1932

Abstract

By modifying a physical property of a solution like its density or viscosity, chemical reactions can modify and even trigger convective flows. These flows in turn affect the spatiotemporal distribution of the chemical species. A nontrivial coupling between reactions and flows then occurs. We present simple model systems of this chemo-hydrodynamic coupling. In particular, we illustrate the possibility of chemical reactions controlling or triggering viscous fingering, Rayleigh–Taylor, double-diffusive, and convective dissolution instabilities. We discuss laboratory experiments performed to study these phenomena and compare the experimental results to theoretical predictions. In each case we contrast the chemo-hydrodynamic patterns and instabilities with those that develop in nonreactive systems and unify the different dynamics in terms of the common features of the related spatial mobility profiles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060349
2020-01-05
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060349.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060349&mimeType=html&fmt=ahah

Literature Cited

  1. Alhumade H, Azaiez J. 2013. Stability analysis of reversible reactive flow displacements in porous media. Chem. Eng. Sci. 101:46–55
    [Google Scholar]
  2. Alhumade H, Azaiez J. 2015. Numerical simulations of gravity driven reversible reactive flows in homogeneous porous media. Math. Probl. Eng. 2015:920692
    [Google Scholar]
  3. Almarcha C, R'Honi Y, De Decker Y, Trevelyan PMJ, Eckert K, De Wit A 2011. Convective mixing induced by acid-base reactions. J. Phys. Chem. B 104:044501
    [Google Scholar]
  4. Almarcha C, Trevelyan PMJ, Grosfils P, De Wit A 2010a. Chemically driven hydrodynamic instabilities. Phys. Rev. Lett. 104:044501
    [Google Scholar]
  5. Almarcha C, Trevelyan PMJ, Grosfils P, De Wit A 2013. Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front. Phys. Rev. E 88:033009
    [Google Scholar]
  6. Almarcha C, Trevelyan PMJ, Riolfo L, Zalts A, El Hasi C et al. 2010b. Active role of a color indicator in buoyancy-driven instabilities of chemical fronts. J. Phys. Chem. Lett. 1:752–57
    [Google Scholar]
  7. Andres JTH, Cardoso SSS. 2011. Onset of convection in a porous medium in the presence of a chemical reaction. Phys. Rev. E 83:046312
    [Google Scholar]
  8. Andres JTH, Cardoso SSS. 2012. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics. Chaos 22:037113
    [Google Scholar]
  9. Asad A, Yang YH, Chai C, Wu J 2010. Hydrodynamic instabilities driven by acid-base neutralization reaction in immiscible system. Chin. J. Chem. Phys. 23:513–20
    [Google Scholar]
  10. Bees MA, Pons AJ, Sørensen PG, Sagués F 2001. Chemoconvection: a chemically driven hydrodynamic instability. J. Chem. Phys. 114:1932
    [Google Scholar]
  11. Binda L, El Hasi C, Zalts A, D'Onofrio A 2017. Experimental analysis of density fingering instability modified by precipitation. Chaos 27:053111
    [Google Scholar]
  12. Bratsun D, De Wit A 2004. On Marangoni convective patterns driven by an exothermic chemical reaction in two-layer systems. Phys. Fluids 16:1082–96
    [Google Scholar]
  13. Bratsun D, De Wit A 2011. Buoyancy-driven pattern formation in reactive immiscible two-layer systems. Chem. Eng. Sci. 66:5723–34
    [Google Scholar]
  14. Bratsun D, Kostarev K, Mizev A, Mosheva E 2015. Concentration-dependent diffusion instability in reactive miscible fluids. Phys. Rev. E 92:011003(R)
    [Google Scholar]
  15. Brau F, Schuszter G, De Wit A 2017. Flow control of fronts by radial injection. Phys. Rev. Lett. 118:134101
    [Google Scholar]
  16. Broyles B, Shalliker R, Cherrak D, Guiochon G 1998. Visualization of viscous fingering in chromatographic columns. J. Chromatog. A 822:173–87
    [Google Scholar]
  17. Budroni MA, De Wit A 2017. Dissipative structures: from reaction-diffusion to chemo-hydrodynamic patterns. Chaos 27:104617
    [Google Scholar]
  18. Budroni MA, Riolfo LA, Lemaigre L, Rossi F, Rustici M, De Wit A 2014. Chemical control of hydrodynamic instabilities in partially miscible two-layer systems. J. Phys. Chem. Lett. 5:875–81
    [Google Scholar]
  19. Budroni MA, Thomas C, De Wit A 2017. Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments. Phys. Chem. Chem. Phys. 19:7936–46
    [Google Scholar]
  20. Bunton P, Tullier M, Meiburg E, Pojman J 2017. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele–Shaw cell. Chaos 27:104614
    [Google Scholar]
  21. Carballido-Landeira J, Trevelyan P, Almarcha C, De Wit A 2013. Mixed-mode instability of a miscible interface due to coupling between Rayleigh-Taylor and double-diffusive convective modes. Phys. Fluids 25:024107
    [Google Scholar]
  22. Cardoso SSS, Andres JTH. 2014. Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers. Nat. Commun. 5:5743
    [Google Scholar]
  23. Chadam J, Hoff D, Merino E, Ortoleva P, Sen A 1986. Reactive infiltration instabilities. IMA J. Appl. Math. 36:207–21
    [Google Scholar]
  24. Cherezov I, Cardoso SSS. 2016. Acceleration of convective dissolution by chemical reaction in a Hele-Shaw cell. Phys. Chem. Chem. Phys. 18:23727–36
    [Google Scholar]
  25. Citri O, Kagan M, Kosloff R, Avnir D 1990. Evolution of chemically induced unstable density gradients near horizontal reactive interfaces. Langmuir 6:559–64
    [Google Scholar]
  26. Daccord G, Lenormand R. 1987. Fractal patterns from chemical dissolution. Nature 325:41–43
    [Google Scholar]
  27. Dastvareh B, Azaiez J. 2019. Instabilities of nonisothermal nanocatalytic reactive flows in porous media. Phys. Rev. Fluids 4:034003
    [Google Scholar]
  28. De Wit A. 2016. Chemo-hydrodynamic patterns in porous media. Philos. Trans. R. Soc. A 374:20150419
    [Google Scholar]
  29. De Wit A, Bertho Y, Martin M 2005. Viscous fingering of miscible slices. Phys. Fluids 17:054114
    [Google Scholar]
  30. De Wit A, Eckert K, Kalliadasis S 2012. Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities. Chaos 22:037101
    [Google Scholar]
  31. De Wit A, Homsy GM 1999a. Nonlinear interactions of chemical reactions and viscous fingering in porous media. Phys. Fluids 11:949–51
    [Google Scholar]
  32. De Wit A, Homsy GM 1999b. Viscous fingering in reaction-diffusion systems. J. Chem. Phys. 110:8663–75
    [Google Scholar]
  33. Dickson ML, Norton TT, Fernandez EJ 1997. Chemical imaging of multicomponent viscous fingering in chromatography. AIChE J 43:409–18
    [Google Scholar]
  34. Eckert K, Acker M, Shi Y 2004. Chemical pattern formation driven be a neutralization reaction. I. Mechanism and basic features. Phys. Fluids 16:385–99
    [Google Scholar]
  35. Eckert K, Acker M, Tadmouri R, Pimienta V 2012. Chemo-Marangoni convection driven by an interfacial reaction: pattern formation and kinetics. Chaos 22:037112
    [Google Scholar]
  36. Eckert K, Grahn A. 1999. Plume and finger regimes driven by an exothermic interfacial reaction. Phys. Rev. Lett. 82:4436
    [Google Scholar]
  37. Emami-Meybodi H, Hassanzadeh H, Green CP, Ennis-King J 2015. Convective dissolution of CO2 in saline aquifers: progress in modeling and experiments. Int. J. Greenh. Gas Control 40:238–66
    [Google Scholar]
  38. Ennis-King J, Paterson L. 2007. Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide. Int. J. Greenh. Gas Control 1:86–93
    [Google Scholar]
  39. Escala DM, Budroni MA, Carballido-Landeira J, De Wit A, Muñuzuri AP 2014. Self-organized traveling chemo-hydrodynamic fingers triggered by a chemical oscillator. J. Phys. Chem. Lett. 5:413–18
    [Google Scholar]
  40. Escala DM, De Wit A, Carballido-Landeira J, Muñuzuri AP 2019. Viscous fingering induced by a pH-sensitive clock reaction. Langmuir 35:4182–88
    [Google Scholar]
  41. Escala DM, Muñuzuri AP, De Wit A, Carballido-Landeira J 2017. Temporal viscosity modulations driven by a pH sensitive polymer coupled to a pH-changing chemical reaction. Phys. Chem. Chem. Phys. 19:11914–19
    [Google Scholar]
  42. Fernandez J, Homsy GM. 2003. Viscous fingering with chemical reaction: effect of in-situ production of surfactants. J. Fluid Mech. 480:267–81
    [Google Scholar]
  43. Fernandez J, Kurowski P, Petitjeans P, Meiburg E 2002. Density-driven unstable flows of miscible fluids in a Hele-Shaw cell. J. Fluid Mech. 451:239–60
    [Google Scholar]
  44. Gálfi L, Rácz Z. 1988. Properties of the reaction front in an type reaction-diffusion process. Phys. Rev. A 38:3151–54
    [Google Scholar]
  45. Gérard T, De Wit A 2009. Miscible viscous fingering induced by a simple chemical reaction. Phys. Rev. E 79:016308
    [Google Scholar]
  46. Ghesmat K, Azaiez J. 2009. Miscible displacements of reactive and anisotropic dispersive flows in porous media. Transp. Porous Media 77:489–506
    [Google Scholar]
  47. Ghesmat K, Hassanzadeh H, Abedi J 2011. The impact of geochemistry on convective mixing in a gravitationally unstable diffusive boundary layer in porous media: CO2 storage in saline aquifers. J. Fluid Mech. 673:480–512
    [Google Scholar]
  48. Ghesmat K, Hassanzadeh H, Abedi J, Chen Z 2013. Frontal stability of reactive nanoparticle transport during in situ catalytic upgrading of heavy oil. Fuel 107:525–38
    [Google Scholar]
  49. Ghoshal P, Kim MC, Cardoso SSS 2017. Reactive-convective dissolution in a porous medium: the storage of carbon dioxide in saline aquifers. Phys. Chem. Chem. Phys. 19:644–55
    [Google Scholar]
  50. Ghoshal P, Kim MC, Cardoso SSS 2018. Onset of convection in the presence of a precipitation reaction in a porous medium: a comparison of linear stability and numerical approaches. Fluids 3:1
    [Google Scholar]
  51. Gopalakrishnan SS, Carballido-Landeira J, Knaepen B, De Wit A 2018. Control of Rayleigh-Taylor instability onset time and convective velocity by differential diffusion effects. Phys. Rev. E 98:011101(R)
    [Google Scholar]
  52. Guiochon G, Felinger A, Shirazi DG, Katti AM 2006. Fundamentals of Preparative and Nonlinear Chromatography New York: Academic
    [Google Scholar]
  53. Haudin F, Cartwright JHE, Brau F, De Wit A 2014. Spiral precipitation patterns in confined chemical gardens. PNAS 111:17363–67
    [Google Scholar]
  54. Haudin F, De Wit A 2015. Patterns due to an interplay between viscous and precipitation-driven fingering. Phys. Fluids 27:113101
    [Google Scholar]
  55. Hejazi SH, Azaiez J. 2010a. Hydrodynamic instability in the transport of miscible reactive slices through porous media. Phys. Rev. E 81:056321
    [Google Scholar]
  56. Hejazi SH, Azaiez J. 2010b. Non-linear interactions of dynamic interfaces in porous media. Chem. Eng. Sci. 65:938
    [Google Scholar]
  57. Hejazi SH, Azaiez J. 2012. Stability of reactive interfaces in saturated porous media under gravity in the presence of transverse flows. J. Fluid Mech. 695:439–66
    [Google Scholar]
  58. Hejazi SH, Azaiez J. 2013. Nonlinear simulation of transverse flow interactions with chemically driven convective mixing in porous media. Water Resour. Res. 49:4607–18
    [Google Scholar]
  59. Hejazi SH, Trevelyan PMJ, Azaiez J, De Wit A 2010. Viscous fingering of a miscible reactive interface: a linear stability analysis. J. Fluid Mech. 652:501–28
    [Google Scholar]
  60. Hidalgo JJ, Dentz M, Cabeza Y, Carrera J 2015. Dissolution patterns and mixing dynamics in unstable reactive flow. Geophys. Res. Lett. 42:6357–64
    [Google Scholar]
  61. Hill S. 1952. Channelling in packed columns. Chem. Eng. Sci. 1:247–53
    [Google Scholar]
  62. Homsy GM. 1987. Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19:271–311
    [Google Scholar]
  63. Hornof V, Baig FU. 1995. Influence of interfacial reaction and mobility ratio on the displacement of oil in a Hele-Shaw cell. Exp. Fluids 18:448–53
    [Google Scholar]
  64. Hota T, Pramanik S, Mishra M 2015. Onset of fingering instability in a finite slice of adsorbed solute. Phys. Rev. E 92:023013
    [Google Scholar]
  65. Huppert HE, Neufeld JA. 2014. The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46:255–72
    [Google Scholar]
  66. Jahoda M, Hornof V. 2000. Concentration profiles of reactant in a viscous finger formed during the interfacially reactive immiscible displacements in porous media. Powder Technol 110:253–57
    [Google Scholar]
  67. Jiang Z, Ebner C. 1990. Simulation study of reaction fronts. Phys. Rev. A 42:7483–86
    [Google Scholar]
  68. Jotkar M, De Wit A, Rongy L 2019. Enhanced convective dissolution due to an reaction: control of the non-linear dynamics via solutal density contributions. Phys. Chem. Chem. Phys. 21:6432–42
    [Google Scholar]
  69. Kahrobaei S, Vincent-Bonnieu S, Farajzadeh R 2017. Experimental study of hysteresis behavior of foam generation in porous media. Sci. Rep. 7:8986
    [Google Scholar]
  70. Kim M. 2014. Effect of the irreversible reaction on the onset and the growth of the buoyancy-driven instability in a porous medium. Chem. Eng. Sci. 112:56–71
    [Google Scholar]
  71. Kim MC, Cardoso SSS. 2018. Diffusivity ratio effect on the onset of the buoyancy-driven instability of an chemical reaction system in a Hele-Shaw cell: asymptotic and linear stability analyses. Phys. Fluids 30:094102
    [Google Scholar]
  72. Kim MC, Choi CK. 2014. Effect of first-order chemical reaction on gravitational instability in a porous medium. Phys. Rev. E 90:053016
    [Google Scholar]
  73. Kim MC, Kim YH. 2015. The effect of chemical reaction on the onset of gravitational instabilities in a fluid saturated within a vertical Hele-Shaw cell: theoretical and numerical studies. Chem. Eng. Sci. 134:632–47
    [Google Scholar]
  74. Kneafsey T, Pruess K. 2010. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp. Porous Media 82:123–39
    [Google Scholar]
  75. Kneafsey T, Pruess K. 2011. Laboratory experiments and numerical simulation studies of convectively enhanced carbon dioxide dissolution. Energy Procedia 4:5114–21
    [Google Scholar]
  76. Kuster S, Riolfo L, Zalts A, El Hasi C, Almarcha C et al. 2011. Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the case of a color indicator. Phys. Chem. Chem. Phys. 13:17295–303
    [Google Scholar]
  77. Lemaigre L, Budroni MA, Riolfo LA, Grosfils P, De Wit A 2013. Asymmetric Rayleigh-Taylor and double-diffusive fingers in reactive systems. Phys. Fluids 25:014103
    [Google Scholar]
  78. Loodts V, Knaepen B, Rongy L, De Wit A 2017. Enhanced steady-state dissolution flux in reactive convective dissolution. Phys. Chem. Chem. Phys. 19:18565–79
    [Google Scholar]
  79. Loodts V, Rongy L, De Wit A 2014. Impact of pressure, salt concentration, and temperature on the convective dissolution of carbon dioxide in aqueous solutions. Chaos 24:043120
    [Google Scholar]
  80. Loodts V, Rongy L, De Wit A 2015. Chemical control of dissolution-driven convection in partially miscible systems: theoretical classification. Phys. Chem. Chem. Phys. 17:29814–23
    [Google Scholar]
  81. Loodts V, Saghou H, Knaepen B, Rongy L, De Wit A 2018. Differential diffusivity effects in reactive convective dissolution. Fluids 3:83
    [Google Scholar]
  82. Loodts V, Trevelyan PMJ, Rongy L, De Wit A 2016. Density profiles around reaction-diffusion fronts in partially miscible systems: a general classification. Phys. Rev. E 94:043115
    [Google Scholar]
  83. Manickam O, Homsy G. 1995. Fingering instabilities in vertical miscible displacement flows in porous media. J. Fluid Mech. 288:75–102
    [Google Scholar]
  84. Meiburg E, Kneller B. 2010. Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42:135–56
    [Google Scholar]
  85. Metz B, Davidson O, de Conninck H, Loos M, Meyer L, eds. 2005. Carbon Dioxide Capture and Storage Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  86. Mishra M, Martin M, De Wit A 2007. Miscible viscous fingering with linear adsorption on the porous matrix. Phys. Fluids 19:073101
    [Google Scholar]
  87. Mishra M, Martin M, De Wit A 2010a. Influence of miscible viscous fingering with negative log-mobility ratio on spreading of adsorbed analytes. Chem. Eng. Sci. 65:2392–98
    [Google Scholar]
  88. Mishra M, Trevelyan P, Almarcha C, De Wit A 2010b. Influence of double diffusive effects on miscible viscous fingering. Phys. Rev. Lett. 105:204501
    [Google Scholar]
  89. Mosheva E, Shmyrov A. 2017. Effect of the universal acid-base indicator on the formation of the concentration-dependent diffusion instability. IOP Conf. Ser. Mater. Sci. Eng. 208:012029
    [Google Scholar]
  90. Nagatsu Y. 2015. Viscous fingering phenomena with chemical reactions. Curr. Phys. Chem. 5:52–63
    [Google Scholar]
  91. Nagatsu Y, Bae SK, Kato Y, Tada Y 2008a. Miscible viscous fingering with a chemical reaction involving precipitation. Phys. Rev. E 77:067302
    [Google Scholar]
  92. Nagatsu Y, De Wit A 2011. Viscous fingering of a miscible reactive interface for an infinitely fast chemical reaction: nonlinear simulations. Phys. Fluids 23:043103
    [Google Scholar]
  93. Nagatsu Y, Hayashi A, Ban M, Kato Y, Tada Y 2008b. Spiral pattern in a radial displacement involving a reaction-producing gel. Phys. Rev. E 78:026307
    [Google Scholar]
  94. Nagatsu Y, Ishii Y, Tada Y, De Wit A 2014. Hydrodynamic fingering instability induced by a precipitation reaction. Phys. Rev. Lett. 113:024502
    [Google Scholar]
  95. Nagatsu Y, Kondo Y, Kato Y, Tada Y 2009. Effects of moderate Damköhler number on miscible viscous fingering involving viscosity decrease due to a chemical reaction. J. Fluid Mech. 625:97–124
    [Google Scholar]
  96. Nagatsu Y, Kondo Y, Kato Y, Tada Y 2011. Miscible viscous fingering involving viscosity increase by a chemical reaction with moderate Damköhler number. Phys. Fluids 23:014109
    [Google Scholar]
  97. Nagatsu Y, Matsuda K, Kato Y, Tada Y 2007. Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions. J. Fluid Mech. 571:475–93
    [Google Scholar]
  98. Nagatsu Y, Ueda T. 2001. Effects of reactant concentrations on reactive miscible viscous fingering. AIChE J 47:1711–20
    [Google Scholar]
  99. Nagatsu Y, Ueda T. 2003. Effects of finger-growth velocity on reactive miscible viscous fingering. AIChE J 49:789–92
    [Google Scholar]
  100. Nagatsu Y, Ueda T. 2004. Analytical study on effects of finger-growth velocity on reaction characteristics of reactive miscible viscous fingering by using a convection–diffusion–reaction model. Chem. Eng. Sci. 59:3817–26
    [Google Scholar]
  101. Nasr-El-Din H, Khulbe K, Hornof V, Neale G 1990. Effects of interfacial reaction on the radial displacement of oil by alkaline solutions. Rev. Inst. Fr. Pétr. 45:231–44
    [Google Scholar]
  102. Neufeld JA, Hesse M, Riaz A, Hallworth MA, Tchelepi HA, Huppert HE 2010. Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37:L22404
    [Google Scholar]
  103. Niroobakhsh Z, Litman M, Belmonte A 2017. Flow instabilities due to the interfacial formation of surfactant-fatty acid material in a Hele-Shaw cell. Phys. Rev. E 96:053102
    [Google Scholar]
  104. Outeda R, El Hasi C, D'Onofrio A, Zalts A 2014. An experimental study of linear and nonlinear regimes of density-driven instabilities induced by CO2 dissolution in water. Chaos 24:013135
    [Google Scholar]
  105. Podgorski T, Sostarecz MC, Zorman S, Belmonte A 2007. Fingering instabilities of a reactive micellar interface. Phys. Rev. E 79:016202
    [Google Scholar]
  106. Radko T. 2013. Double-Diffusive Convection Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  107. Rana C, De Wit A 2019. Reaction-driven oscillating viscous fingering. Chaos 29:043115
    [Google Scholar]
  108. Rana C, De Wit A, Martin M, Mishra M 2014. Combined influences of viscous fingering and solvent effect on the distribution of adsorbed solutes in porous media. RSC Adv 4:34369–81
    [Google Scholar]
  109. Rana C, Mishra M, De Wit A 2018. Effect of anti-Langmuir adsorption on spreading in porous media. Europhys. Lett. 124:64003
    [Google Scholar]
  110. Riaz A, Hesse M, Tchelepi HA, Orr FM Jr 2006. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548:87–111
    [Google Scholar]
  111. Riolfo LA, Nagatsu Y, Iwata S, Maes R, Trevelyan PMJ, De Wit A 2012. Experimental evidence of reaction-driven miscible viscous fingering. Phys. Rev. E 85:015304(R)
    [Google Scholar]
  112. Ritchie L, Pritchard D. 2011. Natural convection and the evolution of a reactive porous medium. J. Fluid Mech. 673:286–317
    [Google Scholar]
  113. Rongy L, Trevelyan P, De Wit A 2008. Dynamics of reaction fronts in the presence of buoyancy-driven convection. Phys. Rev. Lett. 101:084503
    [Google Scholar]
  114. Rongy L, Trevelyan P, De Wit A 2010. Influence of buoyancy-driven convection on the dynamics of reaction fronts in horizontal solution layers. Chem. Eng. Sci. 65:2382–91
    [Google Scholar]
  115. Rose H, Britton M. 2013. Magnetic resonance imaging of reaction-driven viscous fingering in a packed bed. Microporous Mesoporous Mater 178:64–68
    [Google Scholar]
  116. Rousseaux G, De Wit A, Martin M 2007. Viscous fingering in packed chromatographic columns: linear stability analysis. J. Chromatogr. A 1149:254–73
    [Google Scholar]
  117. Rousseaux G, Martin M, De Wit A 2011. Viscous fingering in packed chromatographic columns: non-linear dynamics. J. Chromatogr. A 1218:8353–61
    [Google Scholar]
  118. Sabet N, Hassanzadeh H, Abedi J 2017. Control of viscous fingering by nanoparticles. Phys. Rev. E 96:063114
    [Google Scholar]
  119. Sabet N, Raad S, Hassanzadeh H, Abedi J 2018. Dynamics of miscible nanocatalytic reactive flows in porous media. Phys. Rev. Appl. 10:054033
    [Google Scholar]
  120. Saffman PG, Taylor GI. 1958. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245:312–29
    [Google Scholar]
  121. Schuszter G, Brau F, De Wit A 2014. Calcium carbonate mineralization in a confined geometry. Environ. Sci. Technol. Lett. 3:156–59
    [Google Scholar]
  122. Schwarzenberger K, Eckert K, Odenbach S 2012. Relaxation oscillations between Marangoni cells and double diffusive fingers in a reactive liquid–liquid system. Chem. Eng. Sci. 68:530–40
    [Google Scholar]
  123. Sharma V, Pramanik S, Chen CY, Mishra M 2019. A numerical study on reaction-induced radial fingering instability. J. Fluid Mech. 862:624–38
    [Google Scholar]
  124. Slim AC. 2014. Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech. 741:461–91
    [Google Scholar]
  125. Slim AC, Bandi MM, Miller JC, Mahadevan L 2013. Dissolution-driven convection in a Hele–Shaw cell. Phys. Fluids 25:024101
    [Google Scholar]
  126. Stewart S, Marin D, Tullier M, Pojman J, Meiburg E, Bunton P 2018. Stabilization of miscible viscous fingering by a step growth polymerization reaction. Exp. Fluids 59:114
    [Google Scholar]
  127. Swernath S, Pushpavanam S. 2007. Viscous fingering in a horizontal flow through a porous medium induced by chemical reactions under isothermal and adiabatic conditions. J. Chem. Phys. 127:204701
    [Google Scholar]
  128. Swernath S, Pushpavanam S. 2008. Instability of a vertical chemical front: effect of viscosity and density varying with concentration. Phys. Fluids 20:012101
    [Google Scholar]
  129. Szymczak P, Ladd AJC. 2014. Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix. J. Fluid Mech. 738:591–630
    [Google Scholar]
  130. Tanoue K, Ikemoto H, Yoshitomi M, Nishimura T 2009a. Instabilized heat and mass transfer in exothermic chemically reacting flows. Therm. Sci. Eng. 17:121–29
    [Google Scholar]
  131. Tanoue K, Yoshitomi M, Nishimura T 2009b. Heat transfer under buoyancy-induced flow at the chemical reaction front using thermochromic liquid crystal sheet. J. Chem. Eng. Jpn. 42:255–58
    [Google Scholar]
  132. Thomas C, Dehaeck S, De Wit A 2018. Convective dissolution of CO2 in water and salt solutions. Int. J. Greenh. Gas Control 72:105–16
    [Google Scholar]
  133. Thomas C, Lemaigre L, Zalts A, D'Onofrio A, De Wit A 2015. Experimental study of CO2 convective dissolution: the effect of color indicators. Int. J. Greenh. Gas Control 42:525–33
    [Google Scholar]
  134. Thomas C, Loodts V, Rongy L, De Wit A 2016. Convective dissolution of CO2 in reactive alkaline solutions: active role of spectator ions. Int. J. Greenh. Gas Control 53:230–42
    [Google Scholar]
  135. Tiani R, De Wit A, Rongy L 2018. Surface tension and buoyancy-driven flows across horizontally propagating chemical fronts. Adv. Colloid Interface Sci. 225:76–83
    [Google Scholar]
  136. Trevelyan PMJ, Almarcha C, De Wit A 2011. Buoyancy-driven instabilities of miscible two-layer stratifications in porous media and Hele-Shaw cells. J. Fluid Mech. 670:38–65
    [Google Scholar]
  137. Trevelyan PMJ, Almarcha C, De Wit A 2015. Buoyancy-driven instabilities around miscible reaction fronts: a general classification. Phys. Rev. E 91:023001
    [Google Scholar]
  138. Trevelyan PMJ, Walker A. 2018. Asymptotic properties of radial reaction fronts. Phys. Rev. E 98:032118
    [Google Scholar]
  139. Tsuzuki R, Ban T, Fujimura M, Nagatsu Y 2019. Dual role of surfactant-producing reaction in immiscible viscous fingering evolution. Phys. Fluids 31:022102
    [Google Scholar]
  140. Turner J. 1979. Buoyancy Effects in Fluids Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  141. Villermaux E. 2019. Mixing versus stirring. Annu. Rev. Fluid Mech. 51:245–73
    [Google Scholar]
  142. Ward TJ, Cliffe KA, Jensen OE, Power H 2014. Dissolution-driven porous-medium convection in the presence of chemical reaction. J. Fluid Mech. 747:316–49
    [Google Scholar]
  143. White A, Ward T. 2012. CO2 sequestration in a radial Hele-Shaw cell via an interfacial chemical reaction. Chaos 22:037114
    [Google Scholar]
  144. Wooding RA. 1969. Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell. J. Fluid Mech. 39:477–95
    [Google Scholar]
  145. Wylock C, Dehaeck S, Cartage T, Colinet P, Haut B 2011. Experimental study of gas–liquid mass transfer coupled with chemical reactions by digital holographic interferometry. Chem. Eng. Sci. 66:3400–12
    [Google Scholar]
  146. Wylock C, Dehaeck S, Rednikov A, Colinet P 2008. Chemo-hydrodynamical instability created by CO2 absorption in an aqueous solution of NaHCO3 and Na2CO3. Microgravity Sci. Technol. 20:171
    [Google Scholar]
  147. Wylock C, Rednikov A, Haut B, Colinet P 2014. Nonmonotonic Raleigh-Taylor instabilities driven by gas–liquid CO2 chemisorption. J. Phys. Chem. B 118:11323–29
    [Google Scholar]
  148. Zalts A, El Hasi C, Rubio D, Urena A, D'Onofrio A 2008. Pattern formation driven by an acid-base neutralization reaction in aqueous media in a gravitational field. Phys. Rev. E 77:015304(R)
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060349
Loading
/content/journals/10.1146/annurev-fluid-010719-060349
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error