1932

Abstract

We compare and contrast production economies exposed to long-run uncertainty with investors that have possibly different preferences and/or access to financial markets. We study the macroeconomic and asset-pricing properties of these models, identify common features, and highlight areas where these models depart from each other. Our framework allows us to investigate more fully the impact of investor heterogeneity, capital heterogeneity, and fluctuations of the growth components to the capital evolution as they affect the dynamics of macroeconomic quantities and asset prices. In our comparisons, we employ an array of diagnostic tools to explore time variation and state dependencies in nonlinear environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-financial-082123-105652
2024-11-01
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/financial/16/1/annurev-financial-082123-105652.html?itemId=/content/journals/10.1146/annurev-financial-082123-105652&mimeType=html&fmt=ahah

Literature Cited

  1. Achdou Y, Han J, Lasry JM, Lions PL, Moll B. 2022.. Income and wealth distribution in macroeconomics: a continuous-time approach. . Rev. Econ. Stud. 89:(1):4586
    [Google Scholar]
  2. Al-Aradi A, Correia A, Jardim G, de Freitas Naiff D, Saporito Y. 2022.. Extensions of the deep Galerkin method. . Appl. Math. Comput. 430::127287
    [Google Scholar]
  3. Andrei D, Hasler M, Jeanneret A. 2019.. Asset pricing with persistence risk. . Rev. Econ. Stud. 32:(7):280949
    [Google Scholar]
  4. Bansal R, Yaron A. 2004.. Risks for the long run: a potential resolution of asset pricing puzzles. . J. Finance 59:(4):1481509
    [Google Scholar]
  5. Barles G, Souganidis PE. 1991.. Convergence of approximation schemes for fully nonlinear second order equations. . Asymptot. Anal. 4:(3):27183
    [Google Scholar]
  6. Barnett M, Brock W, Hansen LP, Hu R, Huang J. 2023.. A deep learning analysis of climate change, innovation, and uncertainty. SSRN Work. Pap. 4607233
    [Google Scholar]
  7. Basak S, Cuoco D. 1998.. An equilibrium model with restricted stock market participation. . Rev. Financ. Stud. 11:(2):30941
    [Google Scholar]
  8. Bianchi J. 2011.. Overborrowing and systemic externalities in the business cycle. . Am. Econ. Rev. 101:(7):340026
    [Google Scholar]
  9. Borovička J, Hansen LP, Scheinkman JA. 2014.. Shock elasticities and impulse responses. . Math. Financ. Econ. 8::33354
    [Google Scholar]
  10. Brock WA, Magill MJ. 1979.. Dynamics under uncertainty. . Econometrica 47:(4):84368
    [Google Scholar]
  11. Brock WA, Mirman L. 1972.. Optimal economic growth and uncertainty: the discounted case. . J. Econ. Theory 4:(3):479513
    [Google Scholar]
  12. Brunnermeier MK, Sannikov Y. 2014.. A macroeconomic model with a financial sector. . Am. Econ. Rev. 104:(2):379421
    [Google Scholar]
  13. Brunnermeier MK, Sannikov Y. 2015.. International credit flows and pecuniary externalities. . Am. Econ. J. Macroecon. 7:(1):297338
    [Google Scholar]
  14. Brunnermeier MK, Sannikov Y. 2016.. The I theory of money. NBER Work. Pap. 22533
    [Google Scholar]
  15. Cerreia-Vioglio S, Hansen LP, Maccheroni F, Marinacci M. 2024.. Making decisions under model misspecification. Work. Pap. , Bocconi Univ., Milan, Italy, Univ. Chicago, Chicago, IL:
    [Google Scholar]
  16. Chen H, Dou WW, Kogan L. 2024.. Measuring ``dark matter'' in asset pricing models. . J. Finance 79:(2):843902
    [Google Scholar]
  17. Chen Z, Epstein L. 2002.. Ambiguity, risk, and asset returns in continuous time. . Econometrica 70:(4):140343
    [Google Scholar]
  18. Christiano LJ, Motto R, Rostagno M. 2014.. Risk shocks. . Am. Econ. Rev. 104:(1):2765
    [Google Scholar]
  19. Cochrane J, Longstaff FA, Santa-Clara P. 2008.. Two trees. . Rev. Financ. Stud. 21:(1):34785
    [Google Scholar]
  20. Cox JC, Ingersoll JE Jr., Ross SA. 1985.. An intertemporal general equilibrium model of asset prices. . Econometrica 53:(2):36384
    [Google Scholar]
  21. Crouzet N, Eberly JC, Eisfeldt AL, Papanikolaou D. 2022.. The economics of intangible capital. . J. Econ. Perspect. 36:(3):2952
    [Google Scholar]
  22. d'Avernas A, Petersen D, Vandeweyer Q. 2022.. A solution method for continuous-time models. Work. Pap. , Stockholm Sch. Econ., Swed.
    [Google Scholar]
  23. Di Tella S. 2017.. Uncertainty shocks and balance sheet recessions. . J. Political Econ. 125:(6):203881
    [Google Scholar]
  24. Di Tella S. 2019.. Optimal regulation of financial intermediaries. . Am. Econ. Rev. 109:(1):271313
    [Google Scholar]
  25. Dou WW, Lo AW, Muley A, Uhlig H. 2020.. Macroeconomic models for monetary policy: a critical review from a finance perspective. . Annu. Rev. Financ. Econ. 12::95140
    [Google Scholar]
  26. Drechsler I, Savov A, Schnabl P. 2018.. A model of monetary policy and risk premia. . J. Finance 73:(1):31773
    [Google Scholar]
  27. Duarte V, Duarte D, Silva D. 2023.. Machine learning for continuous-time finance. SSRN Work. Pap. 3012602
    [Google Scholar]
  28. Duffie D, Epstein LG. 1992.. Stochastic differential utility. . Econometrica 60:(2):35394
    [Google Scholar]
  29. Dumas B, Uppal R, Wang T. 2000.. Efficient intertemporal allocations with recursive utility. . J. Econ. Theory 93:(2):24059
    [Google Scholar]
  30. Eberly JC, Wang N. 2009.. Capital reallocation and growth. . Am. Econ. Rev. 99:(2):56066
    [Google Scholar]
  31. Eberly JC, Wang N. 2011.. Reallocating and pricing illiquid capital: two productive trees. Work. Pap. , Columbia Univ., New York, NY, Northwestern Univ., Evanston, IL:
    [Google Scholar]
  32. Fournié E, Lasry JM, Lebuchoux J, Lions PL, Touzi N. 1999.. Applications of Malliavin calculus to Monte Carlo methods in finance. . Finance Stoch. 3:(4):391412
    [Google Scholar]
  33. Gallant AR, Rossi PE, Tauchen G. 1993.. Nonlinear dynamic structures. . Econometrica 61:(4):871907
    [Google Scholar]
  34. Gârleanu N, Panageas S. 2015.. Young, old, conservative, and bold: the implications of heterogeneity and finite lives for asset pricing. . J. Political Econ. 123:(3):67085
    [Google Scholar]
  35. Gârleanu N, Pedersen LH. 2011.. Margin-based asset pricing and deviations from the law of one price. . Rev. Financ. Stud. 24:(6):19802022
    [Google Scholar]
  36. Gertler M, Karadi P. 2011.. A model of unconventional monetary policy. . J. Monet. Econ. 58:(1):1734
    [Google Scholar]
  37. Gertler M, Kiyotaki N. 2010.. Financial intermediation and credit policy in business cycle analysis. . In Handbook of Monetary Economics, Vol. 3, ed. BM Friedman, M Woodford , pp. 54799. Amsterdam:: Elsevier
    [Google Scholar]
  38. Gertler M, Kiyotaki N. 2015.. Banking, liquidity, and bank runs in an infinite horizon economy. . Am. Econ. Rev. 105:(7):201143
    [Google Scholar]
  39. Good IJ. 1952.. Rational decisions. . J. R. Stat. Soc. B 14:(1):10714
    [Google Scholar]
  40. Gopalakrishna G. 2022.. A macro-finance model with realistic crisis dynamics. Work. Pap. , Univ. Toronto, Can:.
    [Google Scholar]
  41. Gromb D, Vayanos D. 2002.. Equilibrium and welfare in markets with financially constrained arbitrageurs. . J. Financ. Econ. 66:(2–3):361407
    [Google Scholar]
  42. Haddad V. 2014.. Concentrated ownership and equilibrium asset prices. Work. Pap. , Princeton Univ., Princeton, NJ:
    [Google Scholar]
  43. Hansen LP. 2007.. Beliefs, doubts and learning: valuing macroeconomic risk. . Am. Econ. Rev. 97:(2):130
    [Google Scholar]
  44. Hansen LP. 2014.. Nobel lecture: uncertainty outside and inside economic models. . J. Political Econ. 122:(5):94587
    [Google Scholar]
  45. Hansen LP, Sargent TJ. 2021.. Macroeconomic uncertainty prices when beliefs are tenuous. . J. Econometr. 223:(1):22250
    [Google Scholar]
  46. Hansen LP, Sargent TJ. 2022.. Structured ambiguity and model misspecification. . J. Econ. Theory 199::132
    [Google Scholar]
  47. Hansen LP, Sargent TJ. 2023.. Risk, ambiguity, and misspecification: decision theory, robust control, and statistics. . J. Appl. Econometr. In press. https://doi.org/10.1002/jae.3010
    [Google Scholar]
  48. Hansen LP, Szőke B, Han LS, Sargent TJ. 2020.. Twisted probabilities, uncertainty, and prices. . J. Econometr. 216:(1):15174
    [Google Scholar]
  49. Hayashi F. 1982.. Tobin's marginal q and average q: a neoclassical interpretation. . Econometrica 50:(1):21324
    [Google Scholar]
  50. He Z, Krishnamurthy A. 2011.. A model of capital and crises. . Rev. Econ. Stud. 79:(2):73577
    [Google Scholar]
  51. He Z, Krishnamurthy A. 2013.. Intermediary asset pricing. . Am. Econ. Rev. 103:(2):73270
    [Google Scholar]
  52. He Z, Krishnamurthy A. 2019.. A macroeconomic framework for quantifying systemic risk. . Am. Econ. J. Macroecon. 11:(4):137
    [Google Scholar]
  53. Hugonnier J. 2012.. Rational asset pricing bubbles and portfolio constraints. . J. Econ. Theory 147:(6):2260302
    [Google Scholar]
  54. Jacobson DH. 1973.. Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games. . IEEE Trans. Autom. Control 18:(2):12431
    [Google Scholar]
  55. James MR. 1992.. Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games. . Math. Control Signals Syst. 5:(4):40117
    [Google Scholar]
  56. Jermann UJ. 1998.. Asset pricing in production economies. . J. Monet. Econ. 41:(2):25775
    [Google Scholar]
  57. Jones LE, Manuelli R. 1990.. A convex model of equilibrium growth: theory and policy implications. . J. Political Econ. 98:(5, Part 1):100838
    [Google Scholar]
  58. Khorrami P. 2020.. The risk of risk-sharing: diversification and boom-bust cycles. Work. Pap. , Imperial College, London:
    [Google Scholar]
  59. Khorrami P. 2021.. Entry and slow-moving capital: using asset markets to infer the costs of risk concentration. SSRN Work. Pap. 2777747
    [Google Scholar]
  60. Khorrami P, Mendo F. 2023.. Rational sentiments and financial frictions. Work. Pap. , Duke Univ., Durham, NC:
    [Google Scholar]
  61. Klimenko N, Pfeil S, Rochet JC, De Nicolo G. 2016.. Aggregate bank capital and credit dynamics. SSRN Work. Pap. 2801995
    [Google Scholar]
  62. Koop G, Pesaran MH, Potter SM. 1996.. Impulse response analysis in nonlinear multivariate models. . J. Econometr. 74:(1):11947
    [Google Scholar]
  63. Kozak S. 2022.. Dynamics of bond and stock returns. . J. Monet. Econ. 126::188209
    [Google Scholar]
  64. Kreps DM, Porteus EL. 1978.. Temporal resolution of uncertainty and dynamic choice. . Econometrica 46:(1):185200
    [Google Scholar]
  65. Krishnamurthy A, Li W. 2021.. Dissecting mechanisms of financial crises: intermediation and sentiment. NBER Work. Pap. 27088
    [Google Scholar]
  66. Lucas RE. 1978.. Asset prices in an exchange economy. . Econometrica 46:(6):142945
    [Google Scholar]
  67. Lucas RE, Prescott EC. 1971.. Investment under uncertainty. . Econometrica 39:(5):65981
    [Google Scholar]
  68. Maccheroni F, Marinacci M, Rustichini A. 2006.. Ambiguity aversion, robustness, and the variational representation of preferences. . Econometrica 74:(6):1147498
    [Google Scholar]
  69. Martin I. 2013.. Lucas orchard. . Econometrica 81:(1):55111
    [Google Scholar]
  70. Maxted P. 2024.. A macro-finance model with sentiment. . Rev. Econ. Stud. 91:(1):43875
    [Google Scholar]
  71. Mendo F. 2018.. Risk to control risk. Work. Pap. , Princeton Univ., Princeton, NJ:
    [Google Scholar]
  72. Mendoza EG. 2010.. Sudden stops, financial crises, and leverage. . Am. Econ. Rev. 100:(5):194166
    [Google Scholar]
  73. Merton RC. 1973.. An intertemporal capital asset pricing model. . Econometrica 41:(5):86787
    [Google Scholar]
  74. Moreira A, Savov A. 2017.. The macroeconomics of shadow banking. . J. Finance 72:(6):2381432
    [Google Scholar]
  75. Panageas S. 2020.. The implications of heterogeneity and inequality for asset pricing. . Found. Trends Finance 12:(3):199275
    [Google Scholar]
  76. Petersen IR, James MR, Dupuis P. 2000.. Minimax optimal control of stochastic uncertain systems with relative entropy constraints. . IEEE Trans. Autom. Control 45::398412
    [Google Scholar]
  77. Phelan G. 2016.. Financial intermediation, leverage, and macroeconomic instability. . Am. Econ. J. Macroecon. 8:(4):199224
    [Google Scholar]
  78. Schorfheide F, Song D, Yaron A. 2018.. Identifying long-run risks: a Bayesian mixed-frequency approach. . Econometrica 86:(2):61754
    [Google Scholar]
  79. Silva DH. 2016.. The risk channel of unconventional monetary policy. Work. Pap. , MIT, Cambridge, MA:
    [Google Scholar]
  80. Whittle P. 1981.. Risk-sensitive linear/quadratic/Gaussian control. . Adv. Appl. Probab. 13:(4):76477
    [Google Scholar]
/content/journals/10.1146/annurev-financial-082123-105652
Loading
/content/journals/10.1146/annurev-financial-082123-105652
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error