. 110. Leiden/Weikersheim, Neth:.: Backhuys
    [Google Scholar]
  27. 27.
    Mitchell MK, Ballard BM, Visser JM, Brasher MG, Redeker EJ. 2014.. Delineation of coastal marsh types along the central Texas coast. . Wetlands 34::65360
    [Crossref] [Google Scholar]
  28. 28.
    Zhang X, Liu L, Zhao T, Chen X, Lin S, et al. 2023.. GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020. . Earth Syst. Sci. Data 15::26593
    [Crossref] [Google Scholar]
  29. 29.
    Field DW, Reyer A, Genovese P, Shearer B. 1991.. Coastal Wetlands of the United States: An Accounting of a Valuable National Resource. Rockville, MD:: Natl. Ocean. Atmos. Adm.
    [Google Scholar]
  30. 30.
    Hartley SB, Couvillion BR, Enwright NM. 2017.. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013. Sci. Investig. Rep. 2017-5044 , US Geol. Surv., Reston, VA:
    [Google Scholar]
  31. 31.
    Sasser CE, Visser JM, Mouton E, Linscombe J, Hartley SB. 2014.. Vegetation types in coastal Louisiana in 2013. Sci. Investig. Map 3290 , US Geol. Surv., Lafayette, LA:
    [Google Scholar]
  32. 32.
    Edmonds DA, Caldwell RL, Brondizio ES, Siani SMO. 2020.. Coastal flooding will disproportionately impact people on river deltas. . Nat. Commun. 11::4741
    [Crossref] [Google Scholar]
  33. 33.
    Bunting P, Rosenqvist A, Hilarides L, Lucas RM, Thomas N, Tadono T, et al. 2022.. Global mangrove extent change 1996–2020: Global Mangrove Watch version 3.0. . Remote Sens. 14::3657
    [Crossref] [Google Scholar]
  34. 34.
    Mcowen CJ, Weatherdon LV, Van Bochove J-W, Sullivan E, Blyth S, et al. 2017.. A global map of saltmarshes. . Biodivers. Data J. 5::e11764
    [Crossref] [Google Scholar]
  35. 35.
    Syvitski JE, Anthony Y, Saito F, Zainescu J, Day J, et al. 2022.. Large deltas, small deltas: toward a more rigorous understanding of coastal marine deltas. . Glob. Planet. Change 218::103958
    [Crossref] [Google Scholar]
  36. 36.
    Worthington TA, zu Ermgassen PSE, Friess DA, Krauss W, Lovelock CE, et al. 2020.. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. . Sci. Rep. 10::14652
    [Crossref] [Google Scholar]
  37. 37.
    Thom BG. 1982.. Mangrove ecology—a geomorphological perspective. . In Mangrove Ecosystems in Australia: Structure, Function and Management, ed. BF Clough , pp. 317. Canberra:: Aust. Natl. Univ. Press
    [Google Scholar]
  38. 38.
    Woodroffe CD, Rogers K, McKee KL, Lovelock CE, Mendelssohn IA, Saintilan N. 2016.. Mangrove sedimentation and response to relative sea-level rise. . Annu. Rev. Mar. Sci. 8::24366
    [Crossref] [Google Scholar]
  39. 39.
    Murray NJ, Worthington TA, Bunting P, Duce S, Hagger V, et al. 2022.. High-resolution mapping of losses and gains of Earth's tidal wetlands. . Science 376::74449
    [Crossref] [Google Scholar]
  40. 40.
    Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, et al. 2007.. A world without mangroves?. Science 317::4142
    [Crossref] [Google Scholar]
  41. 41.
    Fox-Kemper B, Hewitt HT, Xiao C, Aðalgeirsdóttir G, Drijfhout SS, et al. 2021.. Ocean, cryosphere and sea level change. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al. , pp. 1211362. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  42. 42.
    Sweet WV, Hamlington BD, Kopp RE, Weaver CP, Barnard PL, et al. 2022.. Global and regional sea level rise scenarios for the United States: updated mean projections and extreme water level probabilities along U.S. coastlines. Tech. Rep. 01 , Natl. Ocean. Atmos. Adm., Natl. Ocean Serv., Silver Spring, MD:
    [Google Scholar]
  43. 43.
    Rogers K. 2021.. Accommodation space as a framework for assessing the response of mangroves to relative sea-level rise. . Singap. J. Trop. Geogr. 42::16383
    [Crossref] [Google Scholar]
  44. 44.
    Törnqvist TE, Cahoon DR, Morris JT, Day JW. 2021.. Coastal wetland resilience, accelerated sea-level rise, and the importance of timescale. . AGU Adv. 2::e2020AV000334
    [Crossref] [Google Scholar]
  45. 45.
    Schlager W. 1993.. Accommodation and supply—a dual control on stratigraphic sequences. . Sediment. Geol. 86::11136
    [Crossref] [Google Scholar]
  46. 46.
    McKee KL. 2011.. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. . Estuar. Coast. Shelf Sci. 91::47583
    [Crossref] [Google Scholar]
  47. 47.
    Cahoon DR, McKee KL, Morris JT. 2021.. How plants influence resilience of salt marsh and mangrove wetlands to sea-level rise. . Estuar. Coasts 44::88398
    [Crossref] [Google Scholar]
  48. 48.
    French J. 2006.. Tidal marsh sedimentation and resilience to environmental change: exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. . Mar. Geol. 235::11936
    [Crossref] [Google Scholar]
  49. 49.
    Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N, et al. 2014.. How mangrove forests adjust to rising sea level. . New Phytol. 202::1934
    [Crossref] [Google Scholar]
  50. 50.
    Törnqvist TE, Jankowski KL, Li Y-X, González JL. 2020.. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. . Sci. Adv. 6::eaaz5512
    [Crossref] [Google Scholar]
  51. 51.
    Horton BP, Shennan I, Bradley SL, Cahill N, Kirwan M, et al. 2018.. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. . Nat. Commun. 9::2687
    [Crossref] [Google Scholar]
  52. 52.
    Saintilan N, Kovalenko KE, Guntenspergen G, Rogers K, Lynch JC, et al. 2022.. Constraints on the adjustment of tidal marshes to accelerating sea level rise. . Science 377::52327
    [Crossref] [Google Scholar]
  53. 53.
    Morris JT, Barber DC, Callaway JC, Chambers R, Hagen SC, et al. 2016.. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. . Earth's Future 4::11021
    [Crossref] [Google Scholar]
  54. 54.
    Saintilan N, Khan N, Ashe E, Kelleway J, Rogers K, et al. 2020.. Thresholds of mangrove survival under rapid sea level rise. . Science 368::111821
    [Crossref] [Google Scholar]
  55. 55.
    Couvillion BR, Beck H, Schoolmaster D, Fischer M. 2017.. Land area change in coastal Louisiana 1932 to 2016. Sci. Investig. Map 3381 , US Geol. Surv., Reston, VA:
    [Google Scholar]
  56. 56.
    Enwright NM, Griffith KT, Osland MJ. 2016.. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. . Front. Ecol. Environ. 14::30716
    [Crossref] [Google Scholar]
  57. 57.
    Borchert SM, Osland MJ, Enwright NM, Griffith KT. 2018.. Coastal wetland adaptation to sea-level rise: quantifying the potential for landward migration and coastal squeeze in northern Gulf of Mexico estuaries. . J. Appl. Ecol. 55::287687
    [Crossref] [Google Scholar]
  58. 58.
    Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C, et al. 2018.. Future response of global coastal wetlands to sea-level rise. . Nature 561::23134
    [Crossref] [Google Scholar]
  59. 59.
    Osland MJ, Chivoiu B, Enwright NM, Thorne KM, Guntenspergen GR, et al. 2022.. Migration and transformation of coastal wetlands in response to rising seas. . Sci. Adv. 8::eabo5174
    [Crossref] [Google Scholar]
  60. 60.
    Torio DD, Chmura GL. 2013.. Assessing coastal squeeze of tidal wetlands. . J. Coast. Res. 29::104961
    [Crossref] [Google Scholar]
  61. 61.
    Mills M, Leon JX, Saunders MI, Bell J, Liu Y, et al . 2016.. Reconciling development and conservation under coastal squeeze from rising sea level. . Conserv. Lett. 9::36168
    [Crossref] [Google Scholar]
  62. 62.
    Lovelock CE, Krauss KW, Osland MJ, Reef R, Ball MC. 2016.. The physiology of mangrove trees with changing climate. . In Tropical Tree Physiology: Adaptations and Responses in a Changing Environment, ed. G Goldstein, LS Santiago , pp. 14979. New York:: Springer
    [Google Scholar]
  63. 63.
    Lovelock CE, Feller IC, Reef R, Hickey S, Ball MC. 2017.. Mangrove dieback during fluctuating sea levels. . Sci. Rep. 7::1680
    [Crossref] [Google Scholar]
  64. 64.
    Alber M, Swenson EM, Adamowicz SC, Mendelssohn IA. 2008.. Salt marsh dieback: an overview of recent events in the US. . Estuar. Coast. Shelf Sci. 80::111
    [Crossref] [Google Scholar]
  65. 65.
    Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT. 2018.. Mangrove mortality in a changing climate: an overview. . Estuar. Coast. Shelf Sci. 215::24149
    [Crossref] [Google Scholar]
  66. 66.
    Osland MJ, Feher LC, Griffith KT, Cavanaugh KC, Enwright NM, et al. 2017.. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. . Ecol. Monogr. 87::34159
    [Crossref] [Google Scholar]
  67. 67.
    Cavanaugh KC, Dangremond EM, Doughty CL, Williams AP, Parker JD, et al. 2019.. Climate-driven regime shifts in a mangrove-salt marsh ecotone over the past 250 years. . PNAS 116::216028
    [Crossref] [Google Scholar]
  68. 68.
    Osland MJ, Feher LC, Anderson GH, Vervaeke WC, Krauss KW, et al. 2020.. A tropical cyclone-induced ecological regime shift: mangrove conversion to mudflat in Florida's Everglades National Park (Florida, USA). . Wetlands 40::144558
    [Crossref] [Google Scholar]
  69. 69.
    Lagomasino D, Fatoyinbo T, Castañeda-Moya E, Cook BD, Montesano PM, et al. 2021.. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. . Nat. Commun. 12::4003
    [Crossref] [Google Scholar]
  70. 70.
    Stagg CL, Osland MJ, Moon JA, Feher LC, Laurenzano C, et al. 2021.. Extreme precipitation and flooding contribute to sudden vegetation dieback in a coastal salt marsh. . Plants 10::1841
    [Crossref] [Google Scholar]
  71. 71.
    Kirwan ML, Gedan KB. 2019.. Sea-level driven land conversion and the formation of ghost forests. . Nat. Clim. Change 9::45057
    [Crossref] [Google Scholar]
  72. 72.
    Osland MJ, Enwright EN, Stagg CL. 2014.. Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient. . Ecology 95::2789802
    [Crossref] [Google Scholar]
  73. 73.
    Emanuel K. 2005.. Increasing destructiveness of tropical cyclones over the last 30 years. . Nature 436::68688
    [Crossref] [Google Scholar]
  74. 74.
    Hoyos C, Agudelo P, Webster P, Cury J. 2006.. Deconvolution of the factors contributing to the increase in global hurricane intensity. . Science 312::9497
    [Crossref] [Google Scholar]
  75. 75.
    Pfeffer WT, Harper JT, O'Neel S. 2008.. Kinematic constraints on glacier contributions to 21st-century sea-level rise. . Science 321::134043
    [Crossref] [Google Scholar]
  76. 76.
    Vermeer M, Rahmstorf S. 2009.. Global sea level linked to global temperature. . PNAS 106::2152732
    [Crossref] [Google Scholar]
  77. 77.
    Kaufmann RK, Kauppi H, Mann ML, Stock JH. 2011.. Reconciling anthropogenic climate change with observed temperature 1998–2008. . PNAS 108::1179093
    [Crossref] [Google Scholar]
  78. 78.
    Pall P, Aina T, Stone DA, Stott PA, Nozawa T, et al. 2011.. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. . Nature 470::38285
    [Crossref] [Google Scholar]
  79. 79.
    Horton BP, Rahmstorf S, Engelhart SE, Kemp AC. 2014.. Expert assessment of sea-level rise by AD 2100 and AD 2300. . Quat. Sci. Rev. 84::16
    [Crossref] [Google Scholar]
  80. 80.
    Mei J, Nelson LC, Leung R, Kwok TK, Lam JWY, Tang BZ. 2015.. Aggregation-induced emission: Together we shine, united we soar!. Chem. Rev. 115::11718940
    [Crossref] [Google Scholar]
  81. 81.
    DeConto RM, Pollard D. 2016.. Contribution of Antarctica to past and future sea-level rise. . Nature 531::59197
    [Crossref] [Google Scholar]
  82. 82.
    Intergov. Panel Clim. Change. 2022.. Climate Change 2022: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, ed. H-O Pörtner, DC Roberts, MMB Tignor, E Poloczanska, K Mintenbeck, et al . Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  83. 83.
    Xu C, Kohler TA, Lenton TM, Svenning JC, Scheffer M. 2020.. Future of the human climate niche. . PNAS 117::1135055
    [Crossref] [Google Scholar]
  84. 84.
    Mora C, Dousset B, Caldwell IR, Powell FE, Geronimo RC, et al. 2017.. Global risk of deadly heat. . Nat. Clim. Change 7::5016
    [Crossref] [Google Scholar]
  85. 85.
    Loeb NG, Johnson GC, Thorsen TJ, Lyman JM, Rose FG, Kato S. 2021.. Satellite and ocean data reveal marked increase in Earth's heating rate. . Geophys. Res. Lett. 48::e2021GL093047
    [Crossref] [Google Scholar]
  86. 86.
    Hill RW, Muhich TE, Humphries MM. 2013.. City-scale expansion of human thermoregulatory costs. . PLOS ONE 8::e76238
    [Crossref] [Google Scholar]
  87. 87.
    Hammond ST, Brown JH, Burger JR, Flanagan TP, Fristoe TS, et al. 2015.. Food spoilage, storage, and transport: implications for a sustainable future. . BioScience 65::75868
    [Crossref] [Google Scholar]
  88. 88.
    Oliver EC, Benthuysen JA, Darmaraki S, Donat MG, Hobday AJ, et al. 2021.. Marine heatwaves. . Annu. Rev. Mar. Sci. 13::31342
    [Crossref] [Google Scholar]
  89. 89.
    Syvitski JPM, Kettner AJ, Overeem I, Hutton E, Hannon MT, et al. 2009.. Sinking deltas due to human activities. . Nat. Geosci. 2::68186
    [Crossref] [Google Scholar]
  90. 90.
    Giosan L, Syvitski J, Constantinescu S, Day JW. 2014.. Climate change: protect the world's deltas. . Nature 516::3133
    [Crossref] [Google Scholar]
  91. 91.
    Oppenheimer M, Glavovic BC, Hinkel J, van de Wal R, Magnan AK, et al. 2022.. Sea level rise and implications for low-lying islands, coasts and communities. . In The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, ed. H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al. , pp. 321446. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  92. 92.
    Kirezci E, Young IR, Ranasinghe R, Muis S, Nicholls RJ, et al. 2022.. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. . Nat. Sci. Rep. 10::11629
    [Google Scholar]
  93. 93.
    Tessler ZD, Vörösmarty CJ, Grossberg M, Gladkova I, Aizenman H, et al. 2015.. Profiling risk and sustainability in coastal deltas of the world. . Science 349::63843
    [Crossref] [Google Scholar]
  94. 94.
    Day JW, Clark H, Chang C, Hunter R, Norman C. 2020.. Life cycle of oil and gas fields in the Mississippi River Delta: a review. . Water 12::1492
    [Crossref] [Google Scholar]
  95. 95.
    Wahl T, Jain S, Bender J, Meyers SD, Luther ME. 2015.. Increasing risk of compound flooding from storm surge and rainfall for major US cities. . Nat. Clim. Change 5::109397
    [Crossref] [Google Scholar]
  96. 96.
    Lee SB, LiZhang MF, Zhang F. 2017.. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. . J. Geophys. Res. Oceans 122::391738
    [Crossref] [Google Scholar]
  97. 97.
    Pietrafesa L, Zhang H, Bao S, Gayes P, Hallstrom J. 2019.. Coastal flooding and inundation and inland flooding due to downstream blocking. . J. Mar. Sci. Eng. 7::336
    [Crossref] [Google Scholar]
  98. 98.
    Elsner JB, Kossin JP, Jagger TH. 2008.. The increasing intensity of the strongest tropical cyclones. . Nature 455::9295
    [Crossref] [Google Scholar]
  99. 99.
    Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, et al. 2010.. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. . Science 327::45458
    [Crossref] [Google Scholar]
  100. 100.
    Bhatia KT, Vecchi GA, Knutson TR, Murakami H, Kossin J, et al. 2019.. Recent increases in tropical cyclone intensification rates. . Nat. Commun. 10::635
    [Crossref] [Google Scholar]
  101. 101.
    Grinsted A, Moore J, Jevrejeva S. 2012.. Homogeneous record of Atlantic hurricane surge threat since 1923. . PNAS 109::196015
    [Crossref] [Google Scholar]
  102. 102.
    Li L, Chakraborty P. 2020.. Slower decay of landfalling hurricanes in a warming world. . Nature 587::23034
    [Crossref] [Google Scholar]
  103. 103.
    Schiermeier Q. 2011.. Increased flood risk linked to global warming. . Nature 470::316
    [Crossref] [Google Scholar]
  104. 104.
    Reddy KR, DeLaune RD, Inglett PW. 2023.. Biogeochemistry of Wetlands: Science and Applications. Boca Raton, FL:: CRC. , 2nd ed..
    [Google Scholar]
  105. 105.
    Wang D, White JR, Delaune RD, Yu Z, Hu Y. 2021.. Peripheral freshwater deltaic wetlands are hotspots of methane flux in the coastal zone. . Sci. Total Environ. 775::145784
    [Crossref] [Google Scholar]
  106. 106.
    Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, et al. 2006.. Denitrification across landscapes and waterscapes: a synthesis. . Ecol. Appl. 16::206490
    [Crossref] [Google Scholar]
  107. 107.
    White JR, DeLaune RD, Justic D, Day JW, Pahl J, et al. 2019.. Consequences of Mississippi River diversions on nutrient dynamics of coastal wetland soils and estuarine sediments: a review. . Estuar. Coast. Shelf Sci. 224::20916
    [Crossref] [Google Scholar]
  108. 108.
    Gardner LM, White JR. 2010.. Denitrification enzyme activity as an indicator of nitrate movement through a diversion wetland. . Soil Sci. Soc. Am. J. 74::103747
    [Crossref] [Google Scholar]
  109. 109.
    Morris JT, Nyman JA, Shaffer GP. 2014.. The influence of nutrients on the coastal wetlands of the Mississippi Delta. . In Perspectives on the Restoration of the Mississippi Delta: The Once and Future Delta, ed. JT Morris, JA Nyman, GP Schaffer , pp. 11123. Dordrecht, Neth:.: Springer
    [Google Scholar]
  110. 110.
    Römheld V. 2012.. Diagnosis of deficiency and toxicity of nutrients. . In Marschner's Mineral Nutrition of Higher Plants, pp. 299312. San Diego, CA:: Academic. , 3rd ed..
    [Google Scholar]
  111. 111.
    Morris J, Sundberg K. 2023.. Porewater nutrient concentrations in control and fertilized plots in a Spartina alterniflora–dominated salt marsh, North Inlet, Georgetown, SC: 1993–2022. . Environ. Data Initiat. 136:.8
    [Google Scholar]
  112. 112.
    Bradley PM, Morris JT. 1990.. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. . Ecology 71::28287
    [Crossref] [Google Scholar]
  113. 113.
    Epstein E, Hagen CE. 1952.. A kinetic study of the absorption of alkali cations by barley roots. . Plant Physiol. 27::45774
    [Crossref] [Google Scholar]
  114. 114.
    Bradley PM, Morris JT. 1990.. Physical characteristics of salt marsh sediments: ecological implications. . Mar. Ecol. Prog. Ser. 61::24552
    [Crossref] [Google Scholar]
  115. 115.
    Bradley PM, Morris JT. 1991.. The influence of salinity on the kinetics of NH4+ uptake in Spartina alterniflora. . Oecologia 85::37580
    [Crossref] [Google Scholar]
  116. 116.
    Dacey JWH. 1981.. How aquatic plants ventilate. . Oceanus 24::4351
    [Google Scholar]
  117. 117.
    Hwang YH, Morris JT. 1991.. Evidence for hygrometric pressurization in the internal gas space of Spartina alterniflora. . Plant Physiol. 96::16671
    [Crossref] [Google Scholar]
  118. 118.
    Forde B, Clarkson D. 1999.. Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. . Adv. Bot. Res. 30::190
    [Crossref] [Google Scholar]
  119. 119.
    Kronzucker H, Siddiqi M, Glass A. 1997.. Conifer root discrimination against soil nitrate and the ecology of forest succession. . Nature 385::5961
    [Crossref] [Google Scholar]
  120. 120.
    Pate JS, Layzell DB. 1990.. Energetics and biological costs of nitrogen assimilation. . In The Biochemistry of Plants, ed. BJ Miflin, PJ Lea , pp. 142. San Diego, CA:: Academic
    [Google Scholar]
  121. 121.
    Sasakawa H, Yamamoto Y. 1978.. Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors. . Plant Physiol. 62::66569
    [Crossref] [Google Scholar]
  122. 122.
    Bowen JL, Giblin AE, Murphy AE, Bulseco AN, Deegan L, et al. 2020.. Not all nitrogen is created equal: differential effects of nitrate and ammonium enrichment in coastal wetlands. . Bioscience 70::110819
    [Crossref] [Google Scholar]
  123. 123.
    Hessini K. 2022.. Nitrogen form differently modulates growth, metabolite profile, and antioxidant and nitrogen metabolism activities in roots of Spartina alterniflora in response to increasing salinity. . Plant Physiol. Biochem. 174::3542
    [Crossref] [Google Scholar]
  124. 124.
    Li QW, Zhang XY, Liang JF, Gao JQ, Xu XL, Yu FH. 2021.. High nitrogen uptake and utilization contribute to the dominance of invasive Spartina alterniflora over native Phragmites australis. . Biol. Fertil. Soils 57::100713
    [Crossref] [Google Scholar]
  125. 125.
    Youngdahl LJ, Pacheco R, Street JJ, Vlek PLG. 1982.. The kinetics of ammonium and nitrate uptake by young rice plants. . Plant Soil 69::22532
    [Crossref] [Google Scholar]
  126. 126.
    Bulseco AN, Giblin AE, Tucker J, Murphy AE, Sanderman J, et al. 2019.. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. . Glob. Change Biol. 25::322441
    [Crossref] [Google Scholar]
  127. 127.
    Morris JT. 1980.. The nitrogen uptake kinetics of Spartina alterniflora in culture. . Ecology 61::111421
    [Crossref] [Google Scholar]
  128. 128.
    Morris JT. 1991.. Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition. . Annu. Rev. Ecol. Syst. 22::25779
    [Crossref] [Google Scholar]
  129. 129.
    Bulseco AN, Vineis JH, Murphy AE, Spivak AC, Giblin AE, et al. 2020.. Metagenomics coupled with biogeochemical rates measurements provide evidence that nitrate addition stimulates respiration in salt marsh sediments. . Limnol. Oceanogr. 65:(Suppl.):32139
    [Google Scholar]
  130. 130.
    Day JW, DeLaune RD, White JR, Lane RR, Hunter RG, Shaffer GP. 2018.. Can denitrification explain coastal wetland loss: a review of case studies in the Mississippi Delta and New England. . Estuar. Coast. Shelf Sci. 213::294304
    [Crossref] [Google Scholar]
  131. 131.
    Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B. 2003.. Phosphorus limitation of coastal ecosystem processes. . Science 299::56365
    [Crossref] [Google Scholar]
  132. 132.
    Ågren GI, Franklin O. 2003.. Root: shoot ratios, optimization, and nitrogen productivity. . Ann. Bot. 92::795800
    [Crossref] [Google Scholar]
  133. 133.
    Ågren GI, Ingestad T. 1987.. Root: shoot ratio as a balance between nitrogen productivity and photosynthesis. . Plant Cell Environ. 10::57986
    [Crossref] [Google Scholar]
  134. 134.
    Darby FA, Turner RE. 2008.. Below- and aboveground biomass of Spartina alterniflora: response to nutrient addition in a Louisiana salt marsh. . Estuar. Coasts 31::32634
    [Crossref] [Google Scholar]
  135. 135.
    Darby FA, Turner RE. 2008.. Effects of eutrophication on salt marsh root and rhizome biomass accumulation. . Mar. Ecol. Prog. Ser. 363::6370
    [Crossref] [Google Scholar]
  136. 136.
    Wilson JB. 1988.. A review of evidence on the control of shoot: root ratio, in relation to models. . Ann. Bot. 61::43349
    [Crossref] [Google Scholar]
  137. 137.
    Shipley B, Meziane D. 2002.. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. . Funct. Ecol. 16::32631
    [Crossref] [Google Scholar]
  138. 138.
    Deegan L, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, et al. 2012.. Coastal eutrophication as a driver of salt marsh loss. . Nature 490::38892
    [Crossref] [Google Scholar]
  139. 139.
    Wigand C, Roman CT, Davey E, Stolt M, Johnson R, et al. 2014.. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure. . Ecol. Appl. 24::63349
    [Crossref] [Google Scholar]
  140. 140.
    Anisfeld SC, Hill TD. 2012.. Fertilization effects on elevation change and belowground carbon balance in a Long Island Sound tidal marsh. . Estuar. Coasts 35::20111
    [Crossref] [Google Scholar]
  141. 141.
    Matzke S, Elsey-Quirk T. 2018.. Spartina patens productivity and soil organic matter response to sedimentation and nutrient enrichment. . Wetlands 38::123344
    [Crossref] [Google Scholar]
  142. 142.
    Wigand C, Davey E, Johnson R, Sundberg K, Morris J, et al. 2015.. Nutrient effects on belowground organic matter in a minerogenic salt marsh, North Inlet, SC. . Estuar. Coasts 38::183853
    [Crossref] [Google Scholar]
  143. 143.
    Britto DT, Kronzucker HJ. 2002.. NH4+ toxicity in higher plants: a critical review. . J. Plant Physiol. 159::56784
    [Crossref] [Google Scholar]
  144. 144.
    Goyal SS, Lorenz OA, Huffaker RC. 1982.. Inhibitory effects of ammoniacal nitrogen on growth of radish plants. I. Characterization of toxic effects of NH4+ on growth and its alleviation by NO3−1. . J. Am. Soc. Horticult. Sci. 107::12529
    [Crossref] [Google Scholar]
  145. 145.
    Van Katwijk MM, Vergeer LHT, Schmitz GHW, Roelofs JGM. 1997.. Ammonium toxicity in eelgrass Zostera marina. . Mar. Ecol. Prog. Ser. 157::15973
    [Crossref] [Google Scholar]
  146. 146.
    Britto DT, Siddiqi MY, Glass AD, Kronzucker HJ. 2001.. Futile transmembrane NH4+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. . PNAS 98::425558
    [Crossref] [Google Scholar]
  147. 147.
    Brun FG, Hernández I, Vergara JJ, Peralta G, Pérez-Lloréns JL. 2002.. Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. . Mar. Ecol. Progress Ser. 225::17787
    [Crossref] [Google Scholar]
  148. 148.
    Portnoy JW, Giblin AE. 1997.. Biogeochemical effects of seawater restoration to diked salt marshes. . Ecol. Appl. 7::105463
    [Crossref] [Google Scholar]
  149. 149.
    Howes BL, Goehringer DD. 1994.. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh. . Mar. Ecol. Prog. Ser. 114::289301
    [Crossref] [Google Scholar]
  150. 150.
    Clarke E, Baldwin AH. 2002.. Responses of wetland plants to ammonia and water level. . Ecol. Eng. 18::25764
    [Crossref] [Google Scholar]
  151. 151.
    Crosby SC, Spiller NC, Healy DS, Brideau L, Stewart LM, et al. 2021.. Assessing the resiliency of salt marshes under increasing nitrogen loading. . Estuar. Coasts 44::165870
    [Crossref] [Google Scholar]
  152. 152.
    Lane RR, Day JW, Marx B, Reves E, Kemp GP. 2002.. Seasonal and spatial water quality changes in the outflow plume of the Atchafalaya River, Louisiana, USA. . Estuaries 25::3042
    [Crossref] [Google Scholar]
  153. 153.
    Twilley RR, Bentley SJ, Chen Q, Edmonds DA, Hagen SC, et al. 2016.. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain. . Sustain. Sci. 11::71131
    [Crossref] [Google Scholar]
  154. 154.
    Hyfield E, Day JW, Cable J, Justic D. 2008.. The impacts of re-introducing Mississippi River water on the hydrologic budget and nutrient inputs of a deltaic estuary. . Ecol. Eng. 32::34759
    [Crossref] [Google Scholar]
  155. 155.
    Natl. Acad. Sci. Eng. Med. 2018.. Negative emission technologies and reliable sequestration: a research agenda. Rep. , Natl. Acad. Sci. Eng. Med., Washington, DC:
    [Google Scholar]
  156. 156.
    Natl. Acad. Sci. Eng. Med. 2022.. A research strategy for ocean-based carbon dioxide removal and sequestration. Rep. , Natl. Acad. Sci. Eng. Med., Washington, DC:
    [Google Scholar]
  157. 157.
    Day JW, Cable JE, Cowan JH Jr., DeLaune R, De Mutsert K, et al. 2009.. The impacts of pulsed reintroduction of river water on a Mississippi Delta coastal basin. . J. Coast. Res. 2009::22543
    [Crossref] [Google Scholar]
  158. 158.
    Chmura G, Anisfeld S, Cahoon D, Lynch C. 2003.. Global carbon sequestration in tidal, saline wetland soils. . Glob. Biogeochem. Cycles 17::1111
    [Crossref] [Google Scholar]
  159. 159.
    Windham-Myers L, Bogard M, Bergamaschi BA, Knox SH, Butman D. 2019.. Low carbon storage efficiency in coastal wetlands driven by hydrologic export. Paper presented at CERF 2019 25th Biennial Conference, Mobile, AL, Novemb:. 47
    [Google Scholar]
  160. 160.
    Spivak AC, Sanderman J, Bowen JL, Canuel EA, Hopkinson CS. 2019.. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. . Nat. Geosci. 12::68592
    [Crossref] [Google Scholar]
  161. 161.
    Cahoon DR. 1994.. Recent accretion in two managed marsh impoundments in coastal Louisiana. . Ecol. Appl. 4::16676
    [Crossref] [Google Scholar]
  162. 162.
    Cahoon DR, Lynch JC. 1997.. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. . Mangroves Salt Marshes 1::17386
    [Crossref] [Google Scholar]
  163. 163.
    Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011.. Mangroves among the most carbon-rich forests in the tropics. . Nat. Geosci. 4::29397
    [Crossref] [Google Scholar]
  164. 164.
    Giri C. 2018.. Mapping and monitoring of mangrove forests of the world using remote sensing. In A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Practice and Policy, ed. L Windham-Myers, S Crooks, TG Troxler , pp. 16377. Boca Raton, FL:: CRC
    [Google Scholar]
  165. 165.
    Gattuso JP, Gentilli B, Duarte C, Kleypas J, Middelburg J, Antoine D. 2006.. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. . Biogeosciences 3::489513
    [Crossref] [Google Scholar]
  166. 166.
    Duarte CM, Agustí S, Regaudie-de-Gioux A. 2011.. The role of marine biota in the metabolism of the biosphere. . In The Role of Marine Biota in the Functioning of the Biosphere, ed. CM Duarte , pp. 3953. Madrid:: Fund. BBVA
    [Google Scholar]
  167. 167.
    Kennedy H, Beggins J, Duarte C, Fourqurean J, Homer M, et al. 2010.. Seagrass sediments as a global carbon sink: isotopic constraints. . Glob. Biogeochem. Cycles 24::BG4026
    [Crossref] [Google Scholar]
  168. 168.
    Nellemann C, Corcoran E, Duarte CM, De Young C, Fonseca LE, Grimsdith G. 2010.. Blue Carbon: The Role of Healthy Oceans in Binding Carbon. A Rapid Response Assessment. Nairobi:: U. N. Environ. Progr., GRID-Arendal. https://ccom.unh.edu/sites/default/files/publications/Nellemann_2010_BlueCarbon_book.pdf
    [Google Scholar]
  169. 169.
    Osland MJ, Hughes AR, Armitage AR, Scyphers SB, Cebrian J, et al. 2022.. The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: Current understanding, knowledge gaps, and emerging research needs. . Glob. Change Biol. 28::316387
    [Crossref] [Google Scholar]
  170. 170.
    Al-Haj AN, Fulweiler RW. 2020.. A synthesis of methane emissions from shallow vegetated coastal ecosystems. . Glob. Change Biol. 26::29883005
    [Crossref] [Google Scholar]
  171. 171.
    Holmquist JR, Windham-Myers L, Bernal B, Byrd KB, Crooks S, et al. 2018.. Uncertainty in United States coastal wetland greenhouse gas inventorying. . Environ. Res. Lett. 13::115005
    [Crossref] [Google Scholar]
  172. 172.
    Holm GO, Perez BC, McWhorter DE, Krauss KW, Johnson DJ, et al. 2016.. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: implications for coastal wetland carbon projects. . Wetlands 36::40113
    [Crossref] [Google Scholar]
  173. 173.
    Krauss KW, Holm GO Jr., Perez BC, McWhorter DE, Cormier N, et al. 2016.. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: pairing chamber techniques and eddy covariance. . J. Geophys. Res. Biogeosci. 121::150321
    [Crossref] [Google Scholar]
  174. 174.
    Kroeger KD, Crooks S, Moseman-Valtierra S, Tang J. 2017.. Restoring tides to reduce methane emissions in impounded wetlands: a new and potent blue carbon climate change intervention. . Sci. Rep. 7::11914
    [Crossref] [Google Scholar]
  175. 175.
    Portnoy J, Giblin A. 1997.. Effects of historic tidal restrictions on salt marsh sediment chemistry. . Biogeochemistry 36::275303
    [Crossref] [Google Scholar]
  176. 176.
    Portnoy J, Giblin A. 1997.. Biogeochemical effects of sweater restoration to diked salt marshes. . Ecol. Appl. 7::105463
    [Crossref] [Google Scholar]
  177. 177.
    Gosselink JG, Pope RM, Odum EP. 1974.. The value of the tidal marsh. Sea Grant Doc. LSU-T1-74-001 , Cent. Wetl. Resour., La. State Univ., Baton Rouge:. https://repository.library.noaa.gov/view/noaa/39207/noaa_39207_DS1.pdf
    [Google Scholar]
  178. 178.
    Shabman LA, Batie SS. 1978.. Economic value of natural coastal wetlands: a critique. . Coast. Manag. 4::23147
    [Google Scholar]
  179. 179.
    Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011.. The value of estuarine and coastal ecosystem services. . Ecol. Monogr. 81::16993
    [Crossref] [Google Scholar]
  180. 180.
    Martínez ML, Intralawan A, Vázquez G, Pérez-Maqueo O, Sutton P, Landgrave R. 2007.. The coasts of our world: ecological, economic and social importance. . Ecol. Econ. 63::25472
    [Crossref] [Google Scholar]
  181. 181.
    Mehvar S, Filatova T, Dastgheib A, de Ruyter van Steveninck E, Ranasinghe R. 2018.. Quantifying economic value of coastal ecosystem services: a review. . J. Mar. Sci. Eng. 6::5
    [Crossref] [Google Scholar]
  182. 182.
    de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, et al. 2012.. Global estimates of the value of ecosystems and their services in monetary units. . Ecosyst. Serv. 1::5061
    [Crossref] [Google Scholar]
  183. 183.
    Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, et al. 1997.. The value of the world's ecosystem services and natural capital. . Nature 387::25360
    [Crossref] [Google Scholar]
  184. 184.
    Costanza R, Perez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K. 2008.. The value of coastal wetlands for hurricane protection. . Ambio 37::24148
    [Crossref] [Google Scholar]
  185. 185.
    Costanza R, Anderson SJ, Sutton P, Mulder K, Mulder O, et al. 2021.. The global value of coastal wetlands for storm protection. . Glob. Environ. Change 70::102328
    [Crossref] [Google Scholar]
  186. 186.
    Duarte CM, Middelburg JJ, Caraco N. 2005.. Major role of marine vegetation on the oceanic carbon cycle. . Biogeosciences 2::18
    [Crossref] [Google Scholar]
  187. 187.
    Ouyang X, Lee SY. 2014.. Updated estimates of carbon accumulation rates in coastal marsh sediments. . Biogeosciences 11:(18):505771
    [Crossref] [Google Scholar]
  188. 188.
    Ouyang X, Lee SY. 2020.. Improved estimates on global carbon stock and carbon pools in tidal wetlands. . Nat. Commun. 11::317
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-121922-041109
Loading
/content/journals/10.1146/annurev-environ-121922-041109
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error