1932

Abstract

The objective of this article is to review some developments in the use of adjoint equations in hydrodynamic stability theory. Adjoint-based sensitivity analysis finds both analytical and numerical applications much beyond those originally imagined. It can be used to identify optimal perturbations, pinpoint the most receptive path to break down, select the most destabilizing base-flow defect in a nominally stable configuration, and map the structural sensitivity of an oscillator. We focus on two flow cases more closely: the noise-amplifying instability of a boundary layer and the global mode occurring in the wake of a cylinder. For both cases, the clever interpretation and use of direct and adjoint modes provide key insight into the process of the transition to turbulence.

Associated Article

There are media items related to this article:
Adjoint Equations in Stability Analysis: Supplemental Video 3

Associated Article

There are media items related to this article:
Adjoint Equations in Stability Analysis: Supplemental Video 1

[Erratum, Closure]

An erratum has been published for this article:
Adjoint Equations in Stability Analysis

Associated Article

There are media items related to this article:
Adjoint Equations in Stability Analysis: Supplemental Video 2
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010313-141253
2014-01-03
2025-02-12
Loading full text...

Full text loading...

/deliver/fulltext/fluid/46/1/annurev-fluid-010313-141253.html?itemId=/content/journals/10.1146/annurev-fluid-010313-141253&mimeType=html&fmt=ahah

Literature Cited

  1. Airiau C. 2000. Non-parallel acoustic receptivity of a Blasius boundary layer using an adjoint approach. Flow Turbul. Combust. 65:347–67 [Google Scholar]
  2. Airiau C, Walther S, Bottaro A. 2002. Boundary layer sensitivity and receptivity. C. R. Méc. 330:259–65 [Google Scholar]
  3. Alizard F, Robinet JC, Rist U. 2010. Sensitivity to base-flow variation of a streamwise corner flow. Proc. 7th IUTAM Symp. Laminar-Turbul. Trans. P Schlatter, DS Henningson 69–74 New York: Springer [Google Scholar]
  4. Andersson P, Berggren M, Henningson DS. 1998. Optimal disturbances in boundary layers. Computational Methods for Optimal Design and Control JT Borggaard, J Burns, E Cliff, S Schreck 1–26 New York: Springer [Google Scholar]
  5. Andersson P, Berggren M, Henningson DS. 1999. Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11:134–50 [Google Scholar]
  6. Andersson P, Brandt L, Bottaro A, Henningson DS. 2001. On the breakdown of boundary layer streaks. J. Fluid Mech. 428:29–60 [Google Scholar]
  7. Ashpis DE, Reshotko E. 1990. The vibrating ribbon problem revisited. J. Fluid Mech. 213:531–47 [Google Scholar]
  8. Ashpis DE, Reshotko E. 1998. Excitation of continuous and discrete modes in incompressible boundary layers NASA TM-1998-208490, Glenn Res. Cent., Cleveland, OH [Google Scholar]
  9. Barkley D. 2005. Confined three-dimensional stability analysis of the cylinder wake. Phys. Rev. E 71:017301 [Google Scholar]
  10. Barkley D, Henderson R. 1996. Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322:215–41 [Google Scholar]
  11. Ben-Dov G, Cohen J. 2007a. Critical Reynolds number for a natural transition to turbulence in pipe flow. Phys. Rev. Lett. 98:064503 [Google Scholar]
  12. Ben-Dov G, Cohen J. 2007b. Instability of optimal non-axisymmetric base-flow deviations in pipe Poiseuille flow. J. Fluid Mech. 588:189–215 [Google Scholar]
  13. Biau D. 2008. Linear stability of channel entrance flow. Eur. J. Mech. B 27:579–90 [Google Scholar]
  14. Biau D, Bottaro A. 2004. Optimal perturbations and minimal defects: initial paths of transition to turbulence in plane shear flows. Phys. Fluids 16:3515–29 [Google Scholar]
  15. Biau D, Bottaro A. 2009. An optimal path to transition in a duct. Philos. Trans. R. Soc. A 367:529–44 [Google Scholar]
  16. Bottaro A, Corbett P, Luchini P. 2003. The effect of base flow variation on flow stability. J. Fluid Mech. 476:293–302Presents the adjoint-based optimization of base-flow defects and introduces the structured pseudospectrum. [Google Scholar]
  17. Bouthier M. 1972. Stabilité linéaire des écoulements presque parallèles. J. Méc. 11:599–621 [Google Scholar]
  18. Bouthier M. 1973. Stabilité linéaire des écoulements presque parallèles. Partie II. La couche limite de Blasius. J. Méc. 12:75–95 [Google Scholar]
  19. Brandt L, Sipp D, Pralits JO, Marquet O. 2011. Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687:503–28 [Google Scholar]
  20. Briggs RJ. 1964. Electron-Stream Interaction with Plasma Cambridge, MA: MIT Press [Google Scholar]
  21. Butler KM, Farrell BF. 1992. Three-dimensional optimal perturbations in viscous flows. Phys. Fluids A 4:1637–50 [Google Scholar]
  22. Cacuci DG. 1981a. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach. J. Math. Phys. 22:2794–802 [Google Scholar]
  23. Cacuci DG. 1981b. Sensitivity theory for nonlinear systems. II. Extensions to additional classes of responses. J. Math. Phys. 22:2803–12 [Google Scholar]
  24. Camarri S, Fallenius BEG, Fransson JHM. 2013. Stability analysis of experimental flow fields behind a porous cylinder for the investigation of the large-scale wake vortices. J. Fluid Mech. 715:499–536 [Google Scholar]
  25. Camarri S, Giannetti F. 2010. Effect of confinement on three-dimensional stability in the wake of a circular cylinder. J. Fluid Mech. 642:477–87 [Google Scholar]
  26. Camarri S, Iollo A. 2010. Feedback control of the vortex-shedding instability based on sensitivity analysis. Phys. Fluids 22:094102 [Google Scholar]
  27. Carini M, Giannetti F, Auteri F. 2013a. On the origin of the flip-flop instability of two side-by-side cylinder wakes. J. Fluid Mech. Submitted manuscript [Google Scholar]
  28. Carini M, Giannetti F, Auteri F. 2013b. Structural sensitivity of two side-by-side cylinder wakes. J. Fluid Mech. Submitted manuscript [Google Scholar]
  29. Cathalifaud P, Luchini P. 2000. Algebraic growth in boundary layers: optimal control by blowing and suction at the wall. Eur. J. Mech. B/Fluids 19:469–90 [Google Scholar]
  30. Chen CH, Lien CD. 1980. The variational principle for non-self-adjoint electromagnetic problems. IEEE Trans. Microwave Theory Tech. 28:878–86 [Google Scholar]
  31. Cherubini S, De Palma P. 2013. Nonlinear optimal perturbations in a Couette flow: bursting and transition. J. Fluid Mech. 716:251–79 [Google Scholar]
  32. Cherubini S, De Palma P, Robinet JC, Bottaro A. 2010a. Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E 82:066302 [Google Scholar]
  33. Cherubini S, De Palma P, Robinet JC, Bottaro A. 2011. The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689:221–53 [Google Scholar]
  34. Cherubini S, De Palma P, Robinet JC, Bottaro A. 2012. A purely non-linear route to transition approaching the edge of chaos in a boundary layer. Fluid Dyn. Res. 44:031404 [Google Scholar]
  35. Cherubini S, Robinet JC, Bottaro A, De Palma P. 2010b. Optimal wave packets in a boundary layer and initial phases of a turbulent spot. J. Fluid Mech. 656:231–59 [Google Scholar]
  36. Chomaz JM. 2005. Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37:357–92 [Google Scholar]
  37. Chomaz JM, Huerre P, Redekopp L. 1991. A frequency selection criterion in spatially developing flows. Stud. Appl. Math. 84:119–44 [Google Scholar]
  38. Choudhari M, Streett CL. 1992. A finite Reynolds number approach for the prediction of boundary-layer receptivity on localized regions. Phys. Fluids A 4:2495–514 [Google Scholar]
  39. Corbett P, Bottaro A. 2000. Optimal perturbations for boundary layers subject to stream-wise pressure gradient. Phys. Fluids 12:120–30 [Google Scholar]
  40. Corbett P, Bottaro A. 2001. Optimal linear growth in swept boundary layers. J. Fluid Mech. 435:1–21 [Google Scholar]
  41. Crouch JD. 1992. Localized receptivity of boundary layers. Phys. Fluids A 4:1408–14 [Google Scholar]
  42. Dennis DJC, Nickels TB. 2011a. Experimental measurements of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673:180–217 [Google Scholar]
  43. Dennis DJC, Nickels TB. 2011b. Experimental measurements of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673:218–44 [Google Scholar]
  44. Dow E, Wang Q. 2011. Uncertainty quantification of structural uncertainties in RANS simulations of complex flows Presented at AIAA Comput. Fluid Dyn. Conf., 20th, Honolulu, AIAA Pap. 2011-3865 [Google Scholar]
  45. Dow E, Wang Q. 2013. Output based dimensionality reduction of geometric variability in compressor blades Presented at AIAA Aerosp. Sci. Meet. New Horizons Forum Aerosp. Expo., 51st, Grapevine, TX, AIAA Pap. 2013-0420 [Google Scholar]
  46. Errico RM. 1997. What is an adjoint model?. Bull. Am. Meteorol. Soc. 78:2577–91 [Google Scholar]
  47. Fani A, Camarri S, Salvetti MV. 2012. Stability analysis and control of the flow in a symmetric channel with a sudden expansion. Phys. Fluids 24:084102 [Google Scholar]
  48. Fedorov AV. 1984. Excitation of Tollmien-Schlichting waves in a boundary layer by a periodic external source located on the body surface. Fluid Dyn. 19:888–93 [Google Scholar]
  49. Fidkowski KJ, Darmofal DL. 2009. Output-based error estimation and mesh adaptation in computational fluid dynamics: overview and recent results Presented at AIAA Aerosp. Sci. Meet. New Horizons Forum Aerosp. Expo., 47th, Orlando, FL, AIAA Pap. 2009-1303 [Google Scholar]
  50. Freund JB. 2011. Adjoint-based optimization for understanding and suppressing jet noise. J. Sound Vib. 330:4114–22 [Google Scholar]
  51. Gaster M. 1965. On the generation of spatially growing waves in a boundary layer. J. Fluid Mech. 22:433–41 [Google Scholar]
  52. Gaster M. 1974. On the effects of boundary-layer growth on flow stability. J. Fluid Mech. 66:465–80 [Google Scholar]
  53. Gavarini MI, Bottaro A, Nieuwstadt FTM. 2004. The initial stage of transition in pipe flow: role of optimal base-flow distortions. J. Fluid Mech. 537:131–65 [Google Scholar]
  54. Giannetti F, Camarri S, Luchini P. 2010a. Structural sensitivity of the secondary instability in the wake of a circular cylinder. J. Fluid Mech. 651:319–37 [Google Scholar]
  55. Giannetti F, Luchini P. 2003. Receptivity of the circular cylinder's first instability. Proc. 5th EUROMECH Fluid Mech. Conf.404 Toulouse: IMFT [Google Scholar]
  56. Giannetti F, Luchini P. 2006. Leading edge receptivity by adjoint methods. J. Fluid Mech. 547:21–53 [Google Scholar]
  57. Giannetti F, Luchini P. 2007. Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581:167–97Introduces structural sensitivity analysis. [Google Scholar]
  58. Giannetti F, Luchini P, Marino L. 2010b. Characterization of the three-dimensional instability in a lid-driven cavity by an adjoint-based analysis. Proc. 7th IUTAM Symp. Laminar-Turbul. Transit. P Schlatter, DS Henningson 165–70 New York: Springer [Google Scholar]
  59. Giannetti F, Luchini P, Marino L. 2011. Stability and sensitivity analysis of non-Newtonian flow through an axisymmetric expansion. J. Phys. Conf. Ser. 318:032015 [Google Scholar]
  60. Giles MB, Süli E. 2002. Adjoint methods for PDEs: a posteriori error analysis and post-processing by duality. Acta Numer. 11:145–236 [Google Scholar]
  61. Goldstein ME. 1985. Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154:509–29 [Google Scholar]
  62. Görtler H. 1941. Instabilität laminarer Grenzschichten an konkaven Wänden gegenüber gewissen dreidimensionalen Störungen. Z. Angew. Math. Mech. 21:250–52 [Google Scholar]
  63. Grosch CE, Salwen H. 1978. The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and eigenfunctions. J. Fluid Mech. 87:33–54 [Google Scholar]
  64. Hall P. 1983. The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130:41–58Provides the first instance of a spatially marching solution of the 3D parabolic equations for a boundary layer. [Google Scholar]
  65. Haque S, Lashgari I, Brandt L, Giannetti F. 2012. Stability of fluids with shear-dependent viscosity in the lid-driven cavity. J. Non-Newton. Fluid Mech. 173:49–61 [Google Scholar]
  66. Herbert T. 1997. Parabolized stability equations. Annu. Rev. Fluid Mech. 29:245–83 [Google Scholar]
  67. Hill DC. 1992. A theoretical approach for analyzing the restabilization of wakes Presented at AIAA Aerosp. Sci. Meet. Exhib., 30th, Reno, NV, AIAA Pap. 1992-0067 Presents the first adjoint-based global-mode stabilization. [Google Scholar]
  68. Hill DC. 1993. Boundary layer receptivity and control Tech. Rep., Cent. Turbul. Res., Stanford Univ., Stanford, CA [Google Scholar]
  69. Hill DC. 1995. Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292:183–204Provides a local, adjoint-based receptivity analysis. [Google Scholar]
  70. Hoepffner J, Brandt L, Henningson DS. 2005. Transient growth on boundary layer streaks. J. Fluid Mech. 537:91–100 [Google Scholar]
  71. Hwang Y, Choi H. 2006. Control of absolute instability by basic-flow modification in a parallel wake at low Reynolds number. J. Fluid Mech. 560:465–75 [Google Scholar]
  72. Jackson CP. 1987. A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182:23–45 [Google Scholar]
  73. Jameson A. 1988. Aerodynamic design via control theory. J. Sci. Comput. 3:233–60Introduces the adjoint method for aerodynamic design. [Google Scholar]
  74. Jameson A. 2003. Aerodynamic shape optimization using the adjoint method Presented at von Karman Inst. Fluid Dyn., Brussels, Belg. [Google Scholar]
  75. Jarny J, Ozisik MN, Bardon JP. 1991. A general optimization method using adjoint equation for solving multidimensional inverse heat conduction. Int. J. Heat Mass Transf. 34:2911–19 [Google Scholar]
  76. Juniper M. 2011. Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition. J. Fluid Mech. 667:272–308 [Google Scholar]
  77. Kim J, Bewley TR. 2007. A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39:383–417 [Google Scholar]
  78. Lashgari I, Pralits JO, Giannetti F, Brandt L. 2012. First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder. J. Fluid Mech. 701:201–27 [Google Scholar]
  79. Le Dimet FX, Talagrand O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38A:97–110 [Google Scholar]
  80. Le Dizès S, Huerre P, Chomaz JM, Monkewitz PA. 1996. Linear global modes in spatially developing media. Philos. Trans. R. Soc. Lond. A 354:169–212 [Google Scholar]
  81. Lions JL. 1968. Contrôle optimal de systèmes gouvernés par des équations aux derivées partielles Paris: Dunod, Gauthier-Villars [Google Scholar]
  82. Luchini P. 1997. Effects on a flat-plate boundary layer of free-stream longitudinal vortices: optimal perturbations. Proc. 3rd EUROMECH Fluid Mech. Conf.219 Göttingen: DLR [Google Scholar]
  83. Luchini P. 2000. Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404:289–309 [Google Scholar]
  84. Luchini P, Bottaro A. 1996. A time-reversed approach to the study of Görtler instabilities. Advances in Turbulence VI, Proc. 6th Eur. Turbul. Conf. S Gavrilakis, L Machiels, PA Monkewitz 369–70 Dordrecht: Kluwer Acad. [Google Scholar]
  85. Luchini P, Bottaro A. 1998. Görtler vortices: a backward-in-time approach to the receptivity problem. J. Fluid Mech. 363:1–23Presents the first nonlocal adjoint analysis for receptivity. [Google Scholar]
  86. Luchini P, Giannetti F, Pralits JO. 2008. Structural sensitivity of linear and nonlinear global modes Presented at AIAA Theoret. Fluid Mech. Conf., 5th, Seattle, AIAA Pap. 2008-4227 [Google Scholar]
  87. Luchini P, Giannetti F, Pralits JO. 2009. Structural sensitivity of the finite-amplitude vortex shedding behind a circular cylinder. Proc. IUTAM Symp. Unsteady Sep. Flows Control M Braza, K Hourigan 151–60 New York: Springer [Google Scholar]
  88. Magri L, Juniper MP. 2013. Sensitivity of a time-delayed thermo-acoustic system via an adjoint-based approach. J. Fluid Mech. 719:183–202 [Google Scholar]
  89. Marchuk GI. 1995. Adjoint Equations and Analysis of Complex Systems Dordrecht: Kluwer Acad. [Google Scholar]
  90. Marquet O, Sipp D, Jacquin L. 2008. Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615:221–52 [Google Scholar]
  91. Matsubara M, Alfredsson PH. 2001. Disturbance growth in boundary layer subjected to free-stream turbulence. J. Fluid Mech. 430:149–68 [Google Scholar]
  92. Matsubara M, Alfredsson PH. 2005. Transition induced by free-stream turbulence. J. Fluid Mech. 527:1–25 [Google Scholar]
  93. Meliga P, Pujals G, Serre E. 2012. Sensitivity of 2D turbulent flow past a D-shaped cylinder using global stability. Phys. Fluids 24:061701 [Google Scholar]
  94. Monkewitz PA, Huerre P, Chomaz JM. 1993. Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech. 251:1–20 [Google Scholar]
  95. Monokrousos A, Bottaro A, Di Vita A, Henningson DS. 2011. Non-equilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 106:134502 [Google Scholar]
  96. Najm HN. 2009. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41:35–52 [Google Scholar]
  97. Nouar C, Bottaro A. 2010. Stability of the flow of a Bingham fluid in a channel: eigenvalue sensitivity, minimal defects and scaling laws of transition. J. Fluid Mech. 642:349–72 [Google Scholar]
  98. Orr WM. 1907a. The stability or instability of the steady motions of a liquid. Part I: a perfect liquid. Proc. R. Irish Acad. A 27:9–68 [Google Scholar]
  99. Orr WM. 1907b. The stability or instability of the steady motions of a liquid. Part II: a viscous liquid. Proc. R. Irish Acad. A 27:69–138 [Google Scholar]
  100. Park MA. 2002. Adjoint-based, three-dimensional error prediction and grid adaptation Presented at AIAA Fluid Dyn. Conf. Exhib., 32nd, St. Louis, AIAA Pap. 2002-3286 [Google Scholar]
  101. Pattanaik SN, Mudur SP. 1995. Adjoint equations and random walks for illumination computations. ACM Trans. Graph. 14:77–102 [Google Scholar]
  102. Pendlebury ED. 1955. General perturbation theory in neutronics. Proc. Phys. Soc. A 68:474–81 [Google Scholar]
  103. Pier B. 2002. On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458:407–17 [Google Scholar]
  104. Pironneau O. 1974. On optimum design in fluid mechanics. J. Fluid Mech. 64:97–110 [Google Scholar]
  105. Pralits JO, Brandt L, Giannetti F. 2010. Instability and sensitivity of the flow around a rotating cylinder. J. Fluid Mech. 650:513–36 [Google Scholar]
  106. Pralits JO, Giannetti F, Brandt L. 2013. Three-dimensional instability of the flow around a rotating circular cylinder. J. Fluid Mech. 7305–18 [Google Scholar]
  107. Pralits JO, Luchini P. 2010. Riccati-less optimal control of bluff-body wakes. Proc. 7th IUTAM Symp. Laminar-Turbul. Transit. P Schlatter, DS Henningson 325–30 New York: Springer [Google Scholar]
  108. Pringle CCT, Kerswell RR. 2010. Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105:154502 [Google Scholar]
  109. Pringle CCT, Willis AP, Kerswell RR. 2012. Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702:415–43 [Google Scholar]
  110. Rabin SME, Caulfield CP, Kerswell RR. 2012. Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech. 712:244–72 [Google Scholar]
  111. Rumsey CL, Ying SX. 2002. Prediction of high lift: review of present CFD capability. Prog. Aerosp. Sci. 38:145–80 [Google Scholar]
  112. Salwen H, Grosch CE. 1981. The continuous spectrum of the Orr-Sommerfeld equation. Part 2. Eigenfunction expansion. J. Fluid Mech. 104:445–65 [Google Scholar]
  113. Saric WS, Nayfeh AH. 1975. Nonparallel stability of boundary-layer flows. Phys. Fluids 18:945–50 [Google Scholar]
  114. Schlichting H. 1960. Boundary Layer Theory New York: McGraw-Hill [Google Scholar]
  115. Schmid PJ, Henningson DS. 2001. Stability and Transition in Shear Flows New York: Springer [Google Scholar]
  116. Schubauer GB, Skramstad HK. 1947. Laminar boundary layer oscillations and transition on a flat plate. J. Aerosp. Sci. 14:69–76 [Google Scholar]
  117. Sipp D, Lebedev A. 2007. Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593:333–58 [Google Scholar]
  118. Spagnoli B, Airiau C. 2008. Adjoint analysis for noise control in a two-dimensional compressible mixing layer. Comput. Fluids 37:475–86 [Google Scholar]
  119. Strykowski PJ, Sreenivasan KR. 1990. On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218:71–107 [Google Scholar]
  120. Talagrand O, Courtier P. 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Q. J. R. Meteorol. Soc. 113:1311–28 [Google Scholar]
  121. Thompson MC, Leweke T, Williamson CHK. 2001. The physical mechanism of transition in bluff body wakes. J. Fluids Struct. 15:607–16 [Google Scholar]
  122. Trefethen LN, Embree M. 2005. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators Princeton, NJ: Princeton Univ. Press [Google Scholar]
  123. Trefethen LN, Trefethen AE, Reddy SC, Driscoll TA. 1993. Hydrodynamic stability without eigenvalues. Science 261:578–84Discusses the importance of spectra and pseudospectra. [Google Scholar]
  124. Tromp J, Tape C, Liu Q. 2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160:195–216 [Google Scholar]
  125. Tumin A. 2011. The biorthogonal eigenfunction system of linear stability equations: a survey of applications to receptivity problems and to analysis of experimental and computational results Presented at AIAA Fluid Dyn. Conf. Exhib., 41st, Honolulu, AIAA Pap. 2011-3244 [Google Scholar]
  126. Tumin AM, Fedorov AV. 1984. Instability wave excitation by a localized vibrator in the boundary layer. J. Appl. Mech. Tech. Phys. 25:867–73 [Google Scholar]
  127. Venditti DA, Darmofal DL. 2003. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows. J. Comput. Phys. 187:22–46 [Google Scholar]
  128. Walters RW, Huyse L. 2002. Uncertainty analysis for fluid mechanics with applications ICASE Rep. 2002-1, NASA/CR-2002-211449, Langley Res. Cent., Hampton, VA [Google Scholar]
  129. Wang Q, Ham F, Iaccarino G, Moin P. 2009. Risk quantification in unsteady flow simulations using adjoint-based approaches Presented at AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., 50th, Palm Springs, CA, AIAA Pap. 2009-2277 [Google Scholar]
  130. Westin KJA. 1997. Laminar-turbulent boundary layer transition influenced by free stream turbulence PhD thesis. R. Inst. Technol., Stockholm [Google Scholar]
  131. Westin KJA, Boiko AV, Klingmann BGB, Kozlov VV, Alfredsson PH. 1994. Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281:193–218 [Google Scholar]
  132. Whitham GB. 1974. Linear and Nonlinear Waves New York: Wiley [Google Scholar]
  133. Williamson CHK. 1996. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28:477–539 [Google Scholar]
  134. Winters KH, Cliffe KA, Jackson CP. 1987. The prediction of instabilities using bifurcation theory. Numerical Methods for Transient and Coupled Problems RW Lewis, E Hinton, P Bettess, BA Schrefler 179–98 New York: Wiley [Google Scholar]
  135. Zebib A. 1987. Stability of viscous flow past a circular cylinder. J. Eng. Math. 21:155–65 [Google Scholar]
  136. Zhigulev V, Fedorov A. 1987. Boundary-layer receptivity to acoustic disturbances. J. Appl. Mech. Tech. Phys. 28:28–34 [Google Scholar]
  137. Zuccher S. 2002. Receptivity and control of flow instabilities in a boundary layer PhD thesis. Politec. Milano [Google Scholar]
  138. Zuccher S, Bottaro A, Luchini P. 2006. Algebraic growth in a Blasius boundary layer: nonlinear optimal disturbances. Eur. J. Mech. B 25:1–17 [Google Scholar]
  139. Zuccher S, Luchini P. 2013. Boundary-layer receptivity to external disturbances using multiple scales. Meccanica. In press [Google Scholar]
/content/journals/10.1146/annurev-fluid-010313-141253
Loading
/content/journals/10.1146/annurev-fluid-010313-141253
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error